|
[1] N. Shee, H.J. Jo, H.-J. Kim, Coordination framework materials fabricated by the self-assembly of Sn (IV) porphyrins with Ag (I) ions for the photocatalytic degradation of organic dyes in wastewater, Inorg. Chem. Front., 9 (2022) 1270-1280, https://doi.org/10.1039/D1QI01615F. [2] P. Sarkar, S. De, S. Neogi, Microwave assisted facile fabrication of dual Z-scheme g-C3N4/ZnFe2O4/Bi2S3 photocatalyst for peroxymonosulphate mediated degradation of 2, 4, 6-Trichlorophenol: the mechanistic insights, Appl. Catal. B, 307 (2022) 121165, https://doi.org/10.1016/j.apcatb.2022.121165. [3] K. Ghorai, A. Panda, A. Hossain, M. Bhattacharjee, M. Chakraborty, S.K. Bhattacharya, B. Show, A. Sarkar, P. Bera, H. Kim, LaNiO3/g-C3N4 nanocomposite: An efficient Z-scheme photocatalyst for wastewater treatment using direct sunlight, J. Rare Earths, 40 (2021) 725-736, https://doi.org/10.1016/j.jre.2021.04.013. [4] X. Wang, X. Ao, T. Zhang, Z. Li, R. Cai, Z. Chen, Y. Wang, W. Sun, Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity, Sci. Total Environ., 806 (2022) 151372, https://doi.org/10.1016/j.scitotenv.2021.151372. [5] R. Rafieenia, M. Sulonen, M. Mahmoud, F. El-Gohary, C.A. Rossa, Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances, and present prospects, Sci. Total Environ., (2022) 153923, https://doi.org/10.1016/j.scitotenv.2022.153923. [6] T.M. Rawson, L.S.P. Moore, N. Zhu, N. Ranganathan, K. Skolimowska, M. Gilchrist, G. Satta, G. Cooke, A. Holmes, Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing, Clin. Infect. Dis., 71 (2020) 2459-2468, https://doi.org/10.1093/cid/ciaa530. [7] Z.-H. Diao, S.-T. Huang, X. Chen, M.-Y. Zou, H. Liu, P.-R. Guo, L.-J. Kong, W. Chu, Peroxymonosulfate-assisted photocatalytic degradation of antibiotic norfloxacin by a calcium-based Ag3PO4 composite in water: Reactivity, products and mechanism, J. Clean. Prod., 330 (2022) 129806, https://doi.org/10.1016/j.jclepro.2021.129806. [8] A. Kumar, V. Hasija, A. Sudhaik, P. Raizada, V.-H. Nguyen, Q. Van Le, P. Singh, D. Nguyen, S. Thakur, C.M. Hussain, The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review, Environ. Res., 209 (2022) 112814, https://doi.org/10.1016/j.envres.2022.112814. [9] B. Gao, Q. Chang, H. Yang, Selective adsorption of ofloxacin and ciprofloxacin from a binary system using lignin-based adsorbents: Quantitative analysis, adsorption mechanisms, and structure-activity relationship, Sci. Total Environ., 765 (2021) 144427, https://doi.org/10.1016/j.scitotenv.2020.144427. [10] X. Chen, Y. Yang, Y. Ke, C. Chen, S. Xie, A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect, Sci. Total Environ., 814 (2022) 152852, https://doi.org/10.1016/j.scitotenv.2021.152852. [11] M. Preeyanghaa, V. Vinesh, P. Sabarikirishwaran, A. Rajkamal, M. Ashokkumar, B. Neppolian, Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation, Carbon, 192 (2022) 405-417, https://doi.org/10.1016/j.carbon.2022.03.011. [12] L.T. Nguyen, D.-V.N. Vo, L.T. Nguyen, A.T. Duong, H.Q. Nguyen, N.M. Chu, D.T.C. Nguyen, T. Van Tran, Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination, Environ. Technol. Innov., 25 (2022) 102130, https://doi.org/10.1016/j.eti.2021.102130. [13] M. Muslim, A. Ali, S. Kamaal, M. Ahmad, M.J. Alam, Q.I. Rahman, M. Shahid, Efficient adsorption and facile photocatalytic degradation of organic dyes over H-bonded proton-transfer complex: An experimental and theoretical approach, J. Mol. Liq., 347 (2022) 117951, https://doi.org/10.1016/j.molliq.2021.117951. [14] Y. Zhou, M. Yu, H. Liang, J. Chen, L. Xu, J. Niu, Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin, Appl. Catal. B, 291 (2021) 120105, https://doi.org/10.1016/j.apcatb.2021.120105. [15] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight, J. Catal., 358 (2018) 141-154, https://doi.org/10.1016/j.jcat.2017.11.029. [16] C. Li, Z. Sun, W. Zhang, C. Yu, S. Zheng, Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus, Appl. Catal. B, 220 (2018) 272-282, https://doi.org/10.1016/j.apcatb.2017.08.044. [17] Z. Zhao, Z. Shu, J. Zhou, W. Wang, T. Li, J. Chen, Facile one-pot synthesis of C, O-codoped nano-structured g-C3N4 with superior photocatalytic hydrogen evolution, Mater. Res. Bull., 145 (2022) 111565, https://doi.org/10.1016/j.materresbull.2021.111565. [18] S. Wang, J. Wang, Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants, J. Hazard. Mater., 423 (2022) 127207, https://doi.org/10.1016/j.jhazmat.2021.127207. [19] W. Liu, Y. Li, F. Liu, W. Jiang, D. Zhang, J. Liang, Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation, Water Res., 151 (2019) 8-19, https://doi.org/10.1016/j.watres.2018.11.084. [20] P. Yadav, S.T. Nishanthi, B. Purohit, A. Shanavas, K. Kailasam, Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study, Carbon, 152 (2019) 587-597, https://doi.org/10.1016/j.carbon.2019.06.045. [21] M.D. Nguyen, T.B. Nguyen, A. Thamilselvan, T.G. Nguyen, E.P. Kuncoro, R.-A. Doong, Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline, J. Environ. Chem. Eng., (2021) 106905, https://doi.org/10.1016/j.jece.2021.106905. [22] R. Zhang, J. Jiang, K. Zeng, Synthesis of Bi2WO6/g-C3N4 heterojunction on activated carbon fiber membrane as a thin-film photocatalyst for treating antibiotic wastewater, Inorg. Chem. Commun., (2022) 109418, https://doi.org/10.1016/j.inoche.2022.109418. [23] J. Zhang, Y. Zheng, H. Zheng, T. Jing, Y. Zhao, J. Tian, Porous oxygen-doped g-C3N4 with the different precursors for excellent photocatalytic activities under visible light, Materials, 15 (2022) 1391, https://dx.doi.org/10.3390%2Fma15041391. [24] M. Tamyiz, R.-A. Doong, Synergetic effect of adsorption and photocatalysis by zinc ferrite-anchored graphitic carbon nitride nanosheet for the removal of ciprofloxacin under visible light irradiation, Open Chem., 21 (2023), https://doi.org/10.1515/chem-2022-0304. [25] P. Chen, S. Di, X. Qiu, S. Zhu, One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation, Appl. Surf. Sci., 587 (2022) 152889, https://doi.org/10.1016/j.apsusc.2022.152889. [26] P. Ma, X. Zhang, C. Wang, Z. Wang, K. Wang, Y. Feng, J. Wang, Y. Zhai, J. Deng, L. Wang, Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution, Appl. Catal. B, 300 (2022) 120736, https://doi.org/10.1016/j.apcatb.2021.120736. [27] S. Lu, T. Wu, Y. Liu, H. Luo, F. Jiang, X. Nie, H. Chen, All-solid Z-scheme Bi/γ-Bi2O3/O-doped g-C3N4 heterojunction with Bi as electron shuttle for visible-light photocatalysis, J. Alloys Compd., (2022) 164980, https://doi.org/10.1016/j.jallcom.2022.164980. [28] G. Fan, X. Lin, Y. You, B. Du, X. Li, J. Luo, Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism, J. Hazard. Mater., 421 (2022) 126703, https://doi.org/10.1016/j.jhazmat.2021.126703. [29] X. Yang, Z. Tian, Y. Chen, H. Huang, J. Hu, B. Wen, In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer, J. Alloys Compd., 859 (2021) 157754, https://doi.org/10.1016/j.jallcom.2020.157754. [30] J. Li, X. Yu, Y. Zhu, X. Fu, Y. Zhang, 3D-2D-3D BiOI/porous g-C3N4/graphene hydrogel composite photocatalyst with synergy of adsorption-photocatalysis in static and flow systems, J. Alloys Compd., 850 (2021) 156778, https://doi.org/10.1016/j.jallcom.2020.156778. [31] Y. Zhong, Y. Lin, Q. Chen, Y. Sun, F. Fu, Rapid photo-degradation of various organic dyes with thin-layer boron-doped graphitic carbon nitride nano-sheets under visible light irradiation, J. Environ. Chem. Eng., 8 (2020) 103567, https://doi.org/10.1016/j.jece.2019.103567. [32] X. Rong, S. Liu, M. Xie, Z. Liu, Z. Wu, X. Zhou, X. Qiu, J. Wei, N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production, Mater. Res. Bull., 127 (2020) 110853, https://doi.org/10.1016/j.materresbull.2020.110853. [33] C. Zhang, J. Liu, X. Huang, D. Chen, S. Xu, Multistage Polymerization Design for g-C3N4 Nanosheets with Enhanced Photocatalytic Activity by Modifying the Polymerization Process of Melamine, ACS Omega, 4 (2019) 17148-17159, https://doi.org/10.1021/acsomega.9b01510. [34] W. Deng, K. Xiong, N. Ge, M. Yu, L. Chen, J. Wang, Cobalt and titanium co-doped zinc ferrite film photoanode with boosted interfacial photoelectrocatalytic activity for efficient degradation of tetracycline via the covalency competition in the Zn-O-Fe backbone, Chem. Eng. J., 433 (2022) 134456, https://doi.org/10.1016/j.cej.2021.134456. [35] H. Yang, H. Hao, Y. Zhao, Y. Hu, J. Min, G. Zhang, J. Bi, S. Yan, H. Hou, An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity, Colloids Surf. Physicochem. Eng. Aspects, 641 (2022) 128603, https://doi.org/10.1016/j.colsurfa.2022.128603. [36] Y. Wang, L. Ding, C. Liu, Y. Lu, Q. Wu, C. Wang, Q. Hu, 0D/2D/2D ZnFe2O4/Bi2O2CO3/BiOBr double Z-scheme heterojunctions for the removal of tetracycline antibiotics by permonosulfate activation: Photocatalytic and non-photocatalytic mechanisms, radical and non-radical pathways, Sep. Purif. Technol., 283 (2022) 120164, https://doi.org/10.1016/j.seppur.2021.120164. [37] S. Zhang, R. Guo, M. Liang, L. Li, Regulation of ZnFe2O4 synthesis for optimizing photoelectric response and its application for ciprofloxacin degradation: the synergistic effect with peroxymonosulfate and visible light, Process Saf. Environ. Prot., (2022), https://doi.org/10.1016/j.psep.2022.07.003. [38] J. Luo, Y. Wu, X. Chen, T. He, Y. Zeng, G. Wang, Y. Wang, Y. Zhao, Z. Chen, Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal, J. Alloys Compd., 910 (2022) 164954, https://doi.org/10.1016/j.jallcom.2022.164954. [39] X. Deng, D. Wang, H. Li, W. Jiang, T. Zhou, Y. Wen, B. Yu, G. Che, L. Wang, Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation, J. Alloys Compd., 894 (2022) 162209, https://doi.org/10.1016/j.jallcom.2021.162209. [40] M. Dung Nguyen, T. Binh Nguyen, L. Hai Tran, T. Giang Nguyen, I. Fatimah, E. Prasetyo Kuncoro, R.-A. Doong, Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation, Chem. Eng. J., 452 (2023) 139249, https://doi.org/10.1016/j.cej.2022.139249. [41] Y. Zhang, Y. Cheng, H. Qi, Synergistic degradation of organic pollutants on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation under LED irradiation, Appl. Surf. Sci., 579 (2022) 152151, https://doi.org/10.1016/j.apsusc.2021.152151. [42] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem., 108 (1997) 1-35, https://doi.org/10.1016/S1010-6030(97)00118-4. [43] H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies, Chinese J. Catal, 43 (2022) 178-214, https://doi.org/10.1016/S1872-2067(21)63910-4. [44] L. Zhang, J. Ran, S.-Z. Qiao, M. Jaroniec, Characterization of semiconductor photocatalysts, Chem. Soc. Rev., 48 (2019) 5184-5206, https://doi.org/10.1039/C9CS00172G. [45] J. Wang, X. Xu, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Oxygen‐vacancy‐enhanced singlet oxygen production for selective photocatalytic oxidation, ChemSusChem, 13 (2020) 3488-3494, https://doi.org/10.1002/cssc.202000595. [46] G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci., 12 (2019) 2080-2147, https://doi.org/10.1039/C9EE00717B. [47] Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B. Jie Ni, Graphitic carbon nitride with different dimensionalities for energy and environmental applications, Nano Res., 13 (2020) 18-37, https://doi.org/10.1007/s12274-019-2589-z. [48] D. Vaya, B. Kaushik, P.K. Surolia, Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications, Mater. Sci. Semicond. Process., 137 (2022) 106181, https://doi.org/10.1016/j.mssp.2021.106181. [49] S. Datta, P. Singh, D. Jana, C.B. Chaudhuri, M.K. Harbola, D.D. Johnson, A. Mookerjee, Exploring the role of electronic structure on photo-catalytic behavior of carbon-nitride polymorphs, Carbon, 168 (2020) 125-134, https://doi.org/10.1016/j.carbon.2020.04.008. [50] B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: A review, Appl. Catal. B, 224 (2018) 983-999, https://doi.org/10.1016/j.apcatb.2017.11.025. [51] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76-80, https://doi.org/10.1038/nmat2317. [52] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 (2017) 72-123, https://doi.org/10.1016/j.apsusc.2016.07.030. [53] Y. Yu, H. Huang, Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications, Chem. Eng. J., 453 (2023) 139755, https://doi.org/10.1016/j.cej.2022.139755. [54] W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal, Chinese J. Catal, 38 (2017) 372-378, https://doi.org/10.1016/S1872-2067(16)62585-8. [55] A. Basaleh, Construction of mesoporous ZnFe2O4-g-C3N4 nanocomposites for enhanced photocatalytic degradation of acridine orange dye under visible light illumination adopting soft-and hard-template-assisted routines, J. Mater. Res. Technol., 11 (2021) 1260-1271, https://doi.org/10.1016/j.jmrt.2021.01.110. [56] K. Li, M. Chen, L. Chen, S. Zhao, W. Xue, Z. Han, Y. Han, Synthesis of g-C3N4 Derived from Different Precursors for Photodegradation of Sulfamethazine under Visible Light, Processes, 11 (2023), https://doi.org/10.3390/pr11020528. [57] C. Hu, Y.-C. Chu, M.-S. Wang, X.-H. Wu, Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity, J. Photochem. Photobiol. A: Chem., 348 (2017) 8-17, https://doi.org/10.1016/j.jphotochem.2017.08.006. [58] Y. Zhan, Z. Liu, Q. Liu, D. Huang, Y. Wei, Y. Hu, X. Lian, C. Hu, A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications, New J. Chem., 41 (2017) 3930-3938, https://doi.org/10.1039/C7NJ00058H. [59] S. Wang, J. Zhang, B. Li, H. Sun, S. Wang, X. Duan, Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review, J. Environ. Chem. Eng., (2022) 107438, https://doi.org/10.1016/j.jece.2022.107438. [60] J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications, Energy Environ. Sci., 8 (2015) 3092-3108, https://doi.org/10.1039/C5EE01895A. [61] C. Tian, H. Zhao, H. Sun, K. Xiao, P.K. Wong, Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism, Chem. Eng. J., 381 (2020) 122760, https://doi.org/10.1016/j.cej.2019.122760. [62] Y. Xie, J. Wu, C. Sun, Y. Ling, S. Li, X. Li, J. Zhao, K. Yang, La2O3-modified graphite carbon nitride achieving the enhanced photocatalytic degradation of different organic pollutants under visible light irradiation, Materials Chemistry and Physics, 246 (2020) 122846, https://doi.org/10.1016/j.matchemphys.2020.122846. [63] S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation, J. Mater. Sci., 54 (2019) 5726-5742, https://doi.org/10.1007/s10853-018-03266-x. [64] F. Wang, Y. Feng, P. Chen, Y. Wang, Y. Su, Q. Zhang, Y. Zeng, Z. Xie, H. Liu, Y. Liu, Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination, Appl. Catal. B, 227 (2018) 114-122, https://doi.org/10.1016/j.apcatb.2018.01.024. [65] R. Liu, X. Han, R. Liu, Y. Sun, Highly selective photodegradation of ciprofloxacin by molecularly imprinted Fe3O4/g-C3N4, Mater. Lett., 325 (2022) 132811, https://doi.org/10.1016/j.matlet.2022.132811. [66] X. Du, X. Bai, L. Xu, L. Yang, P. Jin, Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants, Chem. Eng. J., 384 (2020) 123245, https://doi.org/10.1016/j.cej.2019.123245. [67] S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, V. Thakur, V.-H. Nguyen, Q. VanLe, P. Singh, An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification, J. Environ. Chem. Eng., (2021) 105812, https://doi.org/10.1016/j.jece.2021.105812. [68] Y. Zhong, K. Shih, Z. Diao, G. Song, M. Su, D. Chen, L. Kong, Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation, Chem. Eng. J., 417 (2021) 129225, https://doi.org/10.1016/j.cej.2021.129225. [69] P. Dolcet, K. Kirchberg, A. Antonello, C. Suchomski, R. Marschall, S. Diodati, R. Muñoz-Espí, K. Landfester, S. Gross, Exploring wet chemistry approaches to ZnFe2O4 spinel ferrite nanoparticles with different inversion degrees: a comparative study, Inorg. Chem. Front., 6 (2019) 1527-1534, https://doi.org/10.1039/C9QI00241C. [70] M. Qin, Q. Shuai, G. Wu, B. Zheng, Z. Wang, H. Wu, Zinc ferrite composite material with controllable morphology and its applications, Mater. Sci. Eng., B, 224 (2017) 125-138, https://doi.org/10.1016/j.mseb.2017.07.016. [71] Y. Guo, Y. Guo, D. Tang, Y. Liu, X. Wang, P. Li, G. Wang, Sol-gel synthesis of new ZnFe2O4/Na-bentonite composites for simultaneous oxidation of RhB and reduction of Cr (VI) under visible light irradiation, J. Alloys Compd., 781 (2019) 1101-1109, https://doi.org/10.1016/j.jallcom.2018.12.050. [72] Y. Shi, L. Li, Z. Xu, H. Sun, S. Amin, F. Guo, W. Shi, Y. Li, Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Mater. Res. Bull., (2022) 111789, https://doi.org/10.1016/j.materresbull.2022.111789. [73] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev., 43 (2014) 5234-5244, https://doi.org/10.1039/C4CS00126E. [74] S. Lin, N. Zhang, F. Wang, J. Lei, L. Zhou, Y. Liu, J. Zhang, Carbon Vacancy Mediated Incorporation of Ti3C2 Quantum Dots in a 3D Inverse Opal g-C3N4 Schottky Junction Catalyst for Photocatalytic H2O2 Production, ACS Sustainable Chemistry & Engineering, 9 (2021) 481-488, https://doi.org/10.1021/acssuschemeng.0c07753. [75] Q. Yang, R. Li, S. Wei, R. Yang, Schottky functionalized Z-scheme heterojunction photocatalyst Ti2C3/g-C3N4/BiOCl: Efficient photocatalytic H2O2 production via two-channel pathway, Appl. Surf. Sci., 572 (2022) 151525, https://doi.org/10.1016/j.apsusc.2021.151525. [76] B.H. Graimed, A.A. Okab, Z.H. Jabbar, M.A. Issa, S.H. Ammar, Highly stable β-Bi2O3/Ag decorated nanosilica as an efficient Schottky heterojunction for ciprofloxacin photodegradation in wastewater under LED illumination, Mater. Sci. Semicond. Process., 156 (2023) 107303, https://doi.org/10.1016/j.mssp.2022.107303. [77] Z. Chen, Y. Ma, W. Chen, Y. Tang, L. Li, J. Wang, Enhanced photocatalytic degradation of ciprofloxacin by heterostructured BiOCl/Ti3C2Tx MXene nanocomposites, J. Alloys Compd., 950 (2023) 169797, https://doi.org/10.1016/j.jallcom.2023.169797. [78] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction Photocatalysts, Adv. Mater., 29 (2017) 1601694, https://doi.org/10.1002/adma.201601694. [79] L. Che, J. Pan, K. Cai, Y. Cong, S.-W. Lv, The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review, Sep. Purif. Technol., 315 (2023) 123708, https://doi.org/10.1016/j.seppur.2023.123708. [80] P. Suyana, P. Ganguly, B.N. Nair, S.C. Pillai, U.S. Hareesh, Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation, Chemical Engineering Journal Advances, 8 (2021) 100148, https://doi.org/10.1016/j.ceja.2021.100148. [81] H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting, J. Mater. Chem. A, 1 (2013) 12327-12333, https://doi.org/10.1039/C3TA12803B. [82] K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12 (2011) 237-268, https://doi.org/10.1016/j.jphotochemrev.2011.07.001. [83] J. Lu, S. Gu, H. Li, Y. Wang, M. Guo, G. Zhou, Review on multi-dimensional assembled S-scheme heterojunction photocatalysts, Journal of Materials Science & Technology, (2023), https://doi.org/10.1016/j.jmst.2023.03.027. [84] L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-Scheme Photocatalyst, Adv. Mater., 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668. [85] Q. Xu, S. Wageh, A.A. Al-Ghamdi, X. Li, Design principle of S-scheme heterojunction photocatalyst, Journal of Materials Science & Technology, 124 (2022) 171-173, https://doi.org/10.1016/j.jmst.2022.02.016. [86] R. Acharya, S. Pati, K. Parida, A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization, J. Mol. Liq., 357 (2022) 119105, https://doi.org/10.1016/j.molliq.2022.119105. [87] Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II, J. Hazard. Mater., 297 (2015) 224-233, https://doi.org/10.1016/j.jhazmat.2015.04.046. [88] Y. Jia, S.J. Rhee, C. Liu, Synthesis of magnetic recoverable g-C3N4/SnFe2O4 composite with enhanced visible light photocatalytic property, Mater. Lett., 188 (2017) 338-342, https://doi.org/10.1016/j.matlet.2016.11.116. [89] B. Palanivel, C. Ayappan, V. Jayaraman, S. Chidambaram, R. Maheswaran, A. Mani, Inverse spinel NiFe2O4 deposited g-C3N4 nanosheet for enhanced visible light photocatalytic activity, Mater. Sci. Semicond. Process., 100 (2019) 87-97, https://doi.org/10.1016/j.mssp.2019.04.040. [90] D. Lei, J. Xue, X. Peng, S. Li, Q. Bi, C. Tang, L. Zhang, Oxalate enhanced synergistic removal of chromium(VI) and arsenic(III) over ZnFe2O4/g-C3N4: Z-scheme charge transfer pathway and photo-Fenton like reaction, Appl. Catal. B, 282 (2021) 119578, https://doi.org/10.1016/j.apcatb.2020.119578. [91] S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light, Colloids Surf. Physicochem. Eng. Aspects, 478 (2015) 71-80, https://doi.org/10.1016/j.colsurfa.2015.03.035. [92] V. Hasija, V.-H. Nguyen, A. Kumar, P. Raizada, V. Krishnan, A.A.P. Khan, P. Singh, E. Lichtfouse, C. Wang, P.T. Huong, Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review, J. Hazard. Mater., 413 (2021) 125324, https://doi.org/10.1016/j.jhazmat.2021.125324. [93] J. Sun, T. Wu, Z. Liu, B. Shao, Q. Liang, Q. He, S. Luo, Y. Pan, C. Zhao, D. Huang, Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review, J. Clean. Prod., 346 (2022) 131143, https://doi.org/10.1016/j.jclepro.2022.131143. [94] J. Liang, L. Fu, K. Gao, P. Zhang, X. Duan, X. Gong, L. Cai, Accelerated sulfate radical generation from peroxymonosulfate by ZIF-67-derived Co3O4 encapsulated in g-C3N4: A gift from in situ growth, Chem. Eng. J., 460 (2023) 141797, https://doi.org/10.1016/j.cej.2023.141797. [95] S. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, R. Niu, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 179 (2010) 552-558, https://doi.org/10.1016/j.jhazmat.2010.03.039. [96] M. Kohantorabi, G. Moussavi, S. Giannakis, A review of the innovations in metal-and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants, Chem. Eng. J., 411 (2021) 127957, https://doi.org/10.1016/j.cej.2020.127957. [97] Z. Liu, H. Ding, C. Zhao, T. Wang, P. Wang, D.D. Dionysiou, Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential, Water Res., 159 (2019) 111-121, https://doi.org/10.1016/j.watres.2019.04.052. [98] E. Deniere, H. Van Langenhove, S.W.H. Van Hulle, K. Demeestere, Improving the ozone-activated peroxymonosulfate process for removal of trace organic contaminants in real waters through implementation of an optimized sequential ozone dosing strategy, Sci. Total Environ., 856 (2023) 158764, https://doi.org/10.1016/j.scitotenv.2022.158764. [99] J.-Y. Fang, C. Shang, Bromate Formation from Bromide Oxidation by the UV/Persulfate Process, Environ. Sci. Technol., 46 (2012) 8976-8983, https://doi.org/10.1021/es300658u. [100] X. Li, T. Chen, Y. Qiu, Z. Zhu, H. Zhang, D. Yin, Magnetic dual Z-scheme g-C3N4/BiVO4/CuFe2O4 heterojunction as an efficient visible-light-driven peroxymonosulfate activator for levofloxacin degradation, Chem. Eng. J., 452 (2023) 139659, https://doi.org/10.1016/j.cej.2022.139659. [101] K.H. Chan, W. Chu, Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process, Water Res., 43 (2009) 2513-2521, https://doi.org/10.1016/j.watres.2009.02.029. [102] R. Yin, W. Guo, H. Wang, J. Du, X. Zhou, Q. Wu, H. Zheng, J. Chang, N. Ren, Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms, Chem. Eng. J., 335 (2018) 145-153, https://doi.org/10.1016/j.cej.2017.10.063. [103] R. Djellabi, J. Ali, X. Zhao, A.N. Saber, B. Yang, CuO NPs incorporated into electron-rich TCTA@PVP photoactive polymer for the photocatalytic oxidation of dyes and bacteria inactivation, J. Water Process. Eng., 36 (2020) 101238, https://doi.org/10.1016/j.jwpe.2020.101238. [104] E. Evgenidou, Z. Chatzisalata, A. Tsevis, K. Bourikas, P. Torounidou, D. Sergelidis, A. Koltsakidou, D.A. Lambropoulou, Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection, J. Environ. Chem. Eng., 9 (2021) 105295, https://doi.org/10.1016/j.jece.2021.105295. [105] C.A. Igwegbe, S.N. Oba, C.O. Aniagor, A.G. Adeniyi, J.O. Ighalo, Adsorption of ciprofloxacin from water: a comprehensive review, Journal of Industrial and Engineering Chemistry, 93 (2021) 57-77, https://doi.org/10.1016/j.jiec.2020.09.023. [106] A. Alam, W.U. Rahman, Z.U. Rahman, S.A. Khan, Z. Shah, K. Shaheen, H. Suo, M.N. Qureshi, S.B. Khan, E.M. Bakhsh, Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst, J. Mater. Sci. Mater, (2022) 1-13, https://doi.org/10.1007/s10854-021-07619-2. [107] M. Alhaddad, M. Amin, Removal of ciprofloxacin applying Pt@ BiVO4-g-C3N4 nanocomposite under visible light, Opt. Mater., 124 (2022) 111976, https://doi.org/10.1016/j.optmat.2022.111976. [108] H. Zhu, B. Yang, J. Yang, Y. Yuan, J. Zhang, Persulfate-enhanced degradation of ciprofloxacin with SiC/g-C3N4 photocatalyst under visible light irradiation, Chemosphere, 276 (2021) 130217, https://doi.org/10.1016/j.chemosphere.2021.130217. [109] J. Sun, C.-H. Shen, J. Guo, H. Guo, Y.-F. Yin, X.-J. Xu, Z.-H. Fei, Z.-T. Liu, X.-J. Wen, Highly efficient activation of peroxymonosulfate by Co3O4/Bi2WO6 p-n heterojunction composites for the degradation of ciprofloxacin under visible light irradiation, J. Colloid Interface Sci., 588 (2021) 19-30, https://doi.org/10.1016/j.jcis.2020.12.043. [110] M. Borkovec, G. Papastavrou, Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge, Curr. Opin. Colloid Interface Sci, 13 (2008) 429-437, https://doi.org/10.1016/j.cocis.2008.02.006. [111] T.B. Nguyen, R.-A. Doong, Fabrication of highly visible-light-responsive ZnFe2O4/TiO2 heterostructures for the enhanced photocatalytic degradation of organic dyes, RSC Adv., 6 (2016) 103428-103437, https://doi.org/10.1039/C6RA21002C. [112] T.B. Nguyen, R.-A. Doong, Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation, RSC Adv., 7 (2017) 50006-50016, https://doi.org/10.1039/C7RA08271A [113] T.B. Nguyen, C. Huang, R.-A. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ., 646 (2019) 745-756, https://doi.org/10.1016/j.scitotenv.2018.07.352. [114] W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Enhanced visible-light-driven photocatalytic removal of NO: Effect on layer distortion on g-C3N4 by H2 heating, Appl. Catal. B, 179 (2015) 106-112, https://doi.org/10.1016/j.apcatb.2015.05.010. [115] Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, B.D. Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis, RSC Adv., 7 (2017) 2333-2341, https://doi.org/10.1039/C6RA26172H [116] H. Gao, R. Cao, S. Zhang, H. Yang, X. Xu, Three-dimensional hierarchical g-C3N4 architectures assembled by ultrathin self-doped nanosheets: extremely facile hexamethylenetetramine activation and superior photocatalytic hydrogen evolution, ACS applied materials & interfaces, 11 (2018) 2050-2059, https://doi.org/10.1021/acsami.8b17757. [117] F. Dong, Z. Wang, Y. Sun, W.-K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 401 (2013) 70-79, https://doi.org/10.1016/j.jcis.2013.03.034. [118] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene‐like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22 (2012) 4763-4770, https://doi.org/10.1002/adfm.201200922. [119] X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity, J. Mater. Chem. A, 2 (2014) 18924-18928, https://doi.org/10.1039/C4TA04487H [120] A.G. Rana, M. Tasbihi, M. Schwarze, M. Minceva, Efficient Advanced Oxidation Process (AOP) for photocatalytic contaminant degradation using exfoliated metal-free graphitic carbon nitride and visible light-emitting diodes, Catalysts, 11 (2021) 662, https://doi.org/10.3390/catal11060662. [121] A. Amini, M. Karimi, M. Rabbani, V. Safarifard, Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol, Polyhedron, 216 (2022) 115728, https://doi.org/10.1016/j.poly.2022.115728. [122] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization, Angew. Chem. Int. Ed., 49 (2010) 441-444, https://doi.org/10.1002/anie.200903886. [123] P.R. Matli, X. Zhou, D. Shiyu, Q. Huang, Fabrication, characterization, and magnetic behavior of porous ZnFe2O4 hollow microspheres, Nano Lett., 5 (2015) 53-59, https://doi.org/10.1007/s40089-014-0135-2. [124] E. Sarala, M. Madhukara Naik, M. Vinuth, Y. Rami Reddy, H. Sujatha, Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines, J. Mater. Sci. Mater, 31 (2020) 8589-8596, https://doi.org/10.1007/s10854-020-03394-8. [125] H. Tran Huu, M.D.N. Thi, V.P. Nguyen, L.N. Thi, T.T.T. Phan, Q.D. Hoang, H.H. Luc, S.J. Kim, V. Vo, One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst, Sci. Rep., 11 (2021) 1-12, https://doi.org/10.1038/s41598-021-94129-0. [126] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.-Z. Qiao, Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions, J. Am. Chem. Soc., 139 (2017) 3336-3339, https://doi.org/10.1021/jacs.6b13100. [127] N.S. Alhokbany, R. Mousa, M. Naushad, S.M. Alshehri, T. Ahamad, Fabrication of Z-scheme photocatalysts g-C3N4/Ag3PO4/chitosan for the photocatalytic degradation of ciprofloxacin, Int. J. Biol. Macromol., 164 (2020) 3864-3872, https://doi.org/10.1016/j.ijbiomac.2020.08.133. [128] K. Wu, S. Song, H. Wu, J. Guo, L. Zhang, Facile synthesis of Bi2WO6/C3N4/Ti3C2 composite as Z-scheme photocatalyst for efficient ciprofloxacin degradation and H2 production, Applied Catalysis A: General, 608 (2020) 117869, https://doi.org/10.1016/j.apcata.2020.117869. [129] T.E. Westre, P. Kennepohl, J.G. DeWitt, B. Hedman, K.O. Hodgson, E.I. Solomon, A multiplet analysis of Fe K-edge 1s→ 3d pre-edge features of iron complexes, J. Am. Chem. Soc., 119 (1997) 6297-6314, https://doi.org/10.1021/ja964352a. [130] P. Duan, J. Pan, W. Du, Q. Yue, B. Gao, X. Xu, Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal, Appl. Catal. B, 299 (2021) 120714, https://doi.org/10.1016/j.apcatb.2021.120714. [131] Z. Fang, J. Qi, Y. Xu, Y. Liu, T. Qi, L. Xing, Q. Dai, L. Wang, Promoted generation of singlet oxygen by hollow-shell CoS/g-C3N4 catalyst for sulfonamides degradation, Chem. Eng. J., 441 (2022) 136051, https://doi.org/10.1016/j.cej.2022.136051. [132] F. Yang, G. Ba, Z. Wang, H. Li, Surface modification induced construction of core-shell homojunction of polymeric carbon nitride for boosted photocatalytic performance, J. Colloid Interface Sci., 594 (2021) 64-72, https://doi.org/10.1016/j.jcis.2021.03.014. [133] P.J. Mafa, M.E. Malefane, A.O. Idris, D. Liu, J. Gui, B.B. Mamba, A.T. Kuvarega, Multi-elemental doped g-C3N4 with enhanced visible light photocatalytic Activity: Insight into naproxen degradation, kinetics, effect of electrolytes, and mechanism, Sep. Purif. Technol., 282 (2022) 120089, https://doi.org/10.1016/j.seppur.2021.120089. [134] Y. Shi, Y. Sun, J. Jin, H. Wan, Y. Mei, Y. Li, D. Wan, Strongly coupled FeOOH nanoparticles/O doped g-C3N4 nanosheets for visible-light-driven effective treatment of oxytetracycline hydrochlorides, Ceram. Int., (2022), https://doi.org/10.1016/j.ceramint.2022.07.318. [135] X. Li, Y. Qiu, Z. Zhu, T. Chen, H. Zhang, D. Yin, Construction of magnetically separable dual Z-scheme g-C3N4/α-Fe2O3/Bi3TaO7 photocatalyst for effective degradation of ciprofloxacin under visible light, Chem. Eng. J., 440 (2022) 135840, https://doi.org/10.1016/j.cej.2022.135840. [136] Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation, J. Hazard. Mater., 344 (2018) 758-769, https://doi.org/10.1016/j.jhazmat.2017.11.027. [137] A. Navarro-Aguilar, S. Obregón, D. Sanchez-Martinez, D. Hernández-Uresti, An efficient and stable WO3/g-C3N4 photocatalyst for ciprofloxacin and orange G degradation, J. Photochem. Photobiol. A: Chem., 384 (2019) 112010, https://doi.org/10.1016/j.jphotochem.2019.112010. [138] K. Hu, R. Li, C. Ye, A. Wang, W. Wei, D. Hu, R. Qiu, K. Yan, Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin, J. Clean. Prod., 253 (2020) 120055, https://doi.org/10.1016/j.jclepro.2020.120055. [139] X. Yang, Z. Chen, W. Zhao, C. Liu, X. Qian, M. Zhang, G. Wei, E. Khan, Y.H. Ng, Y.S. Ok, Recent advances in photodegradation of antibiotic residues in water, Chem. Eng. J., 405 (2021) 126806, https://doi.org/10.1016/j.cej.2020.126806. [140] T.-B. Nguyen, C. Huang, R.-A. Doong, M.-H. Wang, C.-W. Chen, C.-D. Dong, Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water, Chem. Eng. J., 436 (2022) 135244, https://doi.org/10.1016/j.cej.2022.135244. [141] S. Zhao, X. Zhao, Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework, Appl. Catal. B, 250 (2019) 408-418, https://doi.org/10.1016/j.apcatb.2019.02.031. [142] J.S. Nam, Y. Hong, C.G. Lee, T.I. Kim, C. Lee, D.-H. Roh, I.S. Lee, S. Kweon, G. Ahn, S.K. Min, Singlet oxygen generation from polyaminoglycerol by spin-flip-based electron transfer, JACS Au, 2 (2022) 933–942, https://doi.org/10.1021/jacsau.2c00050. [143] H. Deng, Q. Li, J. Liu, F. Wang, Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline, Carbon, 112 (2017) 219-229, https://doi.org/10.1016/j.carbon.2016.11.014. [144] F. Chang, J. Zheng, F. Wu, X. Wang, B. Deng, Binary composites WO3/g-C3N4 in porous morphology: Facile construction, characterization, and reinforced visible light photocatalytic activity, Colloids Surf. Physicochem. Eng. Aspects, 563 (2019) 11-21, https://doi.org/10.1016/j.colsurfa.2018.11.058. [145] C. Ayappan, A. Mani, Facile construction of a fascinating dual Z-scheme Bi2S3/tg-C3N4/α-Ag2WO4 photocatalyst for effective removal of organic pollutants: Influence factors, mechanism insight and degradation pathway, J. Water Process. Eng., 51 (2023) 103373, https://doi.org/10.1016/j.jwpe.2022.103373. [146] M. Claros, M. Setka, Y.P. Jimenez, S. Vallejos, AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films, Nanomater., 10 (2020), https://doi.org/10.3390/nano10030471. [147] K.P.S. Parmar, J.H. Kim, A. Bist, P. Dua, P.K. Tiwari, A. Phuruangrat, J.S. Lee, Superparamagnetic and perfect-paramagnetic zinc ferrite quantum dots from microwave-assisted tunable synthesis, ACS Omega, 7 (2022) 31607-31611, https://doi.org/10.1021/acsomega.2c04668. [148] N. Chubar, V. Gerda, M. Szlachta, G. Yablokova, Effect of Fe oxidation state (+2 versus +3) in precursor on the structure of Fe oxides/carbonates-based composites examined by XPS, FTIR and EXAFS, Solid State Sciences, 121 (2021) 106752, https://doi.org/10.1016/j.solidstatesciences.2021.106752. [149] J. Chen, F. Zheng, S.-J. Zhang, A. Fisher, Y. Zhou, Z. Wang, Y. Li, B.-B. Xu, J.-T. Li, S.-G. Sun, Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis, ACS Catalysis, 8 (2018) 11342-11351, https://doi.org/10.1021/acscatal.8b03489. [150] J. Xu, Y. Wang, J. Wan, L. Wang, Facile synthesis of carbon-doped CoMn2O4/Mn3O4 composite catalyst to activate peroxymonosulfate for ciprofloxacin degradation, Sep. Purif. Technol., 287 (2022) 120576, https://doi.org/10.1016/j.seppur.2022.120576. [151] C. Guan, J. Jiang, S. Pang, X. Chen, R.D. Webster, T.-T. Lim, Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation, Chem. Eng. J., 387 (2020) 123726, https://doi.org/10.1016/j.cej.2019.123726. [152] P. Sarkar, S. Neogi, S. De, Activation of Peroxymonosulfate by S-scheme Bi2S3/doped gCN heterostructure photocatalyst for highly efficient visible light driven Tetracycline degradation: insights into reaction mechanisms, Sep. Purif. Technol., (2022) 122908, https://doi.org/10.1016/j.seppur.2022.122908. [153] M.F. Gasim, A. Veksha, G. Lisak, S.-C. Low, T.S. Hamidon, M.H. Hussin, W.-D. Oh, Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation, J. Colloid Interface Sci., 634 (2023) 586-600, https://doi.org/10.1016/j.jcis.2022.12.072. [154] D. DuranoĞLu, Ö. Mustafa Anıl, A. BİLaloĞLu, Photocatalytic degradation of diclofenac (an emerging contaminant): Effects of photocatalyst amount and air flow rate, Sigma Journal of Engineering and Natural Sciences, 42, https://dx.doi.org/10.14744/sigma.2023.00021. [155] A. Wang, Y. Chen, Z. Zheng, H. Wang, X. Li, Z. Yang, R. Qiu, K. Yan, In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants, Chem. Eng. J., 411 (2021) 128497, https://doi.org/10.1016/j.cej.2021.128497. [156] Q. Sun, X. Wang, Y. Liu, S. Xia, J. Zhao, Activation of peroxymonosulfate by a floating oxygen vacancies - CuFe2O4 photocatalyst under visible light for efficient degradation of sulfamethazine, Sci. Total Environ., 824 (2022) 153630, https://doi.org/10.1016/j.scitotenv.2022.153630. [157] Y. Huang, L.-c. Nengzi, X. Zhang, J. Gou, Y. Gao, G. Zhu, Q. Cheng, X. Cheng, Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism, Chem. Eng. J., 388 (2020) 124274, https://doi.org/10.1016/j.cej.2020.124274. [158] X. Li, D. Feng, X. He, D. Qian, B. Nasen, B. Qi, S. Fan, J. Shang, X. Cheng, Z-scheme heterojunction composed of Fe doped g-C3N4 and MoS2 for efficient ciprofloxacin removal in a photo-assisted peroxymonosulfate system, Sep. Purif. Technol., 303 (2022) 122219, https://doi.org/10.1016/j.seppur.2022.122219. [159] H. Alamgholiloo, E. Asgari, S. Nazari, A. Sheikhmohammadi, N. Noroozi Pesyan, B. Hashemzadeh, Architecture of bimetallic-MOF/silicate derived Co/NC@mSiO2 as peroxymonosulfate activator for highly efficient ciprofloxacin degradation, Sep. Purif. Technol., 300 (2022) 121911, https://doi.org/10.1016/j.seppur.2022.121911. [160] Y. Gao, S. Cong, H. Yu, D. Zou, Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process, Sep. Purif. Technol., 262 (2021) 118330, https://doi.org/10.1016/j.seppur.2021.118330. [161] P. Sarkar, D. Roy, B. Bera, S. De, S. Neogi, Efficient photocatalytic degradation of ciprofloxacin using novel dual Z-scheme gCN/CuFe2O4/MoS2 mediated peroxymonosulphate activation, Chem. Eng. J., 430 (2022) 132834, https://doi.org/10.1016/j.cej.2021.132834. [162] R. Tang, D. Gong, Y. Deng, S. Xiong, J. Zheng, L. Li, Z. Zhou, L. Su, J. Zhao, π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation, J. Hazard. Mater., 423 (2022) 126944, https://doi.org/10.1016/j.jhazmat.2021.126944. [163] Y. You, Z. Zhao, Y. Song, J. Li, J. Li, X. Cheng, Synthesis of magnetized nitrogen-doped biochar and its high efficiency for elimination of ciprofloxacin hydrochloride by activation of peroxymonosulfate, Sep. Purif. Technol., 258 (2021) 117977, https://doi.org/10.1016/j.seppur.2020.117977. [164] Ö. Tuna, E.B. Simsek, Enhanced visible-light-assisted peroxymonosulfate activation of low-cost perovskite CaFe2O4 for tartrazine degradation: Experimental design modelling, Mater. Res. Bull., 159 (2023) 112090, https://doi.org/10.1016/j.materresbull.2022.112090. [165] L. Yao, X. He, J. Lv, G. Xu, Z. Bao, J. Cui, D. Yu, Y. Wu, Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism, J. Environ. Chem. Eng., 10 (2022) 107397, https://doi.org/10.1016/j.jece.2022.107397. [166] J. Feng, L. Wang, X. Ran, B. Xiao, L. Lei, J. Zhu, R. Li, X. Xi, G. Feng, Adsorption and photocatalytic synergistic removal of ciprofloxacin on mesoporous ErFeO3/g-C3N4 heterojunction, Environ. Technol. Innov., 28 (2022) 102785, https://doi.org/10.1016/j.eti.2022.102785. [167] Z. Chen, W. Lai, Y. Xu, G. Xie, W. Hou, P. Zhanchang, C. Kuang, Y. Li, Anodic oxidation of ciprofloxacin using different graphite felt anodes: Kinetics and degradation pathways, J. Hazard. Mater., 405 (2021) 124262, https://doi.org/10.1016/j.jhazmat.2020.124262. [168] F. Guo, H. Zhang, H. Li, Z. Shen, Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin, Appl. Catal. B, 306 (2022) 121092, https://doi.org/10.1016/j.apcatb.2022.121092.
|