帳號:guest(18.118.166.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王文瑋
作者(外文):Wang, Wen-Wei
論文名稱(中文):高放處置工程障壁熱傳模式建立與平行驗證分析
論文名稱(外文):Establishment and Verification Analysis of Heat Transfer Mode of High-level Radioactive Disposal Engineered Barrier
指導教授(中文):馮玉明
指導教授(外文):Ferng, yuh-ming
口試委員(中文):王郁文
周偉雄
口試委員(外文):Wang, Yu-Wen
Chou, Hsiung Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:108013515
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:工程壁障熱傳分析高放平行驗證
外文關鍵詞:BarrierEstablishmentVerificationRadioactive
相關次數:
  • 推薦推薦:0
  • 點閱點閱:358
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
核能是一個能提供穩定發電的方式,但核能產生的廢料對人類的環境有著極大的威脅,因此需要找些方法確保廢料與人類的生活環境保持長期隔絕,經過許多國家研究顯示,目前較為適合的方式為深層地質處置。但是到目前為止,深層地質處置多半都還處在研究評估階段,包含熱傳-水力-應力等多方面地研究。本論文則是專注於處置孔之熱傳分析研究,進行高放處置設施單一與多處置孔熱傳分析模式之建立與CFD (Computational Fluid Dynamics)之分析,其中包含單一與多處置孔之熱傳數值模型建置、熱傳平行驗證分析以及本土案例分析,並探討單處置孔的緩衝材料與回填材料、處置母岩的熱傳性質對處置孔溫度變化歷程之影響。根據分析結果顯示,在單一處置孔熱傳分析的平行驗證上,以緩衝材料最高溫度來看,SKB TR99-41報告與本論文的結果均出現於處置時間第19年,其值分別為75 oC與75.06 oC,二者非常接近,而第16年之處置孔各區域溫度分布圖也互相吻合。在多處置孔熱間距之平行驗證上,本論文計算緩衝材料最高溫度列線圖與SKB R09-04報告之結果非常接近,二者相差幾乎小於2 oC(差距小於2%)。在熱間距本土案例分析上,本論文分析不同處置孔熱間距之緩衝材料最高溫度與台電報告SNFD- AR2019-V2之結果比較,二者均計算出緩衝材料最高溫度隨處置孔熱間距增加而有下降之趨勢,且最高的溫差約為2 oC。此外,在處置孔熱間距之熱傳分析上,本研究亦進行不同母岩與緩衝材料熱傳導係數對處置孔熱間距之靈敏度分析,這些分析結果除了證明本論文建置處置孔熱傳模式之合理性,亦可提供台電公司於深層處置研究之重要參考。
Nuclear energy is a way to provide stable power generation, but the waste generated by nuclear energy poses a great threat to the human environment. Therefore, it is necessary to find some way to ensure that the waste is kept isolated from the human living environment for a long time. Studies in many countries have shown that it is currently more suitable. The method is deep geological disposal. But so far, most of the deep geological disposal is still in the research and evaluation stage, including heat transfer-hydraulic-stress and other aspects of research. This thesis focuses on the heat transfer analysis and research of disposal holes, and conducts the establishment of heat transfer analysis modes for single and multiple disposal holes in high-level radioactive disposal facilities and the analysis of CFD (Computational Fluid Dynamics), including the heat transfer of single and multiple disposal holes. Numerical model construction, parallel verification analysis of heat transfer, and local case analysis, and discuss the impact of the buffer material and backfill material of the single disposal hole, and the heat transfer properties of the disposal mother rock on the temperature change history of the disposal hole. According to the analysis results, in the parallel verification of the heat transfer analysis of a single disposal hole, in terms of the maximum temperature of the buffer material, the results of the SKB TR99-41 report and this paper both appeared in the 19th year of the disposal time, and their values were 75 oC.It is very close to 75.06 oC, and the temperature distribution map of each area of the disposal hole in the 16th year is also consistent with each other. In the parallel verification of the thermal spacing of multiple treatment holes, the maximum temperature nomogram calculated in this paper is very close to the results reported in SKB R09-04, and the difference between the two is almost less than 2 oC (the gap is less than 2%). In the local case analysis of thermal spacing, this paper analyzes the maximum temperature of the buffer material for different thermal spacing of treatment holes and compares it with the results of the Teclast report SNFD-AR2019-V2. Both calculated that the maximum temperature of the buffer material increases with the increase of the thermal spacing of the treatment holes. There is a downward trend, and the highest temperature difference is about 2 oC. In addition, in the heat transfer analysis of the thermal spacing of the treatment holes, this study also conducted a sensitivity analysis of the thermal conductivity of different parent rocks and buffer materials to the thermal spacing of the treatment holes. These analysis results in addition to prove the rationality of the heat transfer model of the treatment holes established in this paper It can also provide an important reference for Taipower’s in-depth disposal research.
摘要...........................................i
ABSTRACT......................................ii
致謝..........................................iv
目錄...........................................v
表目錄.......................................vii
圖目錄......................................viii
第一章 緒論....................................1
1.1研究動機與目的..............................1
1.2文獻回顧....................................3
1.3研究方法....................................4
1.4論文架構....................................5
第二章高放處置孔介紹............................6
2.1高放單一處置孔介紹...........................6
2.2高放多處置孔介紹.............................8
第三章熱傳模式與高放處置孔CFD模式介紹............10
3.1熱傳方程式介紹..............................10
3.2CFD程式介紹.................................11
3.3單一處置孔CFD模式介紹........................18
3.4多處置孔CFD模式介紹..........................20
3.5格點模式誤差分析.............................23
第四章高放處置孔平行驗證與本土案例分析............26
4.1單一處置孔平行驗證............................26
4.2單一處置孔本土案例分析........................31
4.3多處置孔平行驗證..............................44
4.4多處置孔本土案例分析...........................52
第五章 結論......................................62
參考文獻.........................................65

1. 黃偉慶,”用過核子燃料深層地質處置場近場緩衝材料耦合效應研析期末報告”,2014。
2. 台電公司,”我國用過核子燃料最終處置技術可行性評估報告”,SNFD-2017,2017。.
3. 台電公司,”用過核子燃料最終處置計畫候選場址評選與核定階段108年度成果報告(修訂二版)”,SNFD-AR2019-V2,2019。
4. SKB Technical Report 99-41, “Coupled thermal-hydro-Mechanical calculations of the water saturation phase of a KBS-3 deposition hole, Svensk Kärnbränslehantering AB” Swedish Nuclear Fuel and Waste Management Co., 1999.
5. SKB Report R-09-04, “Strategy for thermal dimensioning of the final repository for spent nuclear fuel, Svensk Kärnbränslehantering AB” Swedish Nuclear Fuel and Waste Management Co., 2009.
6. ANSYS Fluent, “Fluent User’s Guide”, ANSYS Inc., 2018.
7. ASME V&V20-2009, “Standard for verification and validation in computational fluid dynamics and heat transfer”, Nov. 30, 2009.
8. SKB IPR-07-01, “Thermal 3D modelling of Äspö Prototype Repository, Svensk Kärnbränslehantering AB”, Swedish Nuclear Fuel and Waste Management Co., 2007.
9. P. J. Roache, “Verification and validation in computational science and engineering, Hermosa Publishers”, Albuquerque, 1998.
10. SKB TR 94-29, “Heat conductivity of buffer materials, Svensk Kärnbränslehantering AB”, Swedish Nuclear Fuel and Waste Management Co., 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *