帳號:guest(18.116.15.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳俊緯
作者(外文):Wu, Chun-Wei
論文名稱(中文):SL(2,R)與其二重覆疊群之實型及四元數型指標
論文名稱(外文):The Real-Quaternionic Indicator for SL(2,R) and Its Double Cover
指導教授(中文):蔡宛育
蔡孟傑
指導教授(外文):Tsai, Wan-Yu
Chuah, Meng-Kiat
口試委員(中文):潘戍衍
陳志瑋
口試委員(外文):Pan, Shu-Yen
Chen, Chih-Whi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:108021503
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:37
中文關鍵詞:二重覆疊群實型及四元數型指標
外文關鍵詞:The Real-Quaternionic IndicatorSL(2,R)Double Cover
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們研究定義在某些李群上之不可約表現的兩種指標,分別是Frobenius-Schur指標與Real-Quaternionic指標。前者用來判斷一自對偶表現是對稱或斜對稱;而後者是判斷一自共軛表現是實型或四元數型。本篇論文將在(g,K)-模的層面上分別探討在特殊線性群SL(2,R),以及在其非線性二重覆疊群中這兩種指標之間的關係。
We study two indicators defined on irreducible representations of certain Lie groups:(a) the Frobenius-Schur indicator ε;(b) the Real-Quaternionic indicator δ. The former is used to determine a self-dual representation is symmetric or skew-symmetric; the later is to test a self-conjugate representation is of real type or quaternionic type. In this paper, we study these two indicators in details for SL(2,R) and its nonlinear double cover on the level of (g,K)-modules.
1 Introduction.......4
2 Representationsof SL(2,R)...... 5
3 Self-dual,Self-conjugate,Hermitian representations of SL(2,R)... 11
3.1 Self-dual representations of SL(2,R) ................ 11
3.2 Self-conjugate representations of SL(2,R) ............. 13
3.3 Hermitian representations of SL(2,R) ............... 16
4 Indicators for SL(2,R)...... 19
5 Representations of SL(2,R)...... 29
6 Self-dual,Self-conjugate,Hermitian representations of SL(2,R)..... 33
6.1 Self-dual representations of SL(2,R) ................ 34
6.2 Self-conjugate representations of SL(2,R) ............. 34
6.3 Hermitian representations of SL(2,R) ............... 35
[1] Adams, Jeffrey, The Langlands Classification,Background for the Atlas workshop2013,unpublishednote2013.

[2] Adams, JeffreyD.;vanLeeuwen,MarcA.A.;Trapa,PeterE.;Vogan,
DavidA.,Jr.Unitary representations of real reductive groups. Ast´erisque No. 417(2020),x+174pp.

[3] Cui, Ran The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on Local Langlands Correspondence of GL(2,F).Thesis(Ph.D.)–University of Maryland,CollegePark.2016.113pp.

[4] Iwahori,Nagayoshi On real irreducible representations of Lie algebras. Nagoya Math.J. 14 (1959),59–83.

[5] Onishchik,A.L.;Vinberg, `E. B. Lie groups and algebraic groups. Translated from the Russian and with a preface by D.A.Leites. Springer Series in SovietMathematics. Springer-Verlag,Berlin, 1990. xx+328pp.

[6] Renard, DavidA.(F-POLY-CMT);Trapa,PeterE.(1-UT)Kazhdan-
Lusztig algorithms for nonlinear groups and applications to Kazhdan-
Patterson lifting.(English summary) Amer.J.Math. 127 (2005),no.5,
911–971.

[7] Vogan,DavidA.,Jr. Representations of real reductive Lie groups. Progress in Mathematics,15.Birh¨auser,Boston, Mass., 1981.xvii+754pp.

[8] Vogan,DavidA.,Jr. Unitary representations of reductive Lie groups. Mathematics towards the third millennium(Rome,1999). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei(9) Mat.Appl.2000, SpecialIssue, 147–167.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *