帳號:guest(13.59.229.87)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許奕民
作者(外文):Hsu, I-Min
論文名稱(中文):酵母菌Scheffersomyces stipitis 於木糖發酵酒精之基因表現及其氧氣依賴型代謝途徑模式分析
論文名稱(外文):Exploration of gene diversity of xylose alcoholic fermentation gene and oxygen dependent metabolic pathway mode in xylose fermentation by yeast Scheffersomyces stipitis
指導教授(中文):李清福
指導教授(外文):Lee, Ching-Fu
口試委員(中文):楊樹森
汪碧涵
口試委員(外文):Yang, Shu-Sen
Wang, Bi-Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分析與環境科學研究所
學號:108015505
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:97
中文關鍵詞:生質酒精Scheffersomyces stipitis代謝模式氧氣轉錄組
外文關鍵詞:Scheffersomyces stipitisbioethanolmetabolic modeoxygentranscriptome
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗利用分離自台灣各地區25株野生型Scheffersomyces stipitis菌株,分析木糖發酵酒精代謝過程相關基因多樣性,並在充分供氧、有限供氧及極限供氧等不同供氧條件下,分別進行各菌株木糖發酵之酒精產量分析,同時分析關鍵酵素木糖還原酶(xylose reductase)活性及轉錄組(transcriptome)分析,藉由基因表現差異性了解氧氣對於菌株發酵模式的影響,以做為解決木質纖維素生產酒精的瓶頸。
本實驗所使用S. stipitis菌株皆以分子生物特徵進行複核。各菌株間的大單元核醣體D1/D2區域序列差異少於3個核苷酸、核醣體內轉錄區間隔區差異少於5個核苷酸及真核延伸因子1 - α亞基序列差異少於42個核苷酸,因此鑑定皆為同種(co-species)。菌株間之遺傳相關性則根據木糖代謝相關基因(XYL1、XYL2、TKL1、TAL1、PGK1)序列,並利用親緣關係鄰聚法和最大似然法進行基因多樣性分析,結果共可區分為4大分群。所有菌株之酒精發酵試驗是以不同供氧條件發酵,分析酒精濃度後利用階層式分群法分析其酒精發酵能力與氧氣供給量關係性,共分出4大群,分群結果與基因多樣性結果相符。第一和第二群為偏好有限供氧發酵菌群,第三和第四群為偏好極限供氧發酵菌群,其中LA28B06不屬於任一群,其在充分供氧條件有20.25 g/l、有限供氧27.97 g/l、極限供氧28.30 g/l的酒精產量。各菌株之木糖還原酶之酵素動力學米氏常數(Michaelis-Menten constant)值,介於0.22 - 3.46間,顯示不同菌株內之酵素與NADPH或NADH兩種輔酶親和性差異極大,部分之輔酶親和性與遺傳親緣關係和發酵模式具有相關性,故仍有其他因子影響菌株之發酵模式。於發酵模式分群中篩選出4株菌代表各大族群分別為LA45B83、BCRC 21775、LA28B06和TC7S02,以qPCR分析基因表現及mRNA transcriptomes,結果顯示XKS1的基因會隨氧氣供應降低而表現量提升,PGK1則是隨氧氣供應降低而下降。LA45B83菌株屬有限供氧發酵模式代表菌株,在充分供氧下基因表現有上調的現象,而木糖發酵相關基因XYL1和XYL2在有限供氧條件下表現較佳。BCRC 21775菌株屬有限和極限供氧發酵皆佳之模式代表菌株,在充分供氧下基因表現有上調的現象,而木糖發酵相關基因XYL1和XYL2在有限供氧條件下表現較佳。LA28B06菌株三種供氧發酵皆佳之模式代表菌株,於充分供氧和有限供氧條件下基因有上調的現象,充分供氧條件更為明顯,木糖發酵相關基因XYL1、XYL2在充分供氧條件下表現較佳,且無蘋果酸去氫酶(malat dehydrogenase)的表現,除木糖發酵相關基因外,另有其他高表現基因,如TTP、ATPase相關基因。TC7S02菌株屬極限供氧發酵模式代表菌株,在各種供氧條件下與其他三株有明顯的基因表現差異性,木糖發酵相關基因XYL1和XYL2在極限供氧條件下表現較佳,且與其他菌株相比TAL1、PDC、G6PDH有高度的表現量。
This study explored the characterization of 25 wild-strain Scheffersomyces stipitis isolated from Taiwan to analyze the genetic diversity of the xylose ferment ethanol process. S. stipitis were analyzed xylose ferment ethanol concentration in maximum oxygen supplied, limited oxygen supplied, and minimum oxygen three different oxygen supplied conditions respectively. The other, S. stipitis were analyzed the enzyme activity of xylose reductase and transcriptome analysis. This study used differences in gene expression to find out the effect of oxygen on the fermentation mode to solve the bottleneck of ethanol fermentation under lignocellulose.
The S. stipitis strains were all rechecked with molecular biological characteristics. Because of the large unit ribosomal D1/D2 domain sequence difference was less than 3 nucleotides, the internal trainscribed spacer difference was less than 5 nucleotides, and the eukaryotic elongation factor 1-αsequence difference was less than 42 nucleotides, as a result, the 25 strains were all identified as co-species. The genetic correlation between the 25 strains was based on the sequence of xylose metabolism genes (XYL1, XYL2, TKL1, TAL1, PGK1), and the genetic diversity analysis was carried out using the neighbor clustering methods and the maximum likelihood methods. The results could be divided into 4 clades. The ethanol fermentation test of all strains was based on different oxygen supply conditions. Through ethanol concentration, the strains were analyzed the relationship between the alcohol fermentation capacity and the oxygen supply by hierarchical clustering methods. The results could be divided into 4 clades, and the clustering results were consistent with the genetic diversity results. The first and second clades were prefer limited oxygen supply, and the third and fourth clades were prefer the limited oxygen supply. In addition to LA28B06, it didn’t belong to any clades. It had 20.25 g/l, 27.97 g/l, and 28.30 g/l in three different conditions. The Michaelis-Menten constant value of xylose reductase was between 0.22-3.46, indicating that the NADPH or NADH coenzymes affinity was an insignificant difference between strains. Affinities of coenzymes were related to fermentation mode, so there were still other factors that affect the fermentation mode of strains. Four strains LA45B83, BCRC 21775, LA28B06, and TC7S02 represent the major clade were selected by fermentation mode. The results of qPCR gene expression and mRNA transcriptomes showed the expression of XKS1 gene was increased and PGK1 was decreased while the oxygen supply decreases. The LA45B83 strain was a representative strain of the limited oxygen fermentation mode, and its genes were increased in maximum oxygen supply, while the xylose fermentation-related genes XYL1 and XYL2 performed better in limited oxygen conditions. The BCRC 21775 strain was a representative strain that had the best fermentation ability in limited and minimum oxygen supply. In maximum oxygen supply, its genes were increased, while xylose fermentation-related genes XYL1 and XYL2 performed better in limited oxygen supply. The LA28B06 strain was a representative strain that had the best fermentation ability in three different oxygen supply, and genes were increased in maximum oxygen supply. Xylose fermentation-related genes XYL1 and XYL2 performed better in maximum oxygen conditions, and there was no malat dehydrogenase performance. In addition to xylose fermentation-related genes, there were other genes, such as TTP and ATPase-related genes had high performance. The TC7S02 strain was a representative strain of the minimum oxygen fermentation mode. It’s had obvious genetic differences from the other three strains. The xylose fermentation-related genes XYL1 and XYL2 performed better in the minimum oxygen conditions, and compared with other strains TAL1, PDC, G6PDH had a high degree of expression.
中文摘要 I
英文摘要 III
誌謝辭 V
目錄 VI
表目錄 VIII
圖目錄 IX
壹、前言 1
一、替代能源發展歷史 1
二、生質酒精發展 1
三、酒精發酵菌種 3
四、Scheffersomyces stipitis分類與生理特徵 5
五、Scheffersomyces stipitis之發酵瓶頸 5
六、酒精發酵代謝途徑 7
七、木糖發酵的基因工程研究 8
八、研究動機 10
九、目的 11
貳、材料與方法 12
一、藥品 12
二、器材 12
三、儀器及設備 12
四、實驗菌株 13
五、研究方法 13
(一) 形態與生理鑑定 13
(二) 分子鑑定 15
(三) 基因親緣關係及相似度分析 18
(四) 木糖酒精發酵試驗 18
(五) 酵素活性分析 20
(六) 基因表現定量分析 22
(七) 轉錄組分析 23
參、結果與討論 25
一、菌種複核 25
二、序列比對與分子鑑定 25
二、木醣酒精發酵試驗 34
三、木糖代謝相關酵素序列比對 43
四、酵素動力學分析 56
六、轉錄組分析 65
肆、討論 85
伍、結論 88
陸、參考文獻 90

Amartey S, and Jeffries TW (1994) Comparison of corn steep liquor with other nutrients in the fermentation of D-Xylose by Pichia stipitis CBS 6054. Biotechnology Letters 16(2): 211-214.
Amore R, Kötter P, Küster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109(1): 89-97.
Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, Domínguez-Espíndola R, Sebastian PJ(2021) A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Science of The Total Environment 794: 148636.
Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Progress in Energy and Combustion Science 34(5): 551-573.
Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2, 9.
Berg C, (1999) World ethanol production and trade to 2000 and beyond. Indian Sugar 49(7): 459-472.
Bicho PA, Runnals PL, Cunningham JD, Lee H(1988) Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Applied and Environmental Microbiology, 54(1), 50–54.
Bonan C, Biazi LE, Santos SC, Soares LB, Dionísio SR, Hoffmam ZB, Costa AC, Ienczak JL (2019) Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnology Letters 41(6-7): 753-761.
Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, Komes D, Novak S, Šantek B (2018) Bioethanol production from renewable raw materials and its separation and purification: A Review.Food Technology and Biotechnology 56(3): 289-311.
Cadete RM, de las Heras AM, Sandström AG, Ferreira C, Gírio F, Gorwa-Grauslund MF, Rosa CA, Fonseca C (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnology for Biofuels 9(1): 167.
Casey E, Sedlak M, Ho NW, Mosier NS (2010) Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res 10(4): 385-393.
Cho JY, and Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions.Applied and Environmental Microbiology 64(4): 1350-1358.
Cunha JT, Soares PO, Romaní A, Thevelein JM , Domingues L (2019)Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for Biofuels 12(1).
Cunha JT, Soares PO, Romaní A, Thevelein JM, Domingues L (2019)Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for Biofuels 12(1): 20.
Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of XYL1. Applied Biochemistry and Biotechnology, 57-58, 267–276.
Dashtban M, Wen X, Bajwa PK, Ho CY, Lee H (2015)Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis.Journal of Industrial Microbiology and Biotechnology 42(6): 889-896.
Dien BS, Cotta MA, Jeffries TW(2003)Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology 63(3): 258-266.
du Preez JC, Bosch M, Prior BA(1986)The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis.Applied Microbiology and Biotechnology 23(3): 228-233.
Dutta S, Saikia GP, Sarma DJ, Gupta K, Das P, Nath P (2017)Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique. Journal of Biophotonics 10(5): 623-633.
Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B(2000)Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.Applied and Environmental Microbiology 66(8): 3381-3386.
Feng Q, Liu ZL, Weber SA, Li S (2018) Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. PLOS ONE 13(4): e0195633.
Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EP, Stambuk BU (2014)Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial Technology 63: 13-20.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD et al (2013)De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8(8): 1494-1512.
Harrison XA, Donaldson L, Correa-Cano ME et al(2018)A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ.6:e4794.
Hauf J, Zimmermann FK, Müller S (2000)Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme and Microbial Technology 26(9): 688-698.
Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT (2019) Combining the 5.8S and ITS2 to improve classification of fungi. Methods in Ecology and Evolution 10(10): 1702-1711.
Ho NW, Chen Z, Brainard AP(1998)Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.Applied Microbiology and Biotechnology 64(5): 1852-1859.
Hoang MTV, Irinyi L, Chen SCA, Sorrell TC, TIBoMFWG, Meyer W, Arabatzis M et al (2019)Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections.Frontiers in Microbiology 10(1647).
Hoekema A, Kastelein RA, Vasser M, de Boer HA (1987)Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression.Molecular and Cellular Biology 7(8): 2914-2924.
Hossain N, and Mahlia TMI(2019)Progress in physicochemical parameters of microalgae cultivation for biofuel production.Crit Rev Biotechnol 39(6): 835-859.
Hou X, (2012). Anaerobic xylose fermentation by Spathaspora passalidarum. Applied Microbiology and Biotechnology 94(1): 205-214.
Hu J, Galvita VV, Poelman H, Marin GB(2018)Advanced Chemical Looping Materials for CO₂ Utilization: A Review.Materials (Basel, Switzerland) 11(7): 1187.
Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M(2006)Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. The Plant Journal 45, 335–346.
Jang Y, Lim Y, Kim K(2014)Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production.Journal of Microbiology and Biotechnology 24(5): 667-674.
Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM(2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis.Nature Biotechnology 25(3): 319-326.
Jeffries TW and Van Vleet JRH (2009)Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS yeast research 9(6): 793-807.
Jeppsson M et al(2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Applied and Environmental Microbiology 68(4):1604-9.
Jin YS, Ni H, Laplaza JM, Jeffries TW(2003)Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Applied and Environmental Microbiology 69(1): 495-503.
Kang Q, Appels L, Tan T, Dewil R (2014)Bioethanol from lignocellulosic biomass: current findings determine research priorities.TheScientificWorldJournal 2014: 298153-298153.
Khan MI, Shin JH, Kim JD(2018)The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products.Microbial Cell Factories 17(1): 36.
Kim SB, Kwon DH, Park JB, Ha SJ(2019)Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose.Biotechnol Biofuels 12: 90.
Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012)Characteristics and potential of micro algal cultivation strategies: a review.Journal of Cleaner Production 37: 377-388.
Kordowska-Wiater M and Targoński Z (2002)Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Acta Microbiologica Polonica 51(4): 345-352.
Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990)Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant.Curr Genet 18(6): 493-500.
Kudahettige RL, Holmgren M, Imerzeel P, Sellstedt A(2012)Characterization of Bioethanol Production from Hexoses and Xylose by the White Rot Fungus Trametes versicolor.BioEnergy Research 5(2): 277-285.
Kumar S, Stecher G, Li M, Knyaz C, and Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549.
Kurylenko OO, Ruchala J, Vasylyshyn RV, Stasyk OV, Dmytruk OV, Dmytruk KV, Sibirny AA(2018)Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha.Biotechnol Biofuels 11: 197.
Kurtzman CP and Robnett CJ(1998)Identification and Phylogeny of Ascomycetous Yeasts from Analysis of Nuclear Large Subunit (26S) Ribosomal DNA Partial Sequences. Antonie van Leeuwenhoek 73, 331-371.
Kurtzman CP, Robnett CJ, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov.. FEMS Yeast Res. 8: 939-954, 2008.
Kwak S and Jin YS(2017)Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microbial Cell Factories 16(1): 82.
Kwiatkowski NP, Babiker WM, Merz WG, Carroll KC, Zhang SX(2012)Evaluation of Nucleic Acid Sequencing of the D1/D2 Region of the Large Subunit of the 28S rDNA and the Internal Transcribed Spacer Region Using SmartGene IDNS Software for Identification of Filamentous Fungi in a Clinical Laboratory. The Journal of Molecular Diagnostics 14(4): 393-401.
Laplace JM, Delgenès JP, Moletta R, Navarro JM (1991)Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis : oxygen requirement as a key factor. Applied Microbiology and Biotechnology 36(2): 158-162.
Lee WC and Kuan WC (2015)Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J 10(6): 840-854.
Milessi TS, Antunes FA, Chandel AK, da Silva SS(2015)Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring.Bioengineered 6(1): 26-32.
Miller GL(1959)Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar.Analytical Chemistry 31(3): 426-428.
Nichols NN, Dien BS, Bothast RJ(2001)Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Applied Microbiology and Biotechnology 56(1-2): 120-125.
Ozcan S, Kotter P, Ciriacy M(1991)Xylan-hydrolysing enzymes of the yeast. Pichia stpitis: 190-195.
Palmqvist E and Hahn-Hägerdal B(2000)Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition.Bioresource Technology 74(1): 25-33.
Robak K and Balcerek M (2018)Review of Second Generation Bioethanol Production from Residual Biomass.Food Technology and Biotechnology 56(2): 174-187.
Rojas-Pirela, Maura et al(2020)Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology 10.11: 200302.
Rogelj J and Knutti R (2016)Geosciences after Paris.Nature Geoscience 9(3): 187-189.
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA(2020)Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha).Journal of Industrial Microbiology and Biotechnology 47(1): 109-132.
Seike T, Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE (2019) Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae.Biotechnol Biofuels 12: 139.
Senac T and Hahn-Hägerdal B (1991)Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts. Applied and Environmental Microbiology 57(6): 1701-1706.
Shaker EK, Al-Jebouri MM, Al-Mayah QS, Al-Matubsi HY(2021)Phylogenetic analysis of human pegivirus from anti-hepatitis C virus IgG- positive patients.Infection, Genetics and Evolution 96: 105099.
Sharma B, Larroche C, Dussap CG(2020).Comprehensive assessment of 2G bioethanol production.Bioresour Technol 313: 123630.
Sharma NK, Behera S, Arora R, Kumar S, Sani RK(2018)Xylose transport in yeast for lignocellulosic ethanol production: Current status.Journal of Bioscience and Bioengineering 125(3): 259-267.
Shi NQ, Cruz J, Sherman F, Jeffries TW(2002)SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis.Yeast 19(14): 1203-1220.
Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999)Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production.Yeast 15(11): 1021-1030.
Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petru M, Lau WJ, Ismail AF(2021)Fourth generation biofuel from genetically modified algal biomass: Challenges and Future Directions.Chemosphere 285: 131535.
Silva JPA, Mussatto SI, Roberto IC(2010)The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.Applied Biochemistry and Biotechnology 162(5): 1306-1315.
Skoog K and Hahn-Hägerdal B(1990)Effect of oxygenation on xylose fermentation by Pichia stipitis. Applied and Environmental Microbiology 56(11): 3389-3394.
Slininger PJ, Branstrator LE, Bothast RJ, Okos MR, Ladisch MR(1991)Growth, death, and oxygen uptake kinetics of Pichia stipitis on xylose.Biotechnol Bioeng 37(10): 973-980.
Sreenath HK. and Jeffries TW(1997)Diminished respirative growth and enhanced assimilative sugar uptake result in higher specific fermentation rates by the mutant Pichia stipitis FPL-061.Applied Biochemistry and Biotechnology 63-65: 109-116.
Su YK, Simdon L, Jeffries T(2014)Effects of Aeration on Growth, Ethanol and Polyol Accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.Biotechnology and Bioengineering 112.
Supek F, Bošnjak M, Škunca N, Šmuc T(2011)REVIGO summarizes and visualizes long lists of gene ontology terms.PLoS One 6(7): e21800.
Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, Yoshida T (1991)Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology 28: 327-340.
Toivari MH, Aristidou A, Ruohonen L, Penttilä M(2001)Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae: Importance of Xylulokinase (XKS1) and Oxygen Availability.Metabolic Engineering 3(3): 236-249.
Veras HCT, Parachin NS, Almeida JRM(2017)Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories 16, 153.
Vieira IPV, Cordeiro GT, Gomes DEB, Melani RD, Vilela LF, Domont GB, Mesquita RD, Eleutherio ECA, Neves BC(2019)Understanding xylose isomerase from Burkholderia cenocepacia: insights into structure and functionality for ethanol production.AMB Express 9(1): 73.
Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B(1995).Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.Applied and Environmental Microbiology 61(12): 4184-4190.
Watanabe S, Ahmed A, Pack SP, Annaluru N, Kodaki T, Makino K(2007)Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology (Reading, England) 153: 3044-3054.
Wei L, Liu J, Qi H, Wen J(2015).Engineering Scheffersomyces stipitis for fumaric acid production from xylose.Bioresour Technol 187: 246-254.
Weierstall T, Hollenberg CP, Boles E (1999). Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31(3): 871-883.
White TJ (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: PCR Protocols, a Guide to Methods and Applications, 315-322.
Wijsman M, Bruinenberg P, Van Dijken J, Scheffers W (1985). Incapacity for anaerobic growth in xylose-fermenting yeasts. Antonie Van Leeuwenhoek 51(5/6): 563-564.
Xie CY, Yang BX, Song QR, Xia ZY, Gou M, Tang YQ(2020).Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR.Microbial Cell Factories 19(1): 211.
Yazdani SS and Gonzalez R (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology 18(3): 213-219.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *