帳號:guest(3.144.84.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴易杰
作者(外文):Lai, Yi-Chieh
論文名稱(中文):個體差異性對交通系統內相變的影響
論文名稱(外文):Effect of individual difference on the jamming transition in traffic flow
指導教授(中文):吳國安
指導教授(外文):Wu, Kuo-An
口試委員(中文):陳宣毅
羅健榮
陳昇宏
口試委員(外文):Chen, Hsuan-Yi
Lo, Chien-Jung
Chen, Shen-hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022503
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:42
中文關鍵詞:生物系統交通模型相變個體差異性
外文關鍵詞:active mattertraffic modelphase transitionindividual difference
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
藉由將個體差異性引入一維微觀尺度的交通模型,我們同時定性與定量上分析個體差異性如何影響交通系統。我們發現在高密度的情況下存在適當個體差異性可以有效降低交通系統的不穩定度,並減緩塞車的現象。此外,我們藉由研究高密度車流如何在交通系統中傳播發現一個系統的發生塞車與否只和個體差異如何被選取有關,與個體差異如何在空間中分佈並無太大關連。最後,此理論所推導出的結果可以被拓展至其他具有同性質的交通模型上。
The individual difference, particularly in drivers’ distance perception, is introduced in the microscopic one-dimensional optimal velocity model to investigate its effect on the onset of the jamming instability seen in traffic systems. We show analytically and numerically that the individual difference helps to inhibit the traffic jam at high vehicle densities while it promotes jamming transition at low vehicle densities. In addition, the jamming mechanism is further investigated by tracking how the spatial disturbance travels through traffics. We find that the jamming instability is uniquely determined by the overall distribution of drivers' distance perception rather than the spatial ordering of vehicles. Finally, a generalized form of the optimal velocity function is considered to show the universality of the effect of the individual difference.
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Bando's Model . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Effect of Individual Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Individual Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Propagation of Disturbances . . . . . . . . . . . . . . . . . . 16
3.1.3 Irrelevance of Spatial Ordering of Vehicles . . . . . . . . . . 20
3.2 Universality of The Effect of Individual Difference . . . . . . . . . . 22
4 Phenomenon and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Hysteresis-like Phase Diagram . . . . . . . . . . . . . . . . . . . . . 25
4.2 Scattering Fundamental Diagram . . . . . . . . . . . . . . . . . . . 29
5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A. Calculation of Second Perturbation . . . . . . . . . . . . . . . . . . . 33
B. Calculation of Propagation Distribution . . . . . . . . . . . . . . . . . 33
[1] Michael E. Cates and Julien Tailleur. Motility-induced phase separation.
Annual Review of Condensed Matter Physics, 6(1):219–244, 2015.
[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost,
Madan Rao, and R. Aditi Simha. Hydrodynamics of soft active matter. Rev.
Mod. Phys., 85:1143–1189, Jul 2013.
[3] B.d. Greenshields, J.r. Bibbins, W.s. Channing, and H.h. Miller. A study of
traffic capacity. Highway Research Board proceedings, 1935:–, 1935.
[4] Dirk Helbing. Traffic and related self-driven many-particle systems. Rev.
Mod. Phys., 73:1067–1141, Dec 2001.
[5] Louis A. Pipes. An operational analysis of traffic dynamics. Journal of Applied
Physics, 24(3):274–281, 1953.
[6] Robert E. Chandler, Robert Herman, and Elliott W. Montroll. Traffic dy-
namics: Studies in car following. Operations Research, 6(2):165–184, 1958.
[7] Denos C. Gazis, Robert Herman, and Richard W. Rothery. Nonlinear follow-
the-leader models of traffic flow. Operations Research, 9(4):545–567, 1961.
[8] G. F. Newell. Nonlinear effects in the dynamics of car following. Operations
Research, 9(2):209–229, 1961.
[9] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Dy-
namical model of traffic congestion and numerical simulation. Phys. Rev. E,
51:1035–1042, Feb 1995.
[10] Kai Nagel and Michael Schreckenberg. A cellular automaton model for free-
way traffic. J. Phys. I France, 2(12):2221–2229, 1992.
[11] Kai Nagel and Hans J. Herrmann. Deterministic models for traffic jams.
Physica A: Statistical Mechanics and its Applications, 199(2):254 – 269, 1993.
[12] Dirk Helbing and Benno Tilch. Generalized force model of traffic dynamics.
Phys. Rev. E, 58:133–138, Jul 1998.
[13] Takashi Nagatani. The physics of traffic jams. Reports on Progress in Physics,
65(9):1331–1386, aug 2002.
[14] Michael James Lighthill and Gerald Beresford Whitham. On kinematic waves
ii. a theory of traffic flow on long crowded roads. Proceedings of the Royal Soci-
ety of London. Series A. Mathematical and Physical Sciences, 229(1178):317–
345, 1955.
[15] Paul I. Richards. Shock waves on the highway. Operations Research, 4(1):42–
51, 1956.
[16] G. B. Whitham. Linear and Nonlinear Waves. John Wiley, 1974.
[17] I. Prigogine and F. C. Andrews. A boltzmann-like approach for traffic flow.
Operations Research, 8(6):789–797, 1960.
[18] S.L. Paveri-Fontana. On boltzmann-like treatments for traffic flow: A crit-
ical review of the basic model and an alternative proposal for dilute traffic
analysis. Transportation Research, 9(4):225 – 235, 1975.
[19] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Structure
stability of congestion in traffic dynamics. Japan Journal of Industrial and
Applied Mathematics, 11(2):203, 1994.
[20] Yu-barki Sugiyama and Hiroyasu Yamada. Simple and exactly solvable model
for queue dynamics. Phys. Rev. E, 55:7749–7752, Jun 1997.
[21] B. S. Kerner and H. Rehborn. Experimental properties of phase transitions
in traffic flow. Phys. Rev. Lett., 79:4030–4033, Nov 1997.
[22] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic
simulations using cellular automata. Physica A: Statistical Mechanics and its
Applications, 231(4):534 – 550, 1996.
[23] Peter Wagner, Kai Nagel, and Dietrich E. Wolf. Realistic multi-lane traffic
rules for cellular automata. Physica A: Statistical Mechanics and its Appli-
cations, 234(3):687 – 698, 1997.
[24] Anthony D. Mason and Andrew W. Woods. Car-following model of multi-
species systems of road traffic. Phys. Rev. E, 55:2203–2214, Mar 1997.
[25] B. Tilch and D. Helbing. Evaluation of single vehicle data in dependence of
the vehicle-type, lane, and site. In Dirk Helbing, Hans J. Herrmann, Michael
Schreckenberg, and Dietrich E. Wolf, editors, Traffic and Granular Flow ’99,
pages 333–338, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
[26] Martin Treiber and Dirk Helbing. Macroscopic simulation of widely scattered
synchronized traffic states. Journal of Physics A: Mathematical and General,
32(1):L17–L23, jan 1999.
[27] Geng Zhang, Di-Hua Sun, Hui Liu, and Min Zhao. Analysis of drivers’ char-
acteristics in car-following theory. Modern Physics Letters B, 28(24):1450191,
2014.
[28] David Herrero-Fernández. Psychophysiological, subjective and behavioral dif-
ferences between high and low anger drivers in a simulation task. Transporta-
tion Research Part F: Traffic Psychology and Behaviour, 42:365 – 375, 2016.
Advances in Driving Anger.
[29] Tieqiao Tang, Chuanyao Li, Haijun Huang, and Huayan Shang. A new fun-
damental diagram theory with the individual difference of the driver’s per-
ception ability. Nonlinear Dynamics, 67(3):2255–2265, Feb 2012.
[30] Jun-Fang Tian, Bin Jia, and Xing-Gang Li. A new car following model: Com-
prehensive optimal velocity model. Communications in Theoretical Physics,
55(6):1119–1126, jun 2011.
[31] Boris S. Kerner. The Physics of Traffic. Springer-Verlag Berlin Heidelberg,
2004.
[32] G. Schütz and E. Domany. Phase transitions in an exactly soluble one-
dimensional exclusion process. Journal of Statistical Physics, 72(1):277–296,
1993.
[33] Masuyuki Hitsuda Takeyuki Hida. Gaussian Processes. American Mathe-
matical Society, 1993.
[34] Masako Bando, Katsuya Hasebe, Ken Nakanishi, Akihiro Nakayama, Akihiro
Shibata, and Yuki Sugiyama. Phenomenological study of dynamical model of
traffic flow. J. Phys. I France, 5(11):1389–1399, 1995.
[35] B. S. Kerner and H. Rehborn. Experimental properties of complexity in traffic
flow. Phys. Rev. E, 53:R4275–R4278, May 1996.
[36] Takashi Nagatani. Density waves in traffic flow. Phys. Rev. E, 61:3564–3570,
Apr 2000.
[37] Teruhisa S. Komatsu and Shin-ichi Sasa. Kink soliton characterizing traffic
congestion. Phys. Rev. E, 52:5574–5582, Nov 1995.
[38] Takashi Nagatani. Thermodynamic theory for the jamming transition in
traffic flow. Phys. Rev. E, 58:4271–4276, Oct 1998.
[39] Masakuni Muramatsu and Takashi Nagatani. Soliton and kink jams in traffic
flow with open boundaries. Phys. Rev. E, 60:180–187, Jul 1999.
[40] Nathan Gartner, C. Messer, and A. Rathi. Traffic Flow Theory: A State-of-
the-Art Report. 01 2001.
[41] Ludovic Leclercq, Lei Zhang, Shengrui Zhang, Bei Zhou, Shuaiyang Jiao,
and Yan Huang. An improved car-following model considering desired safety
distance and heterogeneity of driver’ s sensitivity. Journal of Advanced Trans-
portation, 2021:6693433, 2021.
[42] Martin Treiber and Dirk Helbing. Memory effects in microscopic traffic mod-
els and wide scattering in flow-density data. Phys. Rev. E, 68:046119, Oct
2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *