|
1. Ophir, J., et al., Elastography - a Quantitative Method for Imaging the Elasticity of Biological Tissues. Ultrasonic Imaging, 1991. 13(2): p. 111-134. 2. Sarvazyan, A.P., et al., Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound in medicine & biology, 1998. 24(9): p. 1419-1435. 3. Castéra, L., et al., Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology, 2005. 128(2): p. 343-350. 4. Tanter, M., et al., Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound in medicine & biology, 2008. 34(9): p. 1373-1386. 5. Duck, F., Physical properties of tissues: a comprehensive reference book. 2013: Academic press. 6. Greenleaf, J.F., M. Fatemi, and M. Insana, Selected methods for imaging elastic properties of biological tissues. Annual review of biomedical engineering, 2003. 5(1): p. 57-78. 7. Frulio, N. and H. Trillaud, Ultrasound elastography in liver. Diagnostic and interventional imaging, 2013. 94(5): p. 515-534. 8. Shiina, T., et al., WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol, 2015. 41(5): p. 1126-47. 9. Cosgrove, D., et al., EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in der Medizin-European Journal of Ultrasound, 2013. 34(03): p. 238-253. 10. Caenen, A., et al., Assessing cardiac stiffness using ultrasound shear wave elastography. Physics in Medicine & Biology, 2022. 67(2): p. 02TR01. 11. Ferraioli, G., et al., WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound in medicine & biology, 2015. 41(5): p. 1161-1179. 12. McDonagh, T.A., et al., 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 2021. 42(36): p. 3599-3726. 13. Villemain, O., et al., Myocardial Stiffness Evaluation Using Noninvasive Shear Wave Imaging in Healthy and Hypertrophic Cardiomyopathic Adults. Jacc-Cardiovascular Imaging, 2019. 12(7): p. 1135-1145. 14. Dietrich, C.F., et al., EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall in der Medizin-European Journal of Ultrasound, 2017. 38(04): p. e16-e47. 15. Sigrist, R.M.S., et al., Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics, 2017. 7(5): p. 1303-1329. 16. Ophir, J., et al., Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1999. 213(3): p. 203-233. 17. Palmeri, M.L. and K.R. Nightingale, What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? Imaging in medicine, 2011. 3(4): p. 433. 18. D’Onofrio, M., et al., Acoustic radiation force impulse of the liver. World journal of gastroenterology: WJG, 2013. 19(30): p. 4841. 19. Bercoff, J., M. Tanter, and M. Fink, Supersonic shear imaging: A new technique for soft tissue elasticity mapping. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004. 51(4): p. 396-409. 20. Sandrin, L., et al., Time-resolved pulsed elastography with ultrafast ultrasonic imaging. Ultrasonic imaging, 1999. 21(4): p. 259-272. 21. Sandrin, L., et al., Shear modulus imaging with 2-D transient elastography. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2002. 49(4): p. 426-435. 22. Muller, M., et al., Quantitative Viscoelasticity Mapping of Human Liver Using Supersonic Shear Imaging: Preliminary. Vivo. 23. Tian, J., et al., Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses. Scientific Reports, 2017. 7(1): p. 41216. 24. Aleef, T.A., et al., Multi-Frequency 3D Shear Wave Absolute Vibro-Elastography (S-WAVE) System for the Prostate. IEEE Transactions on Medical Imaging, 2023. 25. Lee, S.H., et al., Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography. European radiology, 2013. 23: p. 1015-1026. 26. Fenster, A. and D.B. Downey, 3-D ultrasound imaging: A review. IEEE Engineering in Medicine and Biology magazine, 1996. 15(6): p. 41-51. 27. Prager, R.W., et al., Three-dimensional ultrasound imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010. 224(2): p. 193-223. 28. Provost, J., et al., 3D ultrafast ultrasound imaging in vivo. Physics in Medicine and Biology, 2014. 59(19): p. L1-L13. 29. Gennisson, J.-l., et al., 4-D ultrafast shear-wave imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2015. 62(6): p. 1059-1065. 30. Dong, Z., et al., Three-dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array. BME Frontiers, 2022. 2022. 31. Zeng, Q., et al., Three-dimensional multi-frequency shear wave absolute vibro-elastography (3D S-WAVE) with a matrix array transducer: implementation and preliminary in vivo study of the liver. IEEE Transactions on Medical Imaging, 2020. 40(2): p. 648-660. 32. Zeng, Q., et al. 3D liver shear wave absolute vibro-elastography with an xmatrix array-a healthy volunteer study. in 2018 IEEE International Ultrasonics Symposium (IUS). 2018. IEEE. 33. Aleef, T.A., et al., Quasi-real time multi-frequency 3d shear wave absolute vibro-elastography (s-wave) system for prostate. arXiv preprint arXiv:2205.04038, 2022. 34. Shao, Y., et al., Breast cancer detection using multimodal time series features from ultrasound shear wave absolute vibro-elastography. IEEE Journal of Biomedical and Health Informatics, 2021. 26(2): p. 704-714. 35. Hong, Z., J. Zhang, and B.W. Drinkwater, Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Physical review letters, 2015. 114(21): p. 214301. 36. Lo, W.C., et al., Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proceedings of the National Academy of Sciences of the United States of America, 2021. 118(4). 37. Kang, S.T. and C.K. Yeh, Potential-Well Model in Acoustic Tweezers. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010. 57(6): p. 1451-1459. 38. Lo, W.-C., et al., 3-D ultrafast ultrasound imaging of microbubbles trapped using an acoustic vortex. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021. 68(12): p. 3507-3514. 39. Gosse, C. and V. Croquette, Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophysical Journal, 2002. 82(6): p. 3314-3329. 40. Guo, S.F., et al., Reduced clot debris size using standing waves formed via high intensity focused ultrasound. Applied Physics Letters, 2017. 111(12). 41. Ghanem, M.A., et al., Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of Sciences of the United States of America, 2020. 117(29): p. 16848-16855. 42. Wu, P.Y., et al., Focused Acoustic Vortex-Regulated Composite Nanodroplets Combined with Checkpoint Blockade for High-Performance Tumor Synergistic Therapy. Acs Applied Materials & Interfaces, 2022. 14(27): p. 30466-30479. 43. Fabrice Prieur, S.C., Simulation of shear wave elastography imaging using the toolbox “k-Wave”. Acoustical Society of America, 2016. 44. Prieur, F. and O.A. Sapozhnikov, Modeling of the acoustic radiation force in elastography. The Journal of the Acoustical Society of America, 2017. 142(2): p. 947-961. 45. Treeby, B.E., et al., Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using ak-space pseudospectral method. The Journal of the Acoustical Society of America, 2012. 131(6): p. 4324-4336. 46. Gennisson, J.L. and G. Cloutier, Sol-gel transition in agar-gelatin mixtures studied with transient elastography. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2006. 53(4): p. 716-723. 47. Pinton, G.F., J.J. Dahl, and G.E. Trahey, Rapid tracking of small displacements with ultrasound. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006. 53(6): p. 1103-1117. 48. Yeh, C.-L., et al., Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2015. 62(7): p. 1295-1307. 49. Kasai, C., et al., Real-Time Two-Dimensional Blood Flow Imaging Using an Autocorrelation Technique. IEEE Transactions on Sonics and Ultrasonics, 1985. 32(3): p. 458-464. 50. Deffieux, T., et al., On the Effects of Reflected Waves in Transient Shear Wave Elastography. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011. 58(10): p. 2032-2035. 51. Song, P., et al., Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE transactions on medical imaging, 2012. 31(9): p. 1821-1832. 52. Feng, F., et al., Shear Wave Elasticity Imaging Using Nondiffractive Bessel Apodized Acoustic Radiation Force. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2021. 68(12): p. 3528-3539. 53. Ouared, A., E. Montagnon, and G. Cloutier, Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts. Physics in Medicine and Biology, 2015. 60(20): p. 8161-8185. 54. González-Mateo, E., N. Jiménez, and F. Camarena. Quasi-omnidirectional shear wave generation using acoustic vortices for elastography. in 2022 IEEE International Ultrasonics Symposium (IUS). 2022. IEEE. 55. Jiménez, N., J.M. Benlloch, and F. Camarena. A new elastographic technique using acoustic vortices. in 2020 IEEE International Ultrasonics Symposium (IUS). 2020. IEEE. |