帳號:guest(18.188.178.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宛芝
作者(外文):Tsai, Wan-Chih
論文名稱(中文):核醫藥物與透視攝影作業操作人員的劑量評估:手部/眼球水晶體等價劑量與全身有效劑量的關係
論文名稱(外文):Dose assessment for workers during nuclear medicine and fluoroscopy procedures: relation between hand/eye lens equivalent doses and whole-body effective dose
指導教授(中文):許榮鈞
指導教授(外文):Sheu, Rong-Jiun
口試委員(中文):蔡惠予
薛燕婉
口試委員(外文):Tsai, Hui-Yu
Liu, Hsueh Yen-Wan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:108013509
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:擬人假體核子醫學透視攝影劑量計算
外文關鍵詞:Virtual anthropomorphic phantomNuclear medicineFluoroscopyComputational dosimetry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究將探討處理核醫藥物射源與執行透視攝影之操作人員所接受到的劑量,除了各別部位的劑量量化結果,也特別著重建立手部/眼球水晶體等價劑量與全身有效劑量的關係。兩個實務案例應用分別為:(1)放射師以手近距離處理核醫藥物的情節,探討在不同曝露條件下工作人員所接受之手部劑量、眼球水晶體劑量與有效劑量;(2) 醫療人員執行螢光透視攝影的情節,探討在多種照射情節下的手部劑量、眼球水晶體劑量與有效劑量,除上DAP(Dose area product)標準化後的結果,有利於臨床工作人員在僅有全身有效劑量的情況,藉由此比值進行換算得到重要器官劑量,並幫助建立嚴謹的劑量評估技術與防護參考。
從案例一可知,將MCNP所模擬之劑量轉換因子與Γ常數之簡易計算結果相比,MCNP模擬結果在近距離時更能夠代表人體劑量,且使用針筒屏蔽與L型鉛屏蔽皆能有效降低全身有效劑量。使用模擬所得到的劑量率,也能夠方便臨床醫療人員利用,將數值乘上射源活度與作業時間得到年有效劑量,以評估自身輻射風險。Dlens/E在不同屏蔽情況時,於不同射源能量時有相似的比值,此數值能方便工作人員在只有計讀到有效劑量的情況推估水晶體劑量。而在案例二,模擬出多種照射情節下手部劑量、眼球水晶體劑量、有效劑量與DAP(Dose area product)的比值,有利於臨床工作人員經由已知的機器輸出因子進行劑量換算。以上數值可在不同射束能量、射源位置、屏蔽情形時,觀察出各變因所造成的劑量影響與能量分布,以及重要器官等價劑量與有效劑量的比值變化。綜上所述,我們可藉由PIMAL假體之模擬案例,計算出不同射源與屏蔽情況下的劑量轉換因子,供臨床放射師或有興趣研究者估算工作人員各部位可能所接受到的劑量範圍,此數據有利於相關工作人員之輻射風險評估。
In this study, the PIMAL (Phantom wIth Moving Arms and Legs) software was used to establish human models, which were conformed to the clinical exposure situation. It can be used with MCNP to perform high-fidelity radiation transport calculations for estimating hand dose, lens dose and whole-body effective dose. We examined radiation exposure to (1) the radiologist handling nuclear medicine by hands and (2) the staff operating the fluoroscopy procedures.
In case one, we calculate the dose conversion factor under different radiation sources and shielding scenarios, which is similar to the use of Γ constant. The dose simulation of MCNP is more representative of the human dose when handling nuclear medicine in a close distance than the calculated result of the Γ constant. So that clinical radiologists can easily estimate the hand dose, lens dose and effective dose by multiplying the activitity and operating time. In case two, we calculated the dose conversion factor divided by DAP (Dose area prodect) under a variety of irradiation scenarios. The E/DAP, Dlens/DAP, and Dhand/DAP of the medical staff under different exposure scenarios are of the same order comparing with the other researches. The result is helpful for clinical staff to obtain the actual doses through the measured DAP. The relationships and trends of the E/DAP, Dlens/DAP, and Dhand/DAP were also discussed. Although considering the complexity of clinical practice, there may be some differences between the dose simulation and the actual dose received by medical staff. The results and experience obtained from this study will be useful for improving dose assessment and radiation protection of medical staff.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 劑量規範 2
1.2.2 放射師以手近距離處理核醫藥物情節 6
1.2.3 醫療人員執行螢光透視攝影情節 8
1.3 研究目的與動機 11
第二章 研究材料與方法 13
2.1 PIMAL擬人假體介紹 13
2.2 MCNP程式介紹 15
2.3 模擬情節模型介紹 16
2.3.1 放射師以手近距離處理核醫藥物情節 16
2.3.1.1 射源定義 16
2.3.1.2 幾何與材質 19
2.3.1.3 結果計數 22
2.3.2 醫療人員執行螢光透視攝影情節 23
2.3.2.1 射源定義 23
2.3.2.2 幾何與材質 24
2.3.2.3 結果計數 29
第三章 結果與討論 31
3.1 放射師以手近距離處理核醫藥物情節 31
3.1.1 模擬結果與簡化法之比較 32
3.1.2 不同射源所造成手部整體與手部皮膚劑量之比較 36
3.1.3 不同射源、屏蔽組合的劑量率分析與應用 37
3.1.4 重要器官等價劑量與有效劑量比值 39
3.2 醫療人員執行螢光透視攝影情節 41
3.2.1 輻射場特性 41
3.2.1.1 射源與游離腔光子能量分布 41
3.2.1.2 無防護時手部與眼球水晶體光子能量分布 43
3.2.2 模擬結果與文獻蒐集比較 47
3.2.3 不同射束能量、射源位置、防護組合的劑量率分析 55
3.2.3.1 Dlens, Dhand, E/DAP與管電壓之關聯性 57
3.2.3.2 Dlens, Dhand, E/DAP與射源位置之關聯性 58
3.2.3.3 Dlens, Dhand, E/DAP於不同防護情境下之劑量衰減 59
3.2.4 重要器官等價劑量與有效劑量比值 62
第四章 結論與未來工作 66
4.1 案例一:近距離處理核醫藥物射源情節 66
4.2 案例二:醫療人員執行螢光透視攝影 67
4.3 未來工作 69
參考文獻 70
附錄 I 73
I.1螢光透視攝影案例之個人防護用具規格討論 73
I.1.1 改善鉛眼鏡防護效果:增加側邊防護 73
I.1.2 不同厚度之個人防護效果評估 74
I.2 螢光透視攝影案例中模型參數變化之敏感度分析 75
I.2.1 照野大小與射源距離對醫療人員E/DAP之影響 76
I.2.2 造影室房間尺寸對醫療人員E/DAP之影響 78
I.2.3 影像接收裝置材質對醫療人員E/DAP之影響 79
I.2.4 射束發散角度對醫療人員E/DAP之影響 80
附錄 II 83
II.1 PIMAL程式輸出檔新增之模型程式碼 83
II.1.1 模型新增材質 83
II.1.2 放射師以手近距離處理核醫藥物的情節新增物件程式碼 86
II.1.3 醫療人員執行螢光透視攝影情節新增物件程式碼 88
[1] https://ramp.nrc-gateway.gov/
[2] H. Akkurt, K.F. Eckerman, “Development of PIMAL: Mathematical phantom with moving arms and legs”, Oak Ridge National Laboratory, ORNL/TM-2007/14, 2007.
[3] ICRP Publication 60. Recommendations of the International Comission on Radioligical Protevtion. Annals of the ICRP, vol.21, no.1-3, 1991.
[4] ICRP Publication 103. Recommendations of the International Comission on Radioligical Protevtion. Annals of the ICRP, vol.129, no.2-4, 2007.
[5] T. Mura, Japan Atomic Energy Agency, “A. Endo on behalf of ICRU Report Committee 26 on Operational Radiation Protection Quantities for External Radiation. Operational quantities and new approach by ICRU”, Ann ICRP. 2016 Jun;45(1 Suppl):178-87.
[6] F. Hasford, J. Owusu-Banahene, J. K. Amoako, F. Otoo, E. O. Darko, G. Emi-Reynolds, J. Yeboah, C. C. Arwui, S. Adu, "Assessment of annual whole-body occupational radiation exposure in medical practice in Ghana (2000-09)", Radiat Prot Dosimetry,149(4):431-7, 2012.
[7] https://line.17qq.com/articles/wwsceewax.html
[8] G. S. Pant, S. K. Sharma, G. K. Rath, "Finger doses for staff handling radiopharmaceuticals in nuclear medicine", J Nucl Med Technol, 34(3):169-73, 2006.
[9] S. H. A. ALLehyani, R. A. Hassan, "Measurements of Fingers Doses to Nuclear Medicine Staff",International Journal of Science and Research (IJSR), Volume 5 Issue 6, 1480 - 1483, 2016.
[10] G. J. Kemerink, F. Vanhavere, I. Barth, F. M. Mottaghy, "Extremity doses of nuclear medicine personnel: a concern", Eur J Nucl Med Mol Imaging, 39(3):529-532, 2012.
[11] E.C. Lin, "Radiation risk from medical imaging", Mayo Clin Proc, 85(12):1142-6, 2010.
[12] F. A. Mettler Jr, M. Mahesh, M. Bhargavan-Chatfield, C. E. Chambers, J. G. Elee, D. P. Frush, D. L. Miller, H. D. Royal, M. T. Milano, D. C. Spelic, A. J. Ansari, W. E. Bolch, G. M. Guebert, R. H. Sherrier, J. M. Smith, R. J. Vetter, "Radiologic and Nuclear Medicine Procedures in the United States: Procedure Volume and Effective Dose for the Period 2006–2016", Radiology, Vol. 295, No. 2, 418-427, 2020.
[13] M. H. Nassef, A. A. Kinsara, "Occupational Radiation Dose for Medical Workers at a University Hospital", Journal of Taibah University for Science, Volume 11, Issue 6, Pages 1259-1266, 2017.
[14] F. Leyton, L. Canevaro, A. Dourado, H. Castello, A. Bacelar, M. T. Navarro, E. Vañó, M. D. S. Nogueira, W. O. Batista, T. A. C. Furquim, R. Lykawka, C. S. Melo, F. Borges, B. Rodrigues, "Radiation Risks and the Importance of Radiological Protection in Interventional Cardiology:A Systematic Review", Rev Bras Cardiol Invasiva, 22(1):87-98, 2014.
[15] W. C. Chan, T. P. Chan, T. F. Cheung, K. Mo, K. L. Fung, "Simulation, visualization and dosimetric validation of scatter radiation distribution under fluoroscopy settings", Journal of Biomedical Engineering and Informatics, Vol 1, No 1, 93-102, 2015.
[16] W. S. Santos, L. P. Neves, A. P. Perini, W. Belinato, L. V. E. Caldas, A. B. Carvalho Jr, A. F. Maia, “Exposures in interventional radiology using Monte Carlo simulation coupled with virtual anthropomorphic phantom”, Physica Medica, 31(8):929-933, 2015.
[17] https://www.raysafe.com/sites/default/files/2020-04/application_note_-_kap_dap_with_raysafe_instruments_2020-03-24.pdf
[18] Y. Yoon, H. Kim, M. Park, J. Kim, D. Seo, I. Choi, H. Jeong, J. Kim, “Monte Carlo Simulation-based Feasibility Study Of a Dose–area Product Meter Built Into A Collimator for Diagnostic X-ray”, Radiat Prot Dosimetry, 162(3):421-6, 2014.
[19] W. S. Snyder, M. R. Ford, G. G. Warner, “Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom”, MIRD Pamphlet No.5, revised, Society of Nuclear Medicine, New York N. Y, 1978.
[20] “Monte Carlo N–Particle Transport Code System Including MCNP5-1.60 and MCNPX-2.7.0 and Data Libraries.”, Los Alamos National Laboratory, 2010.
[21] “MCNP6 User's Manual”, Los Alamos National Laboratory, LA-CP-13-00634, 2013.
[22] J. Punnoose, J. Xu, A. Sisniega, W. Zbijewski, J. H. Siewerdsen, “Technical Note: spektr 3.0—A computational tool for x-ray spectrum modeling and analysis”, Med. Phys., 43(8) p4711-4717, 2016.
[23] A. M. Hernandez, J. M. Boone,” Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20 kV to 640 kV”, Medical Physics, 042101, 2014.
[24] J. Malone, G. O'Reilly, U. O'Connor, A. Gallagher, N. Sheahan, S. Fennell, D. Howett, T. Ryan, C. Hone, T. Kenny, N. Cunningham, “The Design of Diagnostic Medical Facilities where Ionising Radiation is used”, Radiological Protection Institute of Ireland, 2009.
[25] A. M. Sailer, L. Vergoossen, L. Paulis, W. H. V. Zwam, M. Das, J. E. Wildberger, C. R. L. P. N. Jeukens, “Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring”, Cardiovasc Intervent Radiol., 40(11): 1756–1762, 2017.
[26] M. K. Maaño, A. A. Morales, D. V. Encarnation III, “Estimation of Occupational Radiation Dose Levels of Interventional Cardiologists at the Philippine Heart Center”, 2015.
[27] A. M. Sailer, L. Paulis, L. Vergoossen, J. E. Wildberger, C. R. L. P. N. Jeukens, “Optimizing Staff Dose in Fluoroscopy Guided Interventions by Comparing Clinical Data with Phantom Experiments”, J Vasc Interv Radiol., 30(5):701-708.e1., 2019.
[28] W. S. Santos, W. Belinato, A. P. Perini, L. V. E. Caldas, D. C. Galeano, C. J. Santos, L. P. Neves, “Occupational exposures during abdominal fluoroscopically guided interventional procedures for different patient sizes - A Monte Carlo approach”, Phys Med., Jan;45:35-43., 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *