帳號:guest(3.144.124.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊祐鈞
作者(外文):Zhuang, You-Jun
論文名稱(中文):三維點雲的重建與細化網格演算法
論文名稱(外文):Algorithm for Reconstruction and Refinement of Meshes from Point Clouds
指導教授(中文):吳金典
宋瓊珠
指導教授(外文):Wu, Chin-Tien
SUNG, CHIUNG-JUE
口試委員(中文):張書銘
朱家杰
口試委員(外文):Chang, Shu-Ming
CHU, CHIA-CHIEH
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:108021509
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:69
中文關鍵詞:三維點雲八元樹泊松方程表面重建共形映射
外文關鍵詞:3D Point CloudOctreePoisson EquationSurface ReconstructionConformal Map
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今科學的急速發展下,三維重建能用在許多領域。一般而言,三維影像所儲存成的電子資訊多為點雲資訊,意即只有掃描到的點座標,因此三維重建旨在處理這些資訊。本篇論文主要以Kazhdan [1] 提出的架構去延伸,從初始的點雲建構出法向量,進一步由此法向量透過解一個帕松方程式求得此點雲所代表的指示函數,最後將此函數透過移動立方體法或是移動四面體法求得此物品的三角網格,然而網格通常的品質(quality) 並不好,透過對此三角網格的後處理點融合(point merge)、邊交換(edge swap) 與球面上的共形映射(spherical conformal map),進而增進此三角網格的品質。
With the rapid development of science today, 3D reconstruction
can be used in many fields. In general, the
electronic information stored in 3D images is mostly point
cloud information, it means only the scanned point cloud.
This thesis is mainly extended by the architecture proposed by Kazhdan [1]. We construct normal vectors from the initial point cloud. Further we use these normal vectors to solve a poisson equation then we obtain the indicator function representing this point cloud. Finally, the indicator function is used to obtain the triangle mesh of the object by the marching cube method or the marching tetrahedra method. However, the quality of the mesh is generally poor, we improve the quality of the mesh by post-processing the triangular mesh, such as point merge, edge swap, and spherical conformal map.
誌謝
摘要i
Abstract i
List of parameters iii
1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Our thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Prior knowledge 7
2.0.1 Unit vector . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.0.2 Normal vector . . . . . . . . . . . . . . . . . . . . . . . . 7
2.0.3 Singular value decomposition . . . . . . . . . . . . . . . . 8
2.0.4 Wellposedness
of Poisson equation . . . . . . . . . . . . . 8
2.0.5 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . 9
2.0.6 Voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . 11
2.0.7 Diffuse element method . . . . . . . . . . . . . . . . . . . 12
2.0.8 Moving least squares method . . . . . . . . . . . . . . . . . 12
3 Poisson Surface Reconstruction 15
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Normal vector and orientation consistency . . . . . . . . . . . . . . 17
3.2.1 Principal component analysis . . . . . . . . . . . . . . . . 18
3.2.2 Consistent normal vector orientation . . . . . . . . . . . . . 19
3.3 Vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Smoothing filter Box
filter . . . . . . . . . . . . . . . . . 25
3.3.3 Create vector field . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Methods for solving Poisson equation . . . . . . . . . . . . . . . . 28
3.4.1 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . 28
3.4.2 Finite element method (FEM) . . . . . . . . . . . . . . . . 29
3.5 Isosurface extraction . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.1 Marching cubes . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Marching tetrahedra . . . . . . . . . . . . . . . . . . . . . 41
4 Triangular mesh postprocessing
43
4.1 Point merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Edge swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Conformal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Experimental Results and Discussions 51
5.1 Experimental results of surface reconstruction . . . . . . . . . . . . 51
5.1.1 Normal vector orientation . . . . . . . . . . . . . . . . . . 51
5.1.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 Surface reconstruction with several methods . . . . . . . . 54
5.2 Experimental results of triangular mesh postprocessing
. . . . . . . 57
5.2.1 Point merge and edge swap . . . . . . . . . . . . . . . . . . 57
5.2.2 Conformal map . . . . . . . . . . . . . . . . . . . . . . . . 60
6 Conclusions and future work 65
References 67
[1] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.
In Proceedings of the fourth Eurographics symposium on Geometry
processing, volume 7, 2006.
[2] Herbert Edelsbrunner and Ernst P Mücke. Threedimensional
alpha shapes.
ACM Transactions on Graphics (TOG), 13(1):43–72, 1994.
[3] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoibased
surface reconstruction algorithm. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages 415–421, 1998.
[4] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust,
unions of balls, and the medial axis transform. Computational Geometry, 19(23):
127–153, 2001.
[5] JeanDaniel
Boissonnat. Geometric structures for threedimensional
shape
representation. ACM Transactions on Graphics (TOG), 3(4):266–286, 1984.
[6] Demetri Terzopoulos and Manuela Vasilescu. Sampling and reconstruction
with adaptive meshes. In CVPR, volume 91, pages 70–75, 1991.
[7] Shigeru Muraki. Volumetric shape description of range data using “blobby
model". In Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, pages 227–235, 1991.
[8] Greg Turk and James F O’brien. Modelling with implicit surfaces that interpolate.
ACM Transactions on Graphics (TOG), 21(4):855–873, 2002.
[9] C Rader and NJIToA Brenner. A new principle for fast fourier transformation.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(3):264–
266, 1976.
[10] JN Reddy. An introduction to the finite element method, volume 1221.
McGrawHill
New York, 2010.
[11] Nira Dyn, Kai Hormann, SunJeong
Kim, and David Levin. Optimizing 3d
triangulations using discrete curvature analysis. Mathematical methods for
curves and surfaces, 1:135–146, 2001.
[12] Yueqi Cao, Didong Li, Huafei Sun, Amir H Assadi, and Shiqiang Zhang. Efficient
curvature estimation for oriented point clouds. stat, 1050:26, 2019.
[13] Dongmei Zhang and Martial Hebert. Harmonic maps and their applications
in surface matching. In Proceedings.IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (Cat. No PR00149), volume 2, pages
524–530, 1999.
[14] R. Schoen and S. T. Yau. Lectures on harmonic maps. International Press,
Cambridge, MA, 1997.
[15] Pui Tung Choi, Ka Chun Lam, and Lok Ming Lui. Flash: Fast landmark
aligned spherical harmonic parameterization for genus0
closed brain surfaces.
SIAM Journal on Imaging Sciences, 8(1):67–94, 2015.
[16] J. Demmel and W. Kahan. Computing small singular values of bidiagonal
matrices with guaranteed high relative accuracy. SIAM J. Sci. Statist. Comput.,
11 (5), pages 37–52, 1990.
[17] Karel Rektorys. The friedrichs inequality. the poincaré inequality. Variational
Methods in Mathematics, Science and Engineering (2nd ed.). Dordrecht: Reidel,
page 188–198, 2001.
[18] Walter A Strauss. Partial differential equations: An introduction. John Wiley
& Sons, 2007.
[19] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela
Mayero. A coq formal proof of the laxmilgram
theorem. pages 79–89,
2017.
[20] Stefano Rebay. Efficient unstructured mesh generation by means of delaunay
triangulation and bowyerwatson
algorithm. Journal of computational physics,
106(1):125–138, 1993.
[21] B Nayroles, G Touzot, and P Villon. Generalizing the finite element method:
diffuse approximation and diffuse elements. Computational mechanics,
10(5):307–318, 1992.
[22] David Levin. Meshindependent
surface interpolation. In Geometric modeling
for scientific visualization, pages 37–49. Springer, 2004.
[23] Kim Esbensen Wold Svante and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems 2.13,
pages 37–52, 1987.
[24] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society,
7(1):48–50, 1956.
[25] Robert Clay Prim. Shortest connection networks and some generalizations.
The Bell System Technical Journal, 36(6):1389–1401, 1957.
[26] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.
[27] Donald Meagher. Octree encoding: A new technique for the representation,
manipulation and display of arbitrary 3d
objects by computer. Rensselaer
Polytechnic Institute, 1980.
[28] Pascal Gwosdek, Sven Grewenig, Andrés Bruhn, and Joachim Weickert. Theoretical
foundations of gaussian convolution by extended box filtering. In International
Conference on Scale Space and Variational Methods in Computer
Vision, pages 447–458. Springer, 2011.
[29] Thomas JR HUGHES. The finite element method: Linear static and dynamic
finite element analysis. Courier Corporation, 2012.
[30] Pavel. ŜOLÍN. Partial differential equations and the finite element method.
John Wiley & Sons, 2005.
[31] A Selman, A Merrouche, C KnopfLenoir,
et al. 3d mesh refinement procedure
using the bisection and rivara algorithms with mesh quality assessment. Revue
Europeenne des Elements Finis, 2001.
[32] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonparametric
discrimination: Consistency properties. International Statistical Review/
Revue Internationale de Statistique, 57(3):238–247, 1989.
[33] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3d surface construction algorithm. ACM siggraph computer graphics,
21(4):163–169, 1987.
[34] Akio Doi and Akio Koide. An efficient method of triangulating equivalued
surfaces by using tetrahedral cells. IEICE TRANSACTIONS on Information
and Systems, 74(1):214–224, 1991.
[35] André Guéziec and Robert Hummel. Exploiting triangulated surface extraction
using tetrahedral decomposition. IEEE Transactions on visualization and
computer graphics, 1(4):328–342, 1995.
[36] Lok Ming Lui, Ka Chun Lam, Tsz Wai Wong, and Xianfeng Gu. Texture
map and video compression using beltrami representation. SIAM Journal on
Imaging Sciences, 6(4):1880–1902, 2013.
[37] Xianfeng Gu and Baba C Vemuri. Matching 3d shapes using 2d conformal
representations. In International Conference on Medical Image Computing
and ComputerAssisted
Intervention, pages 771–780. Springer, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *