帳號:guest(18.226.185.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):穆 丹
作者(外文):Muchammad Tamyiz
論文名稱(中文):ZnFe2O4@g-C3N4 複合材料對抗生素光催化降解應用
論文名稱(外文):Development of Exfoliated g-C3N4 Decorated by ZnFe2O4 for Photodegradation of Antibiotics
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):張淑閔
林亮毅
蘇鎮芳
劉耕谷
口試委員(外文):Chang, Sue-Min
Lin, Liang-Yi
Su, Zhen-Fang
Liu, Keng-Ku
學位類別:博士
校院名稱:國立清華大學
系所名稱:環境科技博士學位學程(台灣聯合大學系統)
學號:108014860
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:144
中文關鍵詞:剝離石墨氮化碳可見光驅動光催化劑Z-方案第II 型異質結構載流子分離
外文關鍵詞:exfoliated graphitic carbon nitridevisible-light-driven photocatalystZ-schemetype II heterojunctioncharge carrier separation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
減少新興污染物尤其是水中抗生素污染的負面影響是 21 世紀的主要挑戰之一,光催化作為一種去除頑固污染物很有前途的技術,吸引了世界各地研究人員的關注,石墨碳氮化物 (g-C3N4, CN) 被稱為光催化劑材料,它具有獨特的性能並且能夠在可見光下應用,然而,由於電荷載流子的快速復合,塊狀 CN 的光催化性能很差,因此,本論文的目的是開發剝離 CN 的光催化劑,用於增強可見光驅動和增加多種抗生素的降解。為了實現這一目標,本文採用了兩種策略,首先,採用形態工程來製備高表面積的剝離 CN,然後選擇另一種具有適當能隙位置的半導體材料,使用不同的合成方法成功製備了以鐵酸鋅 (ZnFe2O4, ZFO) 修飾於剝離CN表面之異質結構 (ZFO@CN),第一種是熱煅燒輔助 (c-ZFO@CN),另一種是水熱輔助 (h-ZFO@CN),接著以h-ZFO@CN 奈米複合材在過氧單硫酸鹽 (PMS) 的存在下輔助光催化降解作為模型污染物的環丙沙星 (CIP)。
在這項研究中,使用了兩種不同的前驅物分別是尿素和雙氰胺,通過簡單的煅燒方法合成了剝離 CN,分析其微觀結構、形態、表面積、原子結合、光學和熱學性質, 此外,在 465 nm 可見光照射下,使用 CIP 作為目標抗生素污染物,對 ZFO@CN 奈米複合材的光催化性能進行了評估。結果表明,與原始剝離的 CN 相比,c-ZFO@CN 奈米複合材在CIP的降解中增強了可見光響應和光催化效率,c-ZFO@CN 奈米複合材的光催化性能是原始剝離 CN 的 5 倍。為了解 c-ZFO@CN 奈米複合材的光降解機制,我們進行了 CIP 光催化降解過程中自由基物種的捕獲實驗測試,結果表明c-ZFO@CN 的主要活性物質是 ●O2− 和 h+,為Z 型 c-ZFO@CN 異質結構增強CIP光降解的主要自由基。另一方面,h-ZFO@CN表現出不同的光催化性能。 雖然c-ZFO@CN-2和h-ZFO@CN-2之間的Eg幾乎相似,但是CIP 光降解中c-ZFO@CN-2的光催化性能在30分鐘內是h-ZFO@CN-2的3.4倍,具體來說,c-ZFO@CN-2 的 kobs 高達 0.043 min-1,而 h-ZFO@CN-2 只有0.013 min-1,由於 c-ZFO@CN-2 的 SBET 比 h-ZFO@CN-2 高 1.7 倍,因此 SBET 對於 CIP 去除起著重要作用,為了增強 h-ZFO@CN-2 的光催化活性,使用 PMS 作為氧化劑。
h-ZFO@CN-2/PMS 系統在 30 分鐘內成功展現了 CIP 的高光降解效率(>99%),kobs 為 0.156 min-1,結果表明h-ZFO@CN-2/PMS 系統分別比沒有 PMS 的 h-ZFO@CN-2 和 c-ZFO@CN-2 系統高了 12 倍和 4 倍,h-ZFO@CN-2/PMS系統中CIP光降解的主要ROS為h+、SO4●−和●OH,而 ●O2− 和 1O2 為次要 ROS。 h-ZFO@CN-2/PMS系統在各種環境參數下均具有優異的光降解性能,適用於較寬的pH值範圍。 此外,h-ZFO@CN-2/PMS 系統成功地防止了金屬浸出,從而提供環保的應用。本研究提出了在可見光照射下通過 h-ZFO@CN 的第 II 型異質結構激活 PMS 的新見解, h-ZFO@CN 和 PMS 之間的協同效應在連續 10 個循環後表現出良好的重複使用性和穩定性,對多種新興污染物表現出超過 90% 的光降解能力,同時提出了 CIP 在 h-ZFO@CN-2/PMS 上可能的光降解途徑。
該論文的結果證實了 ZFO@CN 奈米複合材的光催化性能可以通過 ZFO 和剝離CN 之間的異質介面形成,有效地增強可見光驅動的響應和 CIP 的光降解,此外,高效的載流子分離、豐富的活性位點和出色的 PMS 活化可以有效促進抗生素污染物的去除,這些基於 ZFO@CN 的光催化系統可以作為製造金屬氧化物@CN 異質結構的平台,用於水和廢水淨化。
Reducing negative impact of emerging pollutant especially antibiotics pollution in water is one of the biggest challenges in the 21st century. As a promising technology for removal recalcitrant pollutant, photocatalysis has enamoured researcher across the globe. The graphitic carbon nitride (g-C3N4, CN) has known as photocatalyst material which provide unique properties and workable under visible light. However, the photocatalytic performance of bulk CN is dreadful because of rapid charge carrier recombination. Therefore, the aim of this thesis is to develop exfoliated CN based photocatalyst with enhanced visible-light-driven and increased multiple antibiotic products degradation. To achieve this aim, there are two strategies which have been conducted in this thesis. First, the morphological engineering was employed to produce high surface area of exfoliated CN and followed by selecting another semiconductor material with appropriate band gap position. The exfoliated CN-based heterostructures was successfully fabricated with zinc ferrite (ZnFe2O4, ZFO) which decorate on the surface of exfoliated CN (ZFO@CN) using different preparation methods. The first one is thermal calcination-assisted (c-ZFO@CN) and another one is hydrothermal-assisted (h-ZFO@CN). Meanwhile, the h-ZFO@CN nanocomposite was assisted by the presence of peroxymonosulfate (PMS) for photocatalytic degradation of ciprofloxacin (CIP) as model pollutant.
In this study, the exfoliated CN was synthesized by an effortless calcination method using two different precursors namely urea and dicyandiamide. The microstructures, morphologies, surface area, atomic binding, optical and thermal properties were conscientiously characterized. Moreover, the photocatalytic performances were evaluated by using CIP as a targeted antibiotic pollutant over ZFO@CN nanocomposite under 465 nm visible light irradiation. The results showed that the c-ZFO@CN nanocomposite presented enhanced visible light response and photocatalytic efficiency against CIP compared to pristine exfoliated CN. Thereafter, the increasing photocatalytic performance of c-ZFO@CN nanocomposite is 5-fold than pristine exfoliated CN. To understand photodegradation mechanism of c-ZFO@CN nanocomposite, we have conducted trapping experiment and measurement of radical species during photocatalytic degradation of CIP. The result showed that the main active species for c-ZFO@CN are ●O2− and h+ were found to be the primarily responsible radicals for the enhanced photodegradation of CIP over direct Z-scheme c-ZFO@CN heterojunction. On other hand, h-ZFO@CN was exhibited different photocatalytic performance. Although the Eg between c-ZFO@CN-2 and h-ZFO@CN-2 almost similar, however the photocatalytic performance of c-ZFO@CN-2 is 3.4 times higher than h-ZFO@CN-2 within 30 min for CIP photodegradation. Specifically, the kobs of c-ZFO@CN-2 can reach up to 0.043 min-1, while h-ZFO@CN-2 only up to 0.013 min-1. This result reveals that the SBET plays important role for CIP removal due to c-ZFO@CN-2 possess SBET of 1.7-fold higher compared to that of h-ZFO@CN-2. Therefore, to bolster up photocatalytic activity of h-ZFO@CN-2, PMS was employed as oxidizing agent.
The h-ZFO@CN-2/PMS system has successfully exhibited great photodegradation efficiency of CIP (>99%) in 30 min with kobs of 0.156 min-1. This result presents that h-ZFO@CN-2/PMS system is 12 times and 4 times higher than the h-ZFO@CN-2 and c-ZFO@CN-2 system without PMS, respectively. Meanwhile, the main ROS of CIP photodegradation over h-ZFO@CN-2/PMS system were h+, SO4●−, and ●OH. Whereas, ●O2− and 1O2 were the secondary ROS. In addition, the h-ZFO@CN-2/PMS system had excellent photodegradation performance in the various environmental parameters and could apply in wide range of pH. Moreover, the h-ZFO@CN-2/PMS system successfully preserves from metal leaching thus offers environmental-friendly application. This study developed a new insight to activate PMS via type II heterojunction of h-ZFO@CN under visible light irradiation. The synergetic effect between h-ZFO@CN and PMS exhibits great reusability and stability after 10 cycles sequentially as well as more than 90% photodegradation ability for multiple emerging pollutants. The possible photodegradation pathways of CIP over h-ZFO@CN-2/PMS is also proposed.
This thesis result obviously corroborates that the photocatalytic performance of the ZFO@CN nanocomposite can effectively enhance visible-light-driven response and photodegradation of CIP via heterogenous interface formation between ZFO and exfoliated CN. In addition, the efficient charge carrier separation, abundant active site, and exceptional PMS activation could effectively promote removal of antibiotic pollutants. These photocatalytic systems over ZFO@CN can serve as the platform to fabricate metal oxide@CN based heterojunction for water and wastewater purification.
摘要 I
Abstract IV
Acknowledgements VII
Contents IX
List of Figures XII
List of Tables XVIII
Abbreviations, Units, And Symbols XIX
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Objectives 4
1.3. Thesis outline 5
Chapter 2. Literature Review 6
2.1. The overview of photocatalysis 6
2.1.1. Semiconductor photocatalyst 7
2.1.2. Photocatalyst of CN 12
2.1.3. Synthesis strategies of CN 17
2.1.4. Morphology engineering of CN 20
2.1.5. Application for water purification 22
2.2. Metal Oxide photocatalyst 24
2.2.1. Spinel ferrite photocatalyst 25
2.2.2. Zinc ferrite (ZnFe2O4, ZFO) 28
2.2.3. Synthesis strategies of ZFO 29
2.2.4. Application for water purification 31
2.3. Modification of CN photocatalysts 32
2.3.1. CN-based Heterogeneous photocatalyst 33
2.3.2. Spinel ferrite/CN heterostructures photocatalyst 43
2.3.3. Influence of SR-AOPs in photodegradation reaction 45
2.4. Ciprofloxacin 50
Chapter 3. Methodology 55
3.1. Materials and reagents 55
3.2. Synthesis of bulk CN and exfoliated CN 55
3.3. Synthesis of ZFO 56
3.4. Thermal calcination-assisted synthesis of ZFO@CN nanocomposite (c-ZFO@CN) 56
3.5. Hydrothermal-assisted synthesis of ZFO@CN nanocomposite (h-ZFO@CN) 57
3.6. Characterization 57
3.7. Ciprofloxacin degradation experiments 58
Chapter 4. Results and discussion 60
4.1. Direct Z-scheme c-ZFO@CN nanocomposites heterojunction with enhanced visible-light responsive for ciprofloxacin degradation 60
4.1.1. Characterization of Exfoliated CN 60
4.1.2. Characterization of ZFO 65
4.1.3. Characterization and photocatalytic performance of c-ZFO@CN 67
4.1.3.1. Microstructures of c-ZFO@CN nanocomposites 67
4.1.3.2. Morphology and bandgap of c-ZFO@CN nanocomposites 71
4.1.3.3. Photocatalytic performance of c-ZFO@CN nanocomposite 75
4.1.3.3.1. Effect of initial CIP concentration 78
4.1.3.3.2. Effect of pH 78
4.1.3.3.3. Effect of inorganic anions 79
4.1.3.3.4. Effect of water matrices 81
4.1.3.3.5. Photocatalyst recyclability and stability 82
4.1.3.3.6. Photocatalytic reaction mechanism 85
4.2. Construction of h-ZFO@CN Type-II heterojunction to activate peroxymonosulfate for enhanced multiple antibiotic photodegradation 88
4.2.1. Structural and optical properties 88
4.2.2. Morphology and microstructure of h-ZFO@CN nanocomposite 94
4.2.3. Photodegradation of CIP over h-ZFO@CN/PMS system 98
4.2.3.1. Effect of PMS dosage 102
4.2.3.2. Effect of initial CIP concentrations 102
4.2.3.3. Effect of pH 103
4.2.3.4. Effect of inorganic anions and humic acid 105
4.2.3.5. Real water sample treatment experiment 107
4.2.3.6. Photocatalyst recyclability, stability, and universality 109
4.2.3.7. Possible photocatalytic reaction mechanism 113
4.2.3.8. Identification of the intermediate products 120
Chapter 5. Conclusion and Future perspectives 123
5.1 Conclusion 123
5.2 Future perspectives 125
References 128
[1] N. Shee, H.J. Jo, H.-J. Kim, Coordination framework materials fabricated by the self-assembly of Sn (IV) porphyrins with Ag (I) ions for the photocatalytic degradation of organic dyes in wastewater, Inorg. Chem. Front., 9 (2022) 1270-1280, https://doi.org/10.1039/D1QI01615F.
[2] P. Sarkar, S. De, S. Neogi, Microwave assisted facile fabrication of dual Z-scheme g-C3N4/ZnFe2O4/Bi2S3 photocatalyst for peroxymonosulphate mediated degradation of 2, 4, 6-Trichlorophenol: the mechanistic insights, Appl. Catal. B, 307 (2022) 121165, https://doi.org/10.1016/j.apcatb.2022.121165.
[3] K. Ghorai, A. Panda, A. Hossain, M. Bhattacharjee, M. Chakraborty, S.K. Bhattacharya, B. Show, A. Sarkar, P. Bera, H. Kim, LaNiO3/g-C3N4 nanocomposite: An efficient Z-scheme photocatalyst for wastewater treatment using direct sunlight, J. Rare Earths, 40 (2021) 725-736, https://doi.org/10.1016/j.jre.2021.04.013.
[4] X. Wang, X. Ao, T. Zhang, Z. Li, R. Cai, Z. Chen, Y. Wang, W. Sun, Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity, Sci. Total Environ., 806 (2022) 151372, https://doi.org/10.1016/j.scitotenv.2021.151372.
[5] R. Rafieenia, M. Sulonen, M. Mahmoud, F. El-Gohary, C.A. Rossa, Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances, and present prospects, Sci. Total Environ., (2022) 153923, https://doi.org/10.1016/j.scitotenv.2022.153923.
[6] T.M. Rawson, L.S.P. Moore, N. Zhu, N. Ranganathan, K. Skolimowska, M. Gilchrist, G. Satta, G. Cooke, A. Holmes, Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing, Clin. Infect. Dis., 71 (2020) 2459-2468, https://doi.org/10.1093/cid/ciaa530.
[7] Z.-H. Diao, S.-T. Huang, X. Chen, M.-Y. Zou, H. Liu, P.-R. Guo, L.-J. Kong, W. Chu, Peroxymonosulfate-assisted photocatalytic degradation of antibiotic norfloxacin by a calcium-based Ag3PO4 composite in water: Reactivity, products and mechanism, J. Clean. Prod., 330 (2022) 129806, https://doi.org/10.1016/j.jclepro.2021.129806.
[8] A. Kumar, V. Hasija, A. Sudhaik, P. Raizada, V.-H. Nguyen, Q. Van Le, P. Singh, D. Nguyen, S. Thakur, C.M. Hussain, The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review, Environ. Res., 209 (2022) 112814, https://doi.org/10.1016/j.envres.2022.112814.
[9] B. Gao, Q. Chang, H. Yang, Selective adsorption of ofloxacin and ciprofloxacin from a binary system using lignin-based adsorbents: Quantitative analysis, adsorption mechanisms, and structure-activity relationship, Sci. Total Environ., 765 (2021) 144427, https://doi.org/10.1016/j.scitotenv.2020.144427.
[10] X. Chen, Y. Yang, Y. Ke, C. Chen, S. Xie, A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect, Sci. Total Environ., 814 (2022) 152852, https://doi.org/10.1016/j.scitotenv.2021.152852.
[11] M. Preeyanghaa, V. Vinesh, P. Sabarikirishwaran, A. Rajkamal, M. Ashokkumar, B. Neppolian, Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation, Carbon, 192 (2022) 405-417, https://doi.org/10.1016/j.carbon.2022.03.011.
[12] L.T. Nguyen, D.-V.N. Vo, L.T. Nguyen, A.T. Duong, H.Q. Nguyen, N.M. Chu, D.T.C. Nguyen, T. Van Tran, Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination, Environ. Technol. Innov., 25 (2022) 102130, https://doi.org/10.1016/j.eti.2021.102130.
[13] M. Muslim, A. Ali, S. Kamaal, M. Ahmad, M.J. Alam, Q.I. Rahman, M. Shahid, Efficient adsorption and facile photocatalytic degradation of organic dyes over H-bonded proton-transfer complex: An experimental and theoretical approach, J. Mol. Liq., 347 (2022) 117951, https://doi.org/10.1016/j.molliq.2021.117951.
[14] Y. Zhou, M. Yu, H. Liang, J. Chen, L. Xu, J. Niu, Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin, Appl. Catal. B, 291 (2021) 120105, https://doi.org/10.1016/j.apcatb.2021.120105.
[15] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight, J. Catal., 358 (2018) 141-154, https://doi.org/10.1016/j.jcat.2017.11.029.
[16] C. Li, Z. Sun, W. Zhang, C. Yu, S. Zheng, Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus, Appl. Catal. B, 220 (2018) 272-282, https://doi.org/10.1016/j.apcatb.2017.08.044.
[17] Z. Zhao, Z. Shu, J. Zhou, W. Wang, T. Li, J. Chen, Facile one-pot synthesis of C, O-codoped nano-structured g-C3N4 with superior photocatalytic hydrogen evolution, Mater. Res. Bull., 145 (2022) 111565, https://doi.org/10.1016/j.materresbull.2021.111565.
[18] S. Wang, J. Wang, Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants, J. Hazard. Mater., 423 (2022) 127207, https://doi.org/10.1016/j.jhazmat.2021.127207.
[19] W. Liu, Y. Li, F. Liu, W. Jiang, D. Zhang, J. Liang, Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation, Water Res., 151 (2019) 8-19, https://doi.org/10.1016/j.watres.2018.11.084.
[20] P. Yadav, S.T. Nishanthi, B. Purohit, A. Shanavas, K. Kailasam, Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study, Carbon, 152 (2019) 587-597, https://doi.org/10.1016/j.carbon.2019.06.045.
[21] M.D. Nguyen, T.B. Nguyen, A. Thamilselvan, T.G. Nguyen, E.P. Kuncoro, R.-A. Doong, Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline, J. Environ. Chem. Eng., (2021) 106905, https://doi.org/10.1016/j.jece.2021.106905.
[22] R. Zhang, J. Jiang, K. Zeng, Synthesis of Bi2WO6/g-C3N4 heterojunction on activated carbon fiber membrane as a thin-film photocatalyst for treating antibiotic wastewater, Inorg. Chem. Commun., (2022) 109418, https://doi.org/10.1016/j.inoche.2022.109418.
[23] J. Zhang, Y. Zheng, H. Zheng, T. Jing, Y. Zhao, J. Tian, Porous oxygen-doped g-C3N4 with the different precursors for excellent photocatalytic activities under visible light, Materials, 15 (2022) 1391, https://dx.doi.org/10.3390%2Fma15041391.
[24] M. Tamyiz, R.-A. Doong, Synergetic effect of adsorption and photocatalysis by zinc ferrite-anchored graphitic carbon nitride nanosheet for the removal of ciprofloxacin under visible light irradiation, Open Chem., 21 (2023), https://doi.org/10.1515/chem-2022-0304.
[25] P. Chen, S. Di, X. Qiu, S. Zhu, One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation, Appl. Surf. Sci., 587 (2022) 152889, https://doi.org/10.1016/j.apsusc.2022.152889.
[26] P. Ma, X. Zhang, C. Wang, Z. Wang, K. Wang, Y. Feng, J. Wang, Y. Zhai, J. Deng, L. Wang, Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution, Appl. Catal. B, 300 (2022) 120736, https://doi.org/10.1016/j.apcatb.2021.120736.
[27] S. Lu, T. Wu, Y. Liu, H. Luo, F. Jiang, X. Nie, H. Chen, All-solid Z-scheme Bi/γ-Bi2O3/O-doped g-C3N4 heterojunction with Bi as electron shuttle for visible-light photocatalysis, J. Alloys Compd., (2022) 164980, https://doi.org/10.1016/j.jallcom.2022.164980.
[28] G. Fan, X. Lin, Y. You, B. Du, X. Li, J. Luo, Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism, J. Hazard. Mater., 421 (2022) 126703, https://doi.org/10.1016/j.jhazmat.2021.126703.
[29] X. Yang, Z. Tian, Y. Chen, H. Huang, J. Hu, B. Wen, In situ synthesis of 2D ultrathin cobalt doped g-C3N4 nanosheets enhances photocatalytic performance by accelerating charge transfer, J. Alloys Compd., 859 (2021) 157754, https://doi.org/10.1016/j.jallcom.2020.157754.
[30] J. Li, X. Yu, Y. Zhu, X. Fu, Y. Zhang, 3D-2D-3D BiOI/porous g-C3N4/graphene hydrogel composite photocatalyst with synergy of adsorption-photocatalysis in static and flow systems, J. Alloys Compd., 850 (2021) 156778, https://doi.org/10.1016/j.jallcom.2020.156778.
[31] Y. Zhong, Y. Lin, Q. Chen, Y. Sun, F. Fu, Rapid photo-degradation of various organic dyes with thin-layer boron-doped graphitic carbon nitride nano-sheets under visible light irradiation, J. Environ. Chem. Eng., 8 (2020) 103567, https://doi.org/10.1016/j.jece.2019.103567.
[32] X. Rong, S. Liu, M. Xie, Z. Liu, Z. Wu, X. Zhou, X. Qiu, J. Wei, N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production, Mater. Res. Bull., 127 (2020) 110853, https://doi.org/10.1016/j.materresbull.2020.110853.
[33] C. Zhang, J. Liu, X. Huang, D. Chen, S. Xu, Multistage Polymerization Design for g-C3N4 Nanosheets with Enhanced Photocatalytic Activity by Modifying the Polymerization Process of Melamine, ACS Omega, 4 (2019) 17148-17159, https://doi.org/10.1021/acsomega.9b01510.
[34] W. Deng, K. Xiong, N. Ge, M. Yu, L. Chen, J. Wang, Cobalt and titanium co-doped zinc ferrite film photoanode with boosted interfacial photoelectrocatalytic activity for efficient degradation of tetracycline via the covalency competition in the Zn-O-Fe backbone, Chem. Eng. J., 433 (2022) 134456, https://doi.org/10.1016/j.cej.2021.134456.
[35] H. Yang, H. Hao, Y. Zhao, Y. Hu, J. Min, G. Zhang, J. Bi, S. Yan, H. Hou, An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity, Colloids Surf. Physicochem. Eng. Aspects, 641 (2022) 128603, https://doi.org/10.1016/j.colsurfa.2022.128603.
[36] Y. Wang, L. Ding, C. Liu, Y. Lu, Q. Wu, C. Wang, Q. Hu, 0D/2D/2D ZnFe2O4/Bi2O2CO3/BiOBr double Z-scheme heterojunctions for the removal of tetracycline antibiotics by permonosulfate activation: Photocatalytic and non-photocatalytic mechanisms, radical and non-radical pathways, Sep. Purif. Technol., 283 (2022) 120164, https://doi.org/10.1016/j.seppur.2021.120164.
[37] S. Zhang, R. Guo, M. Liang, L. Li, Regulation of ZnFe2O4 synthesis for optimizing photoelectric response and its application for ciprofloxacin degradation: the synergistic effect with peroxymonosulfate and visible light, Process Saf. Environ. Prot., (2022), https://doi.org/10.1016/j.psep.2022.07.003.
[38] J. Luo, Y. Wu, X. Chen, T. He, Y. Zeng, G. Wang, Y. Wang, Y. Zhao, Z. Chen, Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal, J. Alloys Compd., 910 (2022) 164954, https://doi.org/10.1016/j.jallcom.2022.164954.
[39] X. Deng, D. Wang, H. Li, W. Jiang, T. Zhou, Y. Wen, B. Yu, G. Che, L. Wang, Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation, J. Alloys Compd., 894 (2022) 162209, https://doi.org/10.1016/j.jallcom.2021.162209.
[40] M. Dung Nguyen, T. Binh Nguyen, L. Hai Tran, T. Giang Nguyen, I. Fatimah, E. Prasetyo Kuncoro, R.-A. Doong, Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation, Chem. Eng. J., 452 (2023) 139249, https://doi.org/10.1016/j.cej.2022.139249.
[41] Y. Zhang, Y. Cheng, H. Qi, Synergistic degradation of organic pollutants on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation under LED irradiation, Appl. Surf. Sci., 579 (2022) 152151, https://doi.org/10.1016/j.apsusc.2021.152151.
[42] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem., 108 (1997) 1-35, https://doi.org/10.1016/S1010-6030(97)00118-4.
[43] H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies, Chinese J. Catal, 43 (2022) 178-214, https://doi.org/10.1016/S1872-2067(21)63910-4.
[44] L. Zhang, J. Ran, S.-Z. Qiao, M. Jaroniec, Characterization of semiconductor photocatalysts, Chem. Soc. Rev., 48 (2019) 5184-5206, https://doi.org/10.1039/C9CS00172G.
[45] J. Wang, X. Xu, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Oxygen‐vacancy‐enhanced singlet oxygen production for selective photocatalytic oxidation, ChemSusChem, 13 (2020) 3488-3494, https://doi.org/10.1002/cssc.202000595.
[46] G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci., 12 (2019) 2080-2147, https://doi.org/10.1039/C9EE00717B.
[47] Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B. Jie Ni, Graphitic carbon nitride with different dimensionalities for energy and environmental applications, Nano Res., 13 (2020) 18-37, https://doi.org/10.1007/s12274-019-2589-z.
[48] D. Vaya, B. Kaushik, P.K. Surolia, Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications, Mater. Sci. Semicond. Process., 137 (2022) 106181, https://doi.org/10.1016/j.mssp.2021.106181.
[49] S. Datta, P. Singh, D. Jana, C.B. Chaudhuri, M.K. Harbola, D.D. Johnson, A. Mookerjee, Exploring the role of electronic structure on photo-catalytic behavior of carbon-nitride polymorphs, Carbon, 168 (2020) 125-134, https://doi.org/10.1016/j.carbon.2020.04.008.
[50] B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: A review, Appl. Catal. B, 224 (2018) 983-999, https://doi.org/10.1016/j.apcatb.2017.11.025.
[51] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76-80, https://doi.org/10.1038/nmat2317.
[52] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 (2017) 72-123, https://doi.org/10.1016/j.apsusc.2016.07.030.
[53] Y. Yu, H. Huang, Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications, Chem. Eng. J., 453 (2023) 139755, https://doi.org/10.1016/j.cej.2022.139755.
[54] W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal, Chinese J. Catal, 38 (2017) 372-378, https://doi.org/10.1016/S1872-2067(16)62585-8.
[55] A. Basaleh, Construction of mesoporous ZnFe2O4-g-C3N4 nanocomposites for enhanced photocatalytic degradation of acridine orange dye under visible light illumination adopting soft-and hard-template-assisted routines, J. Mater. Res. Technol., 11 (2021) 1260-1271, https://doi.org/10.1016/j.jmrt.2021.01.110.
[56] K. Li, M. Chen, L. Chen, S. Zhao, W. Xue, Z. Han, Y. Han, Synthesis of g-C3N4 Derived from Different Precursors for Photodegradation of Sulfamethazine under Visible Light, Processes, 11 (2023), https://doi.org/10.3390/pr11020528.
[57] C. Hu, Y.-C. Chu, M.-S. Wang, X.-H. Wu, Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity, J. Photochem. Photobiol. A: Chem., 348 (2017) 8-17, https://doi.org/10.1016/j.jphotochem.2017.08.006.
[58] Y. Zhan, Z. Liu, Q. Liu, D. Huang, Y. Wei, Y. Hu, X. Lian, C. Hu, A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications, New J. Chem., 41 (2017) 3930-3938, https://doi.org/10.1039/C7NJ00058H.
[59] S. Wang, J. Zhang, B. Li, H. Sun, S. Wang, X. Duan, Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review, J. Environ. Chem. Eng., (2022) 107438, https://doi.org/10.1016/j.jece.2022.107438.
[60] J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications, Energy Environ. Sci., 8 (2015) 3092-3108, https://doi.org/10.1039/C5EE01895A.
[61] C. Tian, H. Zhao, H. Sun, K. Xiao, P.K. Wong, Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism, Chem. Eng. J., 381 (2020) 122760, https://doi.org/10.1016/j.cej.2019.122760.
[62] Y. Xie, J. Wu, C. Sun, Y. Ling, S. Li, X. Li, J. Zhao, K. Yang, La2O3-modified graphite carbon nitride achieving the enhanced photocatalytic degradation of different organic pollutants under visible light irradiation, Materials Chemistry and Physics, 246 (2020) 122846, https://doi.org/10.1016/j.matchemphys.2020.122846.
[63] S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation, J. Mater. Sci., 54 (2019) 5726-5742, https://doi.org/10.1007/s10853-018-03266-x.
[64] F. Wang, Y. Feng, P. Chen, Y. Wang, Y. Su, Q. Zhang, Y. Zeng, Z. Xie, H. Liu, Y. Liu, Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination, Appl. Catal. B, 227 (2018) 114-122, https://doi.org/10.1016/j.apcatb.2018.01.024.
[65] R. Liu, X. Han, R. Liu, Y. Sun, Highly selective photodegradation of ciprofloxacin by molecularly imprinted Fe3O4/g-C3N4, Mater. Lett., 325 (2022) 132811, https://doi.org/10.1016/j.matlet.2022.132811.
[66] X. Du, X. Bai, L. Xu, L. Yang, P. Jin, Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants, Chem. Eng. J., 384 (2020) 123245, https://doi.org/10.1016/j.cej.2019.123245.
[67] S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, V. Thakur, V.-H. Nguyen, Q. VanLe, P. Singh, An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification, J. Environ. Chem. Eng., (2021) 105812, https://doi.org/10.1016/j.jece.2021.105812.
[68] Y. Zhong, K. Shih, Z. Diao, G. Song, M. Su, D. Chen, L. Kong, Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation, Chem. Eng. J., 417 (2021) 129225, https://doi.org/10.1016/j.cej.2021.129225.
[69] P. Dolcet, K. Kirchberg, A. Antonello, C. Suchomski, R. Marschall, S. Diodati, R. Muñoz-Espí, K. Landfester, S. Gross, Exploring wet chemistry approaches to ZnFe2O4 spinel ferrite nanoparticles with different inversion degrees: a comparative study, Inorg. Chem. Front., 6 (2019) 1527-1534, https://doi.org/10.1039/C9QI00241C.
[70] M. Qin, Q. Shuai, G. Wu, B. Zheng, Z. Wang, H. Wu, Zinc ferrite composite material with controllable morphology and its applications, Mater. Sci. Eng., B, 224 (2017) 125-138, https://doi.org/10.1016/j.mseb.2017.07.016.
[71] Y. Guo, Y. Guo, D. Tang, Y. Liu, X. Wang, P. Li, G. Wang, Sol-gel synthesis of new ZnFe2O4/Na-bentonite composites for simultaneous oxidation of RhB and reduction of Cr (VI) under visible light irradiation, J. Alloys Compd., 781 (2019) 1101-1109, https://doi.org/10.1016/j.jallcom.2018.12.050.
[72] Y. Shi, L. Li, Z. Xu, H. Sun, S. Amin, F. Guo, W. Shi, Y. Li, Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Mater. Res. Bull., (2022) 111789, https://doi.org/10.1016/j.materresbull.2022.111789.
[73] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev., 43 (2014) 5234-5244, https://doi.org/10.1039/C4CS00126E.
[74] S. Lin, N. Zhang, F. Wang, J. Lei, L. Zhou, Y. Liu, J. Zhang, Carbon Vacancy Mediated Incorporation of Ti3C2 Quantum Dots in a 3D Inverse Opal g-C3N4 Schottky Junction Catalyst for Photocatalytic H2O2 Production, ACS Sustainable Chemistry & Engineering, 9 (2021) 481-488, https://doi.org/10.1021/acssuschemeng.0c07753.
[75] Q. Yang, R. Li, S. Wei, R. Yang, Schottky functionalized Z-scheme heterojunction photocatalyst Ti2C3/g-C3N4/BiOCl: Efficient photocatalytic H2O2 production via two-channel pathway, Appl. Surf. Sci., 572 (2022) 151525, https://doi.org/10.1016/j.apsusc.2021.151525.
[76] B.H. Graimed, A.A. Okab, Z.H. Jabbar, M.A. Issa, S.H. Ammar, Highly stable β-Bi2O3/Ag decorated nanosilica as an efficient Schottky heterojunction for ciprofloxacin photodegradation in wastewater under LED illumination, Mater. Sci. Semicond. Process., 156 (2023) 107303, https://doi.org/10.1016/j.mssp.2022.107303.
[77] Z. Chen, Y. Ma, W. Chen, Y. Tang, L. Li, J. Wang, Enhanced photocatalytic degradation of ciprofloxacin by heterostructured BiOCl/Ti3C2Tx MXene nanocomposites, J. Alloys Compd., 950 (2023) 169797, https://doi.org/10.1016/j.jallcom.2023.169797.
[78] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction Photocatalysts, Adv. Mater., 29 (2017) 1601694, https://doi.org/10.1002/adma.201601694.
[79] L. Che, J. Pan, K. Cai, Y. Cong, S.-W. Lv, The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review, Sep. Purif. Technol., 315 (2023) 123708, https://doi.org/10.1016/j.seppur.2023.123708.
[80] P. Suyana, P. Ganguly, B.N. Nair, S.C. Pillai, U.S. Hareesh, Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation, Chemical Engineering Journal Advances, 8 (2021) 100148, https://doi.org/10.1016/j.ceja.2021.100148.
[81] H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting, J. Mater. Chem. A, 1 (2013) 12327-12333, https://doi.org/10.1039/C3TA12803B.
[82] K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12 (2011) 237-268, https://doi.org/10.1016/j.jphotochemrev.2011.07.001.
[83] J. Lu, S. Gu, H. Li, Y. Wang, M. Guo, G. Zhou, Review on multi-dimensional assembled S-scheme heterojunction photocatalysts, Journal of Materials Science & Technology, (2023), https://doi.org/10.1016/j.jmst.2023.03.027.
[84] L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-Scheme Photocatalyst, Adv. Mater., 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668.
[85] Q. Xu, S. Wageh, A.A. Al-Ghamdi, X. Li, Design principle of S-scheme heterojunction photocatalyst, Journal of Materials Science & Technology, 124 (2022) 171-173, https://doi.org/10.1016/j.jmst.2022.02.016.
[86] R. Acharya, S. Pati, K. Parida, A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization, J. Mol. Liq., 357 (2022) 119105, https://doi.org/10.1016/j.molliq.2022.119105.
[87] Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II, J. Hazard. Mater., 297 (2015) 224-233, https://doi.org/10.1016/j.jhazmat.2015.04.046.
[88] Y. Jia, S.J. Rhee, C. Liu, Synthesis of magnetic recoverable g-C3N4/SnFe2O4 composite with enhanced visible light photocatalytic property, Mater. Lett., 188 (2017) 338-342, https://doi.org/10.1016/j.matlet.2016.11.116.
[89] B. Palanivel, C. Ayappan, V. Jayaraman, S. Chidambaram, R. Maheswaran, A. Mani, Inverse spinel NiFe2O4 deposited g-C3N4 nanosheet for enhanced visible light photocatalytic activity, Mater. Sci. Semicond. Process., 100 (2019) 87-97, https://doi.org/10.1016/j.mssp.2019.04.040.
[90] D. Lei, J. Xue, X. Peng, S. Li, Q. Bi, C. Tang, L. Zhang, Oxalate enhanced synergistic removal of chromium(VI) and arsenic(III) over ZnFe2O4/g-C3N4: Z-scheme charge transfer pathway and photo-Fenton like reaction, Appl. Catal. B, 282 (2021) 119578, https://doi.org/10.1016/j.apcatb.2020.119578.
[91] S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light, Colloids Surf. Physicochem. Eng. Aspects, 478 (2015) 71-80, https://doi.org/10.1016/j.colsurfa.2015.03.035.
[92] V. Hasija, V.-H. Nguyen, A. Kumar, P. Raizada, V. Krishnan, A.A.P. Khan, P. Singh, E. Lichtfouse, C. Wang, P.T. Huong, Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review, J. Hazard. Mater., 413 (2021) 125324, https://doi.org/10.1016/j.jhazmat.2021.125324.
[93] J. Sun, T. Wu, Z. Liu, B. Shao, Q. Liang, Q. He, S. Luo, Y. Pan, C. Zhao, D. Huang, Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review, J. Clean. Prod., 346 (2022) 131143, https://doi.org/10.1016/j.jclepro.2022.131143.
[94] J. Liang, L. Fu, K. Gao, P. Zhang, X. Duan, X. Gong, L. Cai, Accelerated sulfate radical generation from peroxymonosulfate by ZIF-67-derived Co3O4 encapsulated in g-C3N4: A gift from in situ growth, Chem. Eng. J., 460 (2023) 141797, https://doi.org/10.1016/j.cej.2023.141797.
[95] S. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, R. Niu, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 179 (2010) 552-558, https://doi.org/10.1016/j.jhazmat.2010.03.039.
[96] M. Kohantorabi, G. Moussavi, S. Giannakis, A review of the innovations in metal-and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants, Chem. Eng. J., 411 (2021) 127957, https://doi.org/10.1016/j.cej.2020.127957.
[97] Z. Liu, H. Ding, C. Zhao, T. Wang, P. Wang, D.D. Dionysiou, Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential, Water Res., 159 (2019) 111-121, https://doi.org/10.1016/j.watres.2019.04.052.
[98] E. Deniere, H. Van Langenhove, S.W.H. Van Hulle, K. Demeestere, Improving the ozone-activated peroxymonosulfate process for removal of trace organic contaminants in real waters through implementation of an optimized sequential ozone dosing strategy, Sci. Total Environ., 856 (2023) 158764, https://doi.org/10.1016/j.scitotenv.2022.158764.
[99] J.-Y. Fang, C. Shang, Bromate Formation from Bromide Oxidation by the UV/Persulfate Process, Environ. Sci. Technol., 46 (2012) 8976-8983, https://doi.org/10.1021/es300658u.
[100] X. Li, T. Chen, Y. Qiu, Z. Zhu, H. Zhang, D. Yin, Magnetic dual Z-scheme g-C3N4/BiVO4/CuFe2O4 heterojunction as an efficient visible-light-driven peroxymonosulfate activator for levofloxacin degradation, Chem. Eng. J., 452 (2023) 139659, https://doi.org/10.1016/j.cej.2022.139659.
[101] K.H. Chan, W. Chu, Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process, Water Res., 43 (2009) 2513-2521, https://doi.org/10.1016/j.watres.2009.02.029.
[102] R. Yin, W. Guo, H. Wang, J. Du, X. Zhou, Q. Wu, H. Zheng, J. Chang, N. Ren, Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms, Chem. Eng. J., 335 (2018) 145-153, https://doi.org/10.1016/j.cej.2017.10.063.
[103] R. Djellabi, J. Ali, X. Zhao, A.N. Saber, B. Yang, CuO NPs incorporated into electron-rich TCTA@PVP photoactive polymer for the photocatalytic oxidation of dyes and bacteria inactivation, J. Water Process. Eng., 36 (2020) 101238, https://doi.org/10.1016/j.jwpe.2020.101238.
[104] E. Evgenidou, Z. Chatzisalata, A. Tsevis, K. Bourikas, P. Torounidou, D. Sergelidis, A. Koltsakidou, D.A. Lambropoulou, Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection, J. Environ. Chem. Eng., 9 (2021) 105295, https://doi.org/10.1016/j.jece.2021.105295.
[105] C.A. Igwegbe, S.N. Oba, C.O. Aniagor, A.G. Adeniyi, J.O. Ighalo, Adsorption of ciprofloxacin from water: a comprehensive review, Journal of Industrial and Engineering Chemistry, 93 (2021) 57-77, https://doi.org/10.1016/j.jiec.2020.09.023.
[106] A. Alam, W.U. Rahman, Z.U. Rahman, S.A. Khan, Z. Shah, K. Shaheen, H. Suo, M.N. Qureshi, S.B. Khan, E.M. Bakhsh, Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst, J. Mater. Sci. Mater, (2022) 1-13, https://doi.org/10.1007/s10854-021-07619-2.
[107] M. Alhaddad, M. Amin, Removal of ciprofloxacin applying Pt@ BiVO4-g-C3N4 nanocomposite under visible light, Opt. Mater., 124 (2022) 111976, https://doi.org/10.1016/j.optmat.2022.111976.
[108] H. Zhu, B. Yang, J. Yang, Y. Yuan, J. Zhang, Persulfate-enhanced degradation of ciprofloxacin with SiC/g-C3N4 photocatalyst under visible light irradiation, Chemosphere, 276 (2021) 130217, https://doi.org/10.1016/j.chemosphere.2021.130217.
[109] J. Sun, C.-H. Shen, J. Guo, H. Guo, Y.-F. Yin, X.-J. Xu, Z.-H. Fei, Z.-T. Liu, X.-J. Wen, Highly efficient activation of peroxymonosulfate by Co3O4/Bi2WO6 p-n heterojunction composites for the degradation of ciprofloxacin under visible light irradiation, J. Colloid Interface Sci., 588 (2021) 19-30, https://doi.org/10.1016/j.jcis.2020.12.043.
[110] M. Borkovec, G. Papastavrou, Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge, Curr. Opin. Colloid Interface Sci, 13 (2008) 429-437, https://doi.org/10.1016/j.cocis.2008.02.006.
[111] T.B. Nguyen, R.-A. Doong, Fabrication of highly visible-light-responsive ZnFe2O4/TiO2 heterostructures for the enhanced photocatalytic degradation of organic dyes, RSC Adv., 6 (2016) 103428-103437, https://doi.org/10.1039/C6RA21002C.
[112] T.B. Nguyen, R.-A. Doong, Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation, RSC Adv., 7 (2017) 50006-50016, https://doi.org/10.1039/C7RA08271A
[113] T.B. Nguyen, C. Huang, R.-A. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ., 646 (2019) 745-756, https://doi.org/10.1016/j.scitotenv.2018.07.352.
[114] W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Enhanced visible-light-driven photocatalytic removal of NO: Effect on layer distortion on g-C3N4 by H2 heating, Appl. Catal. B, 179 (2015) 106-112, https://doi.org/10.1016/j.apcatb.2015.05.010.
[115] Y. Yang, J. Chen, Z. Mao, N. An, D. Wang, B.D. Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis, RSC Adv., 7 (2017) 2333-2341, https://doi.org/10.1039/C6RA26172H
[116] H. Gao, R. Cao, S. Zhang, H. Yang, X. Xu, Three-dimensional hierarchical g-C3N4 architectures assembled by ultrathin self-doped nanosheets: extremely facile hexamethylenetetramine activation and superior photocatalytic hydrogen evolution, ACS applied materials & interfaces, 11 (2018) 2050-2059, https://doi.org/10.1021/acsami.8b17757.
[117] F. Dong, Z. Wang, Y. Sun, W.-K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 401 (2013) 70-79, https://doi.org/10.1016/j.jcis.2013.03.034.
[118] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene‐like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22 (2012) 4763-4770, https://doi.org/10.1002/adfm.201200922.
[119] X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity, J. Mater. Chem. A, 2 (2014) 18924-18928, https://doi.org/10.1039/C4TA04487H
[120] A.G. Rana, M. Tasbihi, M. Schwarze, M. Minceva, Efficient Advanced Oxidation Process (AOP) for photocatalytic contaminant degradation using exfoliated metal-free graphitic carbon nitride and visible light-emitting diodes, Catalysts, 11 (2021) 662, https://doi.org/10.3390/catal11060662.
[121] A. Amini, M. Karimi, M. Rabbani, V. Safarifard, Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol, Polyhedron, 216 (2022) 115728, https://doi.org/10.1016/j.poly.2022.115728.
[122] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization, Angew. Chem. Int. Ed., 49 (2010) 441-444, https://doi.org/10.1002/anie.200903886.
[123] P.R. Matli, X. Zhou, D. Shiyu, Q. Huang, Fabrication, characterization, and magnetic behavior of porous ZnFe2O4 hollow microspheres, Nano Lett., 5 (2015) 53-59, https://doi.org/10.1007/s40089-014-0135-2.
[124] E. Sarala, M. Madhukara Naik, M. Vinuth, Y. Rami Reddy, H. Sujatha, Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines, J. Mater. Sci. Mater, 31 (2020) 8589-8596, https://doi.org/10.1007/s10854-020-03394-8.
[125] H. Tran Huu, M.D.N. Thi, V.P. Nguyen, L.N. Thi, T.T.T. Phan, Q.D. Hoang, H.H. Luc, S.J. Kim, V. Vo, One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst, Sci. Rep., 11 (2021) 1-12, https://doi.org/10.1038/s41598-021-94129-0.
[126] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.-Z. Qiao, Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions, J. Am. Chem. Soc., 139 (2017) 3336-3339, https://doi.org/10.1021/jacs.6b13100.
[127] N.S. Alhokbany, R. Mousa, M. Naushad, S.M. Alshehri, T. Ahamad, Fabrication of Z-scheme photocatalysts g-C3N4/Ag3PO4/chitosan for the photocatalytic degradation of ciprofloxacin, Int. J. Biol. Macromol., 164 (2020) 3864-3872, https://doi.org/10.1016/j.ijbiomac.2020.08.133.
[128] K. Wu, S. Song, H. Wu, J. Guo, L. Zhang, Facile synthesis of Bi2WO6/C3N4/Ti3C2 composite as Z-scheme photocatalyst for efficient ciprofloxacin degradation and H2 production, Applied Catalysis A: General, 608 (2020) 117869, https://doi.org/10.1016/j.apcata.2020.117869.
[129] T.E. Westre, P. Kennepohl, J.G. DeWitt, B. Hedman, K.O. Hodgson, E.I. Solomon, A multiplet analysis of Fe K-edge 1s→ 3d pre-edge features of iron complexes, J. Am. Chem. Soc., 119 (1997) 6297-6314, https://doi.org/10.1021/ja964352a.
[130] P. Duan, J. Pan, W. Du, Q. Yue, B. Gao, X. Xu, Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal, Appl. Catal. B, 299 (2021) 120714, https://doi.org/10.1016/j.apcatb.2021.120714.
[131] Z. Fang, J. Qi, Y. Xu, Y. Liu, T. Qi, L. Xing, Q. Dai, L. Wang, Promoted generation of singlet oxygen by hollow-shell CoS/g-C3N4 catalyst for sulfonamides degradation, Chem. Eng. J., 441 (2022) 136051, https://doi.org/10.1016/j.cej.2022.136051.
[132] F. Yang, G. Ba, Z. Wang, H. Li, Surface modification induced construction of core-shell homojunction of polymeric carbon nitride for boosted photocatalytic performance, J. Colloid Interface Sci., 594 (2021) 64-72, https://doi.org/10.1016/j.jcis.2021.03.014.
[133] P.J. Mafa, M.E. Malefane, A.O. Idris, D. Liu, J. Gui, B.B. Mamba, A.T. Kuvarega, Multi-elemental doped g-C3N4 with enhanced visible light photocatalytic Activity: Insight into naproxen degradation, kinetics, effect of electrolytes, and mechanism, Sep. Purif. Technol., 282 (2022) 120089, https://doi.org/10.1016/j.seppur.2021.120089.
[134] Y. Shi, Y. Sun, J. Jin, H. Wan, Y. Mei, Y. Li, D. Wan, Strongly coupled FeOOH nanoparticles/O doped g-C3N4 nanosheets for visible-light-driven effective treatment of oxytetracycline hydrochlorides, Ceram. Int., (2022), https://doi.org/10.1016/j.ceramint.2022.07.318.
[135] X. Li, Y. Qiu, Z. Zhu, T. Chen, H. Zhang, D. Yin, Construction of magnetically separable dual Z-scheme g-C3N4/α-Fe2O3/Bi3TaO7 photocatalyst for effective degradation of ciprofloxacin under visible light, Chem. Eng. J., 440 (2022) 135840, https://doi.org/10.1016/j.cej.2022.135840.
[136] Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation, J. Hazard. Mater., 344 (2018) 758-769, https://doi.org/10.1016/j.jhazmat.2017.11.027.
[137] A. Navarro-Aguilar, S. Obregón, D. Sanchez-Martinez, D. Hernández-Uresti, An efficient and stable WO3/g-C3N4 photocatalyst for ciprofloxacin and orange G degradation, J. Photochem. Photobiol. A: Chem., 384 (2019) 112010, https://doi.org/10.1016/j.jphotochem.2019.112010.
[138] K. Hu, R. Li, C. Ye, A. Wang, W. Wei, D. Hu, R. Qiu, K. Yan, Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin, J. Clean. Prod., 253 (2020) 120055, https://doi.org/10.1016/j.jclepro.2020.120055.
[139] X. Yang, Z. Chen, W. Zhao, C. Liu, X. Qian, M. Zhang, G. Wei, E. Khan, Y.H. Ng, Y.S. Ok, Recent advances in photodegradation of antibiotic residues in water, Chem. Eng. J., 405 (2021) 126806, https://doi.org/10.1016/j.cej.2020.126806.
[140] T.-B. Nguyen, C. Huang, R.-A. Doong, M.-H. Wang, C.-W. Chen, C.-D. Dong, Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water, Chem. Eng. J., 436 (2022) 135244, https://doi.org/10.1016/j.cej.2022.135244.
[141] S. Zhao, X. Zhao, Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework, Appl. Catal. B, 250 (2019) 408-418, https://doi.org/10.1016/j.apcatb.2019.02.031.
[142] J.S. Nam, Y. Hong, C.G. Lee, T.I. Kim, C. Lee, D.-H. Roh, I.S. Lee, S. Kweon, G. Ahn, S.K. Min, Singlet oxygen generation from polyaminoglycerol by spin-flip-based electron transfer, JACS Au, 2 (2022) 933–942, https://doi.org/10.1021/jacsau.2c00050.
[143] H. Deng, Q. Li, J. Liu, F. Wang, Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline, Carbon, 112 (2017) 219-229, https://doi.org/10.1016/j.carbon.2016.11.014.
[144] F. Chang, J. Zheng, F. Wu, X. Wang, B. Deng, Binary composites WO3/g-C3N4 in porous morphology: Facile construction, characterization, and reinforced visible light photocatalytic activity, Colloids Surf. Physicochem. Eng. Aspects, 563 (2019) 11-21, https://doi.org/10.1016/j.colsurfa.2018.11.058.
[145] C. Ayappan, A. Mani, Facile construction of a fascinating dual Z-scheme Bi2S3/tg-C3N4/α-Ag2WO4 photocatalyst for effective removal of organic pollutants: Influence factors, mechanism insight and degradation pathway, J. Water Process. Eng., 51 (2023) 103373, https://doi.org/10.1016/j.jwpe.2022.103373.
[146] M. Claros, M. Setka, Y.P. Jimenez, S. Vallejos, AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films, Nanomater., 10 (2020), https://doi.org/10.3390/nano10030471.
[147] K.P.S. Parmar, J.H. Kim, A. Bist, P. Dua, P.K. Tiwari, A. Phuruangrat, J.S. Lee, Superparamagnetic and perfect-paramagnetic zinc ferrite quantum dots from microwave-assisted tunable synthesis, ACS Omega, 7 (2022) 31607-31611, https://doi.org/10.1021/acsomega.2c04668.
[148] N. Chubar, V. Gerda, M. Szlachta, G. Yablokova, Effect of Fe oxidation state (+2 versus +3) in precursor on the structure of Fe oxides/carbonates-based composites examined by XPS, FTIR and EXAFS, Solid State Sciences, 121 (2021) 106752, https://doi.org/10.1016/j.solidstatesciences.2021.106752.
[149] J. Chen, F. Zheng, S.-J. Zhang, A. Fisher, Y. Zhou, Z. Wang, Y. Li, B.-B. Xu, J.-T. Li, S.-G. Sun, Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis, ACS Catalysis, 8 (2018) 11342-11351, https://doi.org/10.1021/acscatal.8b03489.
[150] J. Xu, Y. Wang, J. Wan, L. Wang, Facile synthesis of carbon-doped CoMn2O4/Mn3O4 composite catalyst to activate peroxymonosulfate for ciprofloxacin degradation, Sep. Purif. Technol., 287 (2022) 120576, https://doi.org/10.1016/j.seppur.2022.120576.
[151] C. Guan, J. Jiang, S. Pang, X. Chen, R.D. Webster, T.-T. Lim, Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation, Chem. Eng. J., 387 (2020) 123726, https://doi.org/10.1016/j.cej.2019.123726.
[152] P. Sarkar, S. Neogi, S. De, Activation of Peroxymonosulfate by S-scheme Bi2S3/doped gCN heterostructure photocatalyst for highly efficient visible light driven Tetracycline degradation: insights into reaction mechanisms, Sep. Purif. Technol., (2022) 122908, https://doi.org/10.1016/j.seppur.2022.122908.
[153] M.F. Gasim, A. Veksha, G. Lisak, S.-C. Low, T.S. Hamidon, M.H. Hussin, W.-D. Oh, Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation, J. Colloid Interface Sci., 634 (2023) 586-600, https://doi.org/10.1016/j.jcis.2022.12.072.
[154] D. DuranoĞLu, Ö. Mustafa Anıl, A. BİLaloĞLu, Photocatalytic degradation of diclofenac (an emerging contaminant): Effects of photocatalyst amount and air flow rate, Sigma Journal of Engineering and Natural Sciences, 42, https://dx.doi.org/10.14744/sigma.2023.00021.
[155] A. Wang, Y. Chen, Z. Zheng, H. Wang, X. Li, Z. Yang, R. Qiu, K. Yan, In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants, Chem. Eng. J., 411 (2021) 128497, https://doi.org/10.1016/j.cej.2021.128497.
[156] Q. Sun, X. Wang, Y. Liu, S. Xia, J. Zhao, Activation of peroxymonosulfate by a floating oxygen vacancies - CuFe2O4 photocatalyst under visible light for efficient degradation of sulfamethazine, Sci. Total Environ., 824 (2022) 153630, https://doi.org/10.1016/j.scitotenv.2022.153630.
[157] Y. Huang, L.-c. Nengzi, X. Zhang, J. Gou, Y. Gao, G. Zhu, Q. Cheng, X. Cheng, Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism, Chem. Eng. J., 388 (2020) 124274, https://doi.org/10.1016/j.cej.2020.124274.
[158] X. Li, D. Feng, X. He, D. Qian, B. Nasen, B. Qi, S. Fan, J. Shang, X. Cheng, Z-scheme heterojunction composed of Fe doped g-C3N4 and MoS2 for efficient ciprofloxacin removal in a photo-assisted peroxymonosulfate system, Sep. Purif. Technol., 303 (2022) 122219, https://doi.org/10.1016/j.seppur.2022.122219.
[159] H. Alamgholiloo, E. Asgari, S. Nazari, A. Sheikhmohammadi, N. Noroozi Pesyan, B. Hashemzadeh, Architecture of bimetallic-MOF/silicate derived Co/NC@mSiO2 as peroxymonosulfate activator for highly efficient ciprofloxacin degradation, Sep. Purif. Technol., 300 (2022) 121911, https://doi.org/10.1016/j.seppur.2022.121911.
[160] Y. Gao, S. Cong, H. Yu, D. Zou, Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process, Sep. Purif. Technol., 262 (2021) 118330, https://doi.org/10.1016/j.seppur.2021.118330.
[161] P. Sarkar, D. Roy, B. Bera, S. De, S. Neogi, Efficient photocatalytic degradation of ciprofloxacin using novel dual Z-scheme gCN/CuFe2O4/MoS2 mediated peroxymonosulphate activation, Chem. Eng. J., 430 (2022) 132834, https://doi.org/10.1016/j.cej.2021.132834.
[162] R. Tang, D. Gong, Y. Deng, S. Xiong, J. Zheng, L. Li, Z. Zhou, L. Su, J. Zhao, π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation, J. Hazard. Mater., 423 (2022) 126944, https://doi.org/10.1016/j.jhazmat.2021.126944.
[163] Y. You, Z. Zhao, Y. Song, J. Li, J. Li, X. Cheng, Synthesis of magnetized nitrogen-doped biochar and its high efficiency for elimination of ciprofloxacin hydrochloride by activation of peroxymonosulfate, Sep. Purif. Technol., 258 (2021) 117977, https://doi.org/10.1016/j.seppur.2020.117977.
[164] Ö. Tuna, E.B. Simsek, Enhanced visible-light-assisted peroxymonosulfate activation of low-cost perovskite CaFe2O4 for tartrazine degradation: Experimental design modelling, Mater. Res. Bull., 159 (2023) 112090, https://doi.org/10.1016/j.materresbull.2022.112090.
[165] L. Yao, X. He, J. Lv, G. Xu, Z. Bao, J. Cui, D. Yu, Y. Wu, Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism, J. Environ. Chem. Eng., 10 (2022) 107397, https://doi.org/10.1016/j.jece.2022.107397.
[166] J. Feng, L. Wang, X. Ran, B. Xiao, L. Lei, J. Zhu, R. Li, X. Xi, G. Feng, Adsorption and photocatalytic synergistic removal of ciprofloxacin on mesoporous ErFeO3/g-C3N4 heterojunction, Environ. Technol. Innov., 28 (2022) 102785, https://doi.org/10.1016/j.eti.2022.102785.
[167] Z. Chen, W. Lai, Y. Xu, G. Xie, W. Hou, P. Zhanchang, C. Kuang, Y. Li, Anodic oxidation of ciprofloxacin using different graphite felt anodes: Kinetics and degradation pathways, J. Hazard. Mater., 405 (2021) 124262, https://doi.org/10.1016/j.jhazmat.2020.124262.
[168] F. Guo, H. Zhang, H. Li, Z. Shen, Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin, Appl. Catal. B, 306 (2022) 121092, https://doi.org/10.1016/j.apcatb.2022.121092.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *