帳號:guest(3.148.106.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):藩玉龍
作者(外文):Phan Ngoc Long
論文名稱(中文):以反階梯式激發銣原子的雷德堡態
論文名稱(外文):Rubidium Rydberg Atoms with Inverted Ladder-Type Excitation
指導教授(中文):劉怡維
指導教授(外文):Liu, Yi-Wei
口試委員(中文):王立邦
蔡錦俊
口試委員(外文):Wang, Li-Bang
Tsai, Chin-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108022423
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:43
中文關鍵詞:雷德堡原子倒梯型激發
外文關鍵詞:RubidiumRydberg atomsinverted ladder-type excitation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這項工作中,我們研究了在熱室和磁光阱 (MOT) 中具有倒梯型激發的銣雷德堡原子。這種激發方式允許藉由較短波長(偵測)雷射將原子從基態激發到中間態,然後跟著長波長(耦合)雷射到達雷德堡態藉由躍遷 5S1/2 → 6P1/2 → nS 或 nD。在我們的實驗中,耦合雷射為 1010 nm,它由超過 1 W 的放大外腔二極管雷射 (ECDL) 產生,並鎖頻在波長計上。 421 nm 偵測雷射光由倍頻 840 nm 半導體雷射系統產生,能夠掃描足夠寬的頻率範圍。
通過觀察蒸氣室中包括三對 nS-nD 能階的 EIT 光譜,已經成功地產生了 87Rb 的各種雷德堡躍遷。藉由利用在 MOT 中更靈敏的陷阱損失檢測,還觀察到 92S 的微弱躍遷,並且發現 nD 狀態的 EIT 強度大約是 nS 狀態的 2.4 倍。還研究了 EIT 信號與偵測光功率的關係,並顯示為線性關係。我們研究的雷德堡態的絕對頻率被測量到 32 MHz 的精度,並且與更新的量子缺陷理論 (QDT) 一致。這項工作旨在研究異核雷德堡原子之間的相互作用,例如銣 (Rb) 和鉀 (K) 在更大的主量子數 (n) 下,其中 Förster 能量轉移變得很重要。
In this work, we study Rubidium Rydberg atoms with the inverted ladder-type excitation in both a hot cell and magneto-optical trap (MOT). This excitation scheme allows exciting the atoms from the ground state to the intermediate state by a shorter-wavelength (probe) laser, then following a long-wavelength (coupling) laser to reach the Rydberg states, through the transition 5S1/2 → 6P1/2 → nS, or nD. In our experiments, the coupling laser is 1010 nm, which was generated from an amplified external-cavity diode laser (ECDL) with more than 1 W, and was locked to a wavelength meter. The 421 nm probe laser is from a frequency-doubled 840 nm semiconductor laser system, which is capable of scanning in a sufficiently wide range of frequencies.
Various Rydberg transitions of 87Rb have been successfully produced via observing the EIT spectrums, including three pairs of nS-nD levels, in the vapor cell. The weak transition to the 92S state was also observed by utilizing the more sensitive trap loss detection in the MOT. The magnitude of EIT spectrums of nD states was found to be roughly 2.4 times larger than that of nS states. The probe power dependence of the EIT signal was also studied and showed as a linear proportion. The absolute frequencies of the Rydberg states under our investigation were measured to the accuracy of 22 MHz and in good agreement with the updated quantum defect theory (QDT). This work is toward the study of the interaction between dual species Rydberg atoms, such as Rubidium (Rb) and Potassium (K) at a large principal quantum number (n), where the Förster energy transfer becomes important.
摘要 I
Abstract II
Acknowledgments III
Contents IV
List of Tables V
List of Figures VI
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Outline 2
Chapter 2. Theoretical Background 4
2.1 Rubidium Characteristics 4
2.2 Rydberg Atoms 6
2.3 Electromagnetically Induced Transparency 8
2.4 Inverted Ladder-Type Excitation 10
Chapter 3. Experimental Apparatus 12
3.1 Blue Laser System 12
3.1.1 Master Laser and Tapered Amplifier System 12
3.1.2 Second Harmonic Generation (SHG) 13
3.2 NIR Laser System 15
3.2.1 External-Cavity Diode Laser 15
3.2.2 Tapered Amplifier 17
3.3 Rubidium Cell 19
Chapter 4. Rydberg Excitation In Rubidium Cell 20
4.1 Experimental Setup 20
4.2 Results And Discussion 24
Chapter 5. Rydberg Excitation In Rubidium MOT 35
5.1 Experimental Setup 35
5.2 Results And Discussion 35
5.3 Absolute frequencies measurement of transitions between the ground state and Rydberg states 37
Chapter 6. Conclusion And Future Work 39
6.1 Conclusion 39
6.2 Future work 40
References 41
[1] D. Kleppner, Atoms in Unusual Situations, 1st ed., vol. 143, J. P. Briand, Ed., New York: Springer Science & Business Media, 1986, pp. 57-75.
[2] M. Saffman, T. G. Walker and K. Mølmer, "Quantum information with Rydberg atoms," Reviews of modern physics, vol. 82, no. 3, p. 2313, 2010.
[3] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller and H. P. Büchler, "A Rydberg quantum simulator," Nature Physics, vol. 6, no. 5, pp. 382-388, 2010.
[4] D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe and S. Dürr, "A photon-photon quantum gate based on Rydberg interactions," Nature Physics, vol. 15, no. 2, pp. 124-126, 2019.
[5] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, vol. 397, no. 6720, pp. 594-598, 1999.
[6] C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, vol. 409, no. 6819, pp. 490-493, 2001.
[7] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano and J. Fortágh, "Measurement of absolute transition frequencies of Rb 87 to nS and nD Rydberg states by means of electromagnetically induced transparency," Physical Review A, vol. 83, no. 5, p. 052515, 2011.
[8] M. S. Safronova and U. I. Safronova, "Critically evaluated theoretical energies, lifetimes, hyperfine constants, and multipole polarizabilities in Rb 87," Physical Review A, vol. 83, no. 5, p. 052508, 2011.
[9] D. P. Fahey and M. W. Noel, "Excitation of Rydberg states in rubidium with near infrared diode lasers," Optics Express, vol. 19, no. 18, pp. 17002-17012, 2011.
[10] D. A. Steck, "Rubidium 87 D line data," 2001.
[11] I. Martinson and L. J. Curtis, "Janne Rydberg - his life and work," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 235, no. 1-4, pp. 17-22, 2005.
[12] T. F. Gallagher, "Rydberg atoms," Reports on Progress in Physics, vol. 51, no. 2, p. 143, 1988.
[13] A. Kocharovskaya and Y. I. Khanin, "Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses," Zh. Eksp. Teor. Fiz, vol. 90, pp. 1610-1618, 1986.
[14] "Serval-Plus Tapered Amplifier System User's Manual," Sacher Lasertechnik, 2004.
[15] Yi-Jan Huang, "Precise Frequency Measurement of the 21S0-31D2 Two-Photon Transition in Atomic 4He and 3He," Ph.D. Dissertation, Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan, 2018.
[16] "GC25075-RB," Thorlabs, Inc., [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=GC25075-RB.
[17] C. Glaser, F. Karlewski, J. Kluge, J. Grimmel, M. Kaiser, A. Günther, H. Hattermann, M. Krutzik and J. Fortágh, "Absolute frequency measurement of rubidium 5S-6P transitions," Physical Review A, vol. 102, no. 1, p. 012804, 2020.
[18] N. Watanabe, H. Tamura, M. Musha and K. Nakagawa, "Optical frequency synthesizer for precision spectroscopy of Rydberg states of Rb atoms," Japanese Journal of Applied Physics, vol. 56, no. 11, p. 112401, 2017.
[19] R. W. P. Drever, L. J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Applied Physics B, vol. 31, no. 2, pp. 97-105, 1983.
[20] Yu-Hsiu Chen, "Heteronuclear Dual MOT for Optical Trapped Rydberg Atoms," Master Thesis, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, 2021.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *