帳號:guest(18.191.239.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):德加納
作者(外文):Naresh Kumar, Dega
論文名稱(中文):有機-無機結構奈米材料應用於診斷慢性疾病中生理與氧化壓力的生物標記物
論文名稱(外文):Integrated Organic-Inorganic Nanostructured Materials for Diagnosis of Physiological and Oxidative Stress Biomarkers in Chronic Diseases
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):黃郁棻
王子威
劉耕谷
張淑閔
林芳新
口試委員(外文):Huang, Yu-Fen
Wang, Tzu-Wei
Liu, Keng-Ku
Chang, Sue-min
Lin, Fang-Hsin
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012892
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:154
中文關鍵詞:Glutathione (GSH)Bovine serum albumin (BSA)Manganese phosphate nano flowers (MnPNF)NanozymesAdrenaline (ADR)Gold nano particles (AuNPs)Graphitic carbon nitride quantum dots (CNQDs)Fluorometric assayC-reactive protein (CRP)MoS2Electrochemical impedance spectroscopy (EIS)
外文關鍵詞:穀胱甘肽 (GSH)牛血清白蛋白 (BSA)磷酸錳納米花 (MnPNF)奈米酶、腎上腺素 (ADR)金奈米顆粒 (AuNPs)石墨氮化碳量子點 (CNQDs)螢光測定C-反應蛋白 (CRP)二硫化鉬(MoS2)電化學阻抗譜
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
慢性疾病如心血管疾病、糖尿病、慢性呼吸系統疾病、和神經退化性疾病等由於持續時間長,是全球發病率和死亡率的主要原因之一。因此早期診斷和監測體內生理標誌物質包括穀胱甘肽(GSH)、腎上腺素、和 C-型反應蛋白質 (CRP) 等相當重要。而結合有機和無機奈米材料來開發具成本效益的奈米酶感測技術,對提昇低濃度生理標誌物的早期診斷監測有其必要性。因此本研究的主要目的在於利用開發有機-無機奈米材料複合物,藉由其本身優異的光學與電化學特性,來進行生物體內標誌物包括GSH、腎上腺素、和 CRP的快速檢測分析,在有機奈米材料部份,本研究選用石墨烯量子點 (GQDs)及石墨化碳化氮量子點 (CNQDs)作為感測元件,在無機物部份,則選擇磷酸錳、金奈米顆粒、及二硫化鉬作為奈米酶,同時進行不同的組合,以評估複合材料的分析感測能力。
與大多數使用水熱和複雜程序的研究不同,本研究開發了一種簡單的室溫方法來製造 Mn3(PO4)2·3H2O (MnPNF) 奈米酶在進行GSH的快速檢測分析,與天然 HRP 相比,MnPNF具有高比表面積和優異的催化活性,對 GSH 的檢測的相當靈敏且具高選擇性,在 PBS 和稀釋的人體血清中的檢測分析極限(LODs)分別為 20 和 26.6 nM。本研究同時也開發了一種新穎且具有成本效益的CNQD-Au奈米感測技術,用於檢測腎上腺素。當CNQD-Au感測元件修飾4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT)後,AHMT 可藉由氫鍵與 腎上腺素進行鏈結,導致從 CNQD 到 Au奈米顆粒的非輻射能量轉移,因此造成CNQD螢光強度的淬滅。所開發的CNQD-Au感測元件表現出 7 個數量級 (10 pM - 100 µM) 的寬動態範圍,而LODs在 PBS 中為 7 pM,在 10倍稀釋人體血清中為 35pM。另所開發的感測元件也具有相當優異的選擇性,在同時添加 26 種其他干擾的溶液中,CNQD-Au仍然清楚辨別腎上腺素,不受基質干擾。此外,通過水熱法合成了MoS2中空奈米管(MoS2 HT),配合Au及S, N-共摻雜GQDs,可形成MoS2@Au/S,N-GQD電化學感測元件,可用於 CRP 的電化學阻抗特異性檢測。由於 MoS2 HT 具有製造簡單、大比表面積、及優異電化學性能等特色,配合Au奈米顆粒 和 S,N-GQDs的電傳導特性,MoS2@Au/S、N-GQD 電化學感測元件對 CRP的 檢測表現出顯著的靈敏度和穩定性,其具有從 10 到 50 μg mL-1的寬線性檢測範圍,且在PBS 中的LOD可低至0.04 pg mL-1,在人體血清樣品中則為0.08 pg mL-1。 經由上述的研究成果,本研究明確顯示有機-無機複合材料可作為光學或電化學感測元件的新穎材料,來快速且靈敏地進行生理和氧化應答型生物標誌物的檢測分析,不僅具有簡單及低成本的特色,在慢性疾病的潛在醫學檢測中也提供一快速有效的工作,可適用於慢性疾病的早期診斷與預防。
Chronic diseases are long lasting conditions with persistence over an extended period, progress slowly, and are a leading cause of morbidity and mortality worldwide. Such as cardiovascular diseases, diabetes, cancer, respiratory diseases, kidney disease, and neurodegenerative diseases. Maintaining optimal levels of GSH to protect cells from oxidative stress, managing stress and reducing adrenaline levels to prevent exacerbation of chronic diseases, and monitoring CRP levels to predict the risk and manage the progression of chronic diseases are important strategies for the prevention and management of chronic diseases. To improve biosensor performance and mobility, researchers are combining cost-effective organic and inorganic nanomaterials, resulting in unique properties like improved mechanical strength, enhanced electrical/optical properties, and increased stability. The purpose of this thesis is to design, fabricate, and characterize integrated organic-inorganic nanosensors to analyze physiological chronic biomarkers. Bovine serum albumin (BSA) and Quantum dots (QDs) are widely used organic molecules in sensing applications, while inorganic materials like manganese (Mn) and gold nanoparticles (AuNPs) are employed due to their unique properties, particularly in colorimetric, electrochemical, and localized surface plasmon resonance (LSPR) sensing. Different combinations of inorganic and organic materials were fabricated to specific application and target analytes, and their sensing performance was evaluated.
Unlike most studies that use hydrothermal and complex procedures, we developed a simple room temperature method to fabricate Mn3(PO4)2·3H2O (MnPNF) nanozyme. The BSA can complex with Mn+2 to serve nucleation center to produce MnPNFs in PBS, which exhibits high specific surface area and superior catalytic activity compared to natural HRP. MnPNF exhibits oxidase-like activity through a redox reaction with 3,3', 5,5'-tetramethylbenzidine. However, the presence of GSH can reduce MnPNF to Mn2+ and inhibit its oxidase-like activity. The MnPNF also shows excellent sensitivity and selectivity for GSH detection, with low limits of detection of 20 and 26.6 nM in PBS and diluted human serum, respectively. In another study, we have developed a novel and cost-effective nanosensor for the detection of adrenaline. The sensor combines highly fluorescent g-C3N4 quantum dots (CNQDs) with surface plasmon resonance gold nanoparticles (AuNPs) in the presence of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) as the recognizer to link with ADR via hydrogen bonding, resulting in non-radiative energy transfer from CNQD to AuNP and quenching of fluorescence intensity upon addition of ADR. The sensing probe exhibited a wide dynamic range of 7 orders of magnitude (10 pM - 100 µM) and a low limit of detection of 7 pM in PBS and 35pM in 10% human serum, while demonstrating superior selectivity over 26 other interferences. Furthermore, hierarchical tubular MoS2 (MoS2 HT) were synthesized via a hydrothermal method and then functionalized with Au and S, N-GQDs to create a functional probe called MoS2@Au/S, N-GQD. This probe was used for electrochemical impedimetric specific detection of C-reactive protein (CRP). The large surface area and excellent electrochemical properties of MoS2 HT, combined with the functionalization, allowed for remarkable sensitivity and stability in CRP detection. The linear detection range was from 10 pg mL-1 to 50 μg mL-1, with a low detection limit of 0.04 pg mL-1 in PBS and 0.08 pg mL-1 in human serum samples. The Es||MoS2@Au/S, N-GQD impedimetric immunosensor showed high efficiency and label-free performance for CRP detection, making it suitable for the early-stage diagnosis of acute inflammatory diseases.
Overall, the findings from this study unequivocally highlight the viability and potential of utilizing integrated organic-inorganic nanosensors as promising materials for the detection of physiological and oxidative stress biomarkers, paving the way for potential diagnostic of chronic diseases.
中文摘要 i
Abstract iv
Acknowledgements vii
List of Figures xv
List of Tables xx
CHAPTER 1. Introduction 1
1.1 Introduction 1
1.2 Nanomaterials in biosensors 1
1.3 Integrated organic-inorganic nanomaterials for biosensing 2
1.4 Chronic diseases 5
1.5 Motivation 7
1.6 Objectives of research 9
1.7 Thesis organization 10
CHAPTER 2. Literature review 12
2.1 Sensors 13
2.2 Biosensors 13
2.2.1 Fundamentals of biosensors 14
2.2.2 Classification of biosensors 16
2.2.3 Optical biosensors 17
2.2.4 Electrochemical impedance spectroscopy (EIS) 21
2.3 Sensor Performance Characteristics 21
2.3.1 Response and Sensitivity 21
2.3.2 Selectivity 22
2.3.3 Accuracy 22
2.3.4 Precision 22
2.3.5 Response time 22
2.3.6 Stability 22
2.3.7 Limit of detection (LOD) 22
2.3.8 Dynamic Range 23
2.4 Chronic disease 24
2.4.1 GSH: 25
2.4.2 Adrenaline: 26
2.4.3 CRP: 26
2.4.4 Nanomaterials for the detection of chronic disease 26
2.5 Integrated organic and inorganic nanostructured materials for biosensors 28
2.6 Nanozymes . 28
2.6.1 Nanozymes in biosensing applications 30
2.6.2 Preparation of Mn-based nanozymes 32
2.6.3 Integration of protein-inorganic self-assembled hybrid nanoflowers for biosensing 34
2.7 Quantum dots 37
2.7.1 Carbon based Quantum dots 38
2.7.2 g-CNQDs 39
2.8 Au nanoparticles 42
2.8.1 Synthesis of gold nanoparticles 43
2.8.2 Localized surface plasmon resonance 44
2.9 Integration of fluorescent QDs and plasmonic metal nanoparticles for biosensing application 45
2.9.1 Functionalization of QDs and AuNPs for biosensing applications 46
2.10 MoS2 for biosensing application 47
CHAPTER 3. Experimental section 51
3.1 Materials: 51
3.2 Methodologies 51
3.2.1 Synthesis of BSA stabilized MnPNF 51
3.2.2 Synthesis of CNQDs 52
3.2.3 Synthesis of different size of gold nanoparticles 53
3.2.4 Functionalization of CNQDs and AuNPs with AHMT 54
3.2.5 Synthesis of MoS2 hierarchical tubular 54
3.2.6 Synthesis of S, N-GQDs 55
3.2.7 Preparation of Au decorated MoS2 HT 56
3.2.8 Attachment of S, N-GQDs on Au decorated MoS2 HT 56
3.3 GSH detection methods 57
3.3.1 Detection of GSH 57
3.3.2 Detection of GSH in human serum samples 58
3.4 ADR detection methods 58
3.4.1 Detection of ADR 58
3.4.2 Detection of ADR in human serum samples 59
3.5 CRP detection methods 59
3.5.1 Detection of CRP by MoS2@Au/S, N-GQDs/CRP-Ab immunosensor 59
3.5.2 Detection of CRP in real samples 60
3.6 Instruments used for characterization 60
3.6.1 Transmission electron microscopy (TEM) 60
3.6.2 Scanning electron microscopy 60
3.6.3 X-ray diffraction (XRD) 61
3.6.4 Thermogravimetric analysis 61
3.6.5 Fluorescence 62
3.6.6 UV-visible spectrometer (UV-vis) 62
3.6.7 Electrochemical measurements 62
3.6.8 Detection of Glutathione by UV-Visible spectroscopy 62
3.6.9 Fluorometric sensing of ADR using the AHMT functionalized CNQD-AuNP probe 63
CHAPTER 4. Application of Integrated Organic-Inorganic Nanomaterials in Optical Biosensor 64
4.1 Detection of GSH using BSA-Mn3(PO4)2·3H2O nanoflower (MnPNF) 64
4.1.1 Introduction 64
4.1.2 Characterization of MnPNF 67
4.1.3 Evolution of peroxidase-like activity of MnPNF 70
4.1.4 Optimization of GSH detection 73
4.1.5 Steady-state kinetics studies of MnPNF nanoenzyme 74
4.1.6 Detection of GSH 77
4.1.7 Selectivity of the MnPNF-TMB probe 80
4.1.8 GSH detection in human serum samples 81
4.2 Detection of Adrenaline using AHMT functionalized CNQDs and AuNPs 82
4.2.1 Introduction 82
4.2.2 Structural characteristics of CNQDs and AuNPs 86
4.2.3 Characterizations of AHMT functionalized CNQDs and AuNPs nanocomposites 88
4.2.4 Optical property of CNQDs 90
4.2.5 Effect of AuNPs size on sensing performance 94
4.2.6 Mechanism of proposed sensor for ADR detection 94
4.2.7 Detection of ADR 95
4.2.8 Detection of ADR in human serum sample 97
4.2.9 Selectivity and stability of AHMT-conjugated CNQD-AuNPs sensor 100
CHAPTER 5. Application of MoS2@Au /S, NGQDs based electrochemicalbiosensor 103
5.1 INTRODUCTION 103
5.2 Structural characterization of S, N-GQD decorated MoS2@Au immunosensor 107
5.3 Electrochemical characterization . 112
5.4 Optimization of electrochemical performance of MoS2@Au/S, N-GQDs immunosensor 114
5.5 Detection of CRP by S, N-GQD decorated MoS2@Au Immunosensor 116
5.6 Selectivity and stability of the Immunosensor 119
5.7 Detection of CRP in human serum samples 121
CHAPTER 6. Conclusion and Future Perspective 123
6.1 Conclusion 123
6.2 Outlook for Future Work 127
Publications and contributions
REFERENCES
[1] M. Mascini, S. Tombelli, Biosensors for biomarkers in medical diagnostics, Biomarkers, 13(2008) 637-57.
[2] P. Mehrotra, Biosensors and their applications–A review, Journal of oral biology and craniofacial research, 6(2016) 153-9.
[3] S.D. Bolboacă, Medical diagnostic tests: a review of test anatomy, phases, and statistical treatment of data, Computational and mathematical methods in medicine, 2019(2019).
[4] A. Haleem, M. Javaid, R.P. Singh, R. Suman, S. Rab, Biosensors applications in medical field: A brief review, Sensors International, 2(2021) 100100.
[5] S.K. Metkar, K. Girigoswami, Diagnostic biosensors in medicine–a review, Biocatalysis and agricultural biotechnology, 17(2019) 271-83.
[6] W. Wu, L. Wang, Y. Yang, W. Du, W. Ji, Z. Fang, et al., Optical flexible biosensors: From detection principles to biomedical applications, Biosensors and Bioelectronics, (2022) 114328.
[7] P.N. Sudha, K. Sangeetha, K. Vijayalakshmi, A. Barhoum, Nanomaterials history, classification, unique properties, production and market, Emerging applications of nanoparticles and architecture nanostructures, Elsevier2018, pp. 341-84.
[8] Y. Yang, Q. Huang, Z. Xiao, M. Liu, Y. Zhu, Q. Chen, et al., Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer, Materials Today Bio, (2022) 100218.
[9] S. Pandey, Advance nanomaterials for biosensors, MDPI2022, p. 219.
[10] V.A. Spirescu, C. Chircov, A.M. Grumezescu, B.Ș. Vasile, E. Andronescu, Inorganic nanoparticles and composite films for antimicrobial therapies, International Journal of Molecular Sciences, 22(2021) 4595.
[11] A. Samanta, Y. Zhou, S. Zou, H. Yan, Y. Liu, Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler, Nano letters, 14(2014) 5052-7.
[12] H. Abdolmohammad-Zadeh, Z. Azari, E. Pourbasheer, Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245(2021) 118924.
[13] K. Khalid, X. Tan, H.F. Mohd Zaid, Y. Tao, C. Lye Chew, D.-T. Chu, et al., Advanced in developmental organic and inorganic nanomaterial: A review, Bioengineered, 11(2020) 328-55.
[14] F.P. da Costa, E.P. Cipolatti, A. Furigo Junior, R. Oliveira Henriques, Nanoflowers: a new approach of enzyme immobilization, The Chemical Record, 22(2022) e202100293.
[15] S.J. Lee, H. Jang, D.N. Lee, Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review, Pharmaceutics, 14(2022) 1887.
[16] M. Perwez, S.Y. Lau, D. Hussain, S. Anboo, M. Arshad, P. Thakur, Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications, Colloids and Surfaces B: Biointerfaces, (2023) 113241.
[17] Z. Wang, T. Hu, R. Liang, M. Wei, Application of zero-dimensional nanomaterials in biosensing, Frontiers in chemistry, 8(2020) 320.
[18] A.B. Ganganboina, R.-A. Doong, Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen, Scientific Reports, 9(2019) 7214.
[19] A.D. Chowdhury, F. Nasrin, R. Gangopadhyay, A.B. Ganganboina, K. Takemura, I. Kozaki, et al., Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors, Biosensors and Bioelectronics, 170(2020) 112657.
[20] S.F. Cal, L.R.d. Sá, M.E. Glustak, M.B. Santiago, Resilience in chronic diseases: A systematic review, Cogent Psychology, 2(2015) 1024928.
[21] E. Anderson, J.L. Durstine, Physical activity, exercise, and chronic diseases: A brief review, Sports Medicine and Health Science, 1(2019) 3-10.
[22] G. Chen, I. Roy, C. Yang, P.N. Prasad, Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy, Chemical reviews, 116(2016) 2826-85.
[23] Q. Guo, X. Li, C. Shen, S. Zhang, H. Qi, T. Li, et al., Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters, Microchimica Acta, 182(2015) 1483-9.
[24] A.D. Chowdhury, A.B. Ganganboina, Y.-c. Tsai, H.-c. Chiu, R.-a. Doong, Multifunctional GQDs-Concanavalin A@ Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery, Analytica chimica acta, 1027(2018) 109-20.
[25] J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing, X. Liu, MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione, Biosensors and Bioelectronics, 90(2017) 69-74.
[26] S. Mohammadi, A. Salimi, Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO 2 nanosheets as a donor-acceptor pair, Microchimica Acta, 185(2018) 1-10.
[27] A.B. Ganganboina, R.-a. Doong, The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione, Sensors and Actuators B: Chemical, 273(2018) 1179-86.
[28] Y. Liu, H. Jin, W. Zou, R. Guo, Protein-mediated wool-ball-like copper sulfide as a multifunctional nanozyme for dual fluorescence “turn-on” sensors of cysteine and silver ions, Journal of Materials Chemistry B, 8(2020) 9075-83.
[29] L. Yang, N. Li, K. Wang, X. Hai, J. Liu, F. Dang, A novel peptide/Fe3O4@ SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen, Talanta, 179(2018) 531-7.
[30] X. Zheng, S. Wang, C. Xiong, G. Hu, In situ growth of 1T-MoS2 on liquid-exfoliated graphene: a unique graphene-like heterostructure for superior lithium storage, Carbon, 133(2018) 162-9.
[31] Y. Li, W. Ye, Y. Cui, B. Li, Y. Yang, G. Qian, A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid, Journal of Molecular Structure, 1209(2020) 127986.
[32] S.M. Majd, A. Salimi, Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Analytica chimica acta, 1000(2018) 273-82.
[33] B. Babamiri, R. Hallaj, A. Salimi, Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru (bpy) 32+ and PAMAM-CdTe@ CdS nanocomposite, Biosensors and Bioelectronics, 99(2018) 353-60.
[34] B. Kavosi, A. Navaee, A. Salimi, Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decorated of AuNPs-PAMAM dendrimer, Journal of Luminescence, 204(2018) 368-74.
[35] A.A. Ensafi, An introduction to sensors and biosensors, Electrochemical Biosensors, Elsevier2019, pp. 1-10.
[36] N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Essays Biochem.,“, Introduction to biosensors, 60(2016) 1-8.
[37] S. Singh, V. Kumar, D.S. Dhanjal, S. Datta, R. Prasad, J. Singh, Biological biosensors for monitoring and diagnosis, Microbial biotechnology: basic research and applications, (2020) 317-35.
[38] U. Chadha, P. Bhardwaj, R. Agarwal, P. Rawat, R. Agarwal, I. Gupta, et al., Recent progress and growth in biosensors technology: A critical review, Journal of Industrial and Engineering Chemistry, 109(2022) 21-51.
[39] C.I. Justino, A.C. Duarte, T.A. Rocha-Santos, Recent progress in biosensors for environmental monitoring: A review, Sensors, 17(2017) 2918.
[40] R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, N. Goddard, The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation, Biosensors and Bioelectronics, 8(1993) 347-54.
[41] A.J. Haes, R.P. Van Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society, 124(2002) 10596-604.
[42] P. Damborský, J. Švitel, J. Katrlík, Optical biosensors, Essays in Biochemistry, 60(2016) 91-100.
[43] M. Mehrvar, C. Bis, J.M. Scharer, M. Moo-Young, J.H. Luong, Fiber-optic biosensors-trends and advances, Analytical sciences, 16(2000) 677-92.
[44] Z. Gao, Z. Qiu, M. Lu, J. Shu, D. Tang, Hybridization chain reaction-based colorimetric aptasensor of adenosine 5′-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes, Biosensors and Bioelectronics, 89(2017) 1006-12.
[45] H. Aldewachi, T. Chalati, M. Woodroofe, N. Bricklebank, B. Sharrack, P. Gardiner, Gold nanoparticle-based colorimetric biosensors, Nanoscale, 10(2018) 18-33.
[46] K. Sato, K. Hosokawa, M. Maeda, Colorimetric biosensors based on DNA-nanoparticle conjugates, Analytical Sciences, 23(2007) 17-20.
[47] L. Xu, X. Shen, B. Li, C. Zhu, X. Zhou, G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine, Analytica chimica acta, 980(2017) 58-64.
[48] L. Xue, N. Jin, R. Guo, S. Wang, W. Qi, Y. Liu, et al., Microfluidic colorimetric biosensors based on MnO2 nanozymes and convergence–divergence spiral micromixers for rapid and sensitive detection of salmonella, ACS sensors, 6(2021) 2883-92.
[49] J. Gao, H. Liu, L. Pang, K. Guo, J. Li, Biocatalyst and colorimetric/fluorescent dual biosensors of H2O2 constructed via hemoglobin–Cu3 (PO4) 2 organic/inorganic hybrid nanoflowers, ACS applied materials & interfaces, 10(2018) 30441-50.
[50] K. Girigoswami, N. Akhtar, Nanobiosensors and fluorescence based biosensors: An overview, International Journal of Nano Dimension, 10(2019) 1-17.
[51] J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J. Birch, Fluorescence-based glucose sensors, Biosensors and Bioelectronics, 20(2005) 2555-65.
[52] H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications, Sensors, 21(2021) 6578.
[53] D.J. Barker, The origins of the developmental origins theory, Journal of internal medicine, 261(2007) 412-7.
[54] M. Park, Y.J. Heo, Biosensing technologies for chronic diseases, BioChip Journal, 15(2021) 1-13.
[55] B.D. Hristov, The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target, Cureus, 14(2022).
[56] J.K. Willcox, S.L. Ash, G.L. Catignani, Antioxidants and prevention of chronic disease, Critical reviews in food science and nutrition, 44(2004) 275-95.
[57] E. Zinellu, A. Zinellu, A.G. Fois, M.C. Pau, V. Scano, B. Piras, et al., Oxidative stress biomarkers in chronic obstructive pulmonary disease exacerbations: a systematic review, Antioxidants, 10(2021) 710.
[58] Z. Chen, Y. Hu, Q. Yang, C. Wan, Y. Tan, H. Ma, A highly sensitive colorimetric sensor for adrenaline detection based on organic molecules-functionalized gold nanoparticles, Sensors and Actuators B: Chemical, 207(2015) 277-80.
[59] Z. Liu, S. Liu, A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening, Analytical and bioanalytical chemistry, 410(2018) 4145-52.
[60] Y.-y. Luan, Y.-m. Yao, The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases, Frontiers in immunology, 9(2018) 1302.
[61] M.A. Bittoni, R. Wexler, C.K. Spees, S.K. Clinton, C.A. Taylor, Lack of private health insurance is associated with higher mortality from cancer and other chronic diseases, poor diet quality, and inflammatory biomarkers in the United States, Preventive medicine, 81(2015) 420-6.
[62] A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor, Journal of the American Chemical Society, 127(2005) 2264-71.
[63] V. Sharmila, M. Parthibavarman, Facile synthesis of MnPO4· H2O nanosheets/MWCNTs composite as electrode material for high-performance supercapacitors, Journal of Materials Science: Materials in Electronics, 30(2019) 19813-25.
[64] X. Yan, Y. Song, C. Zhu, J. Song, D. Du, X. Su, et al., Graphene quantum dot–MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “turn off–on” nanosensor for glutathione detection and intracellular imaging, ACS applied materials & interfaces, 8(2016) 21990-6.
[65] A.B. Ganganboina, R.-A. Doong, Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoembryonic antigen, Scientific reports, 9(2019) 1-11.
[66] D. Maiti, X. Tong, X. Mou, K. Yang, Carbon-based nanomaterials for biomedical applications: a recent study, Frontiers in pharmacology, 9(2019) 1401.
[67] C.S. Park, C. Lee, O.S. Kwon, Conducting polymer based nanobiosensors, Polymers, 8(2016) 249.
[68] X. Zhu, M. He, L. Xiao, H. Liu, M. Hu, S. Li, et al., Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@ MoS2/GC, Journal of Applied Electrochemistry, 52(2022) 979-87.
[69] L. Qin, G. Zeng, C. Lai, D. Huang, C. Zhang, P. Xu, et al., A visual application of gold nanoparticles: Simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition, Sensors and Actuators B: Chemical, 243(2017) 946-54.
[70] N.R. Nirala, M. Tiwari, R. Prakash, A nanoporous palladium (II) bridged coordination polymer acting as a peroxidase mimic in a method for visual detection of glucose in tear and saliva, Microchimica Acta, 185(2018) 1-10.
[71] I.E. Tothill, Biosensors for cancer markers diagnosis, Seminars in cell & developmental biology, Elsevier2009, pp. 55-62.
[72] E.L. Wong, K.Q. Vuong, E. Chow, Nanozymes for environmental pollutant monitoring and remediation, Sensors, 21(2021) 408.
[73] G. Tang, J. He, J. Liu, X. Yan, K. Fan, Nanozyme for tumor therapy: Surface modification matters, Exploration, Wiley Online Library2021, pp. 75-89.
[74] R. Yu, R. Wang, Z. Wang, Q. Zhu, Z. Dai, Applications of DNA-nanozyme-based sensors, Analyst, 146(2021) 1127-41.
[75] Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications, Chemical reviews, 119(2019) 4357-412.
[76] B. Chatterjee, S.J. Das, A. Anand, T.K. Sharma, Nanozymes and aptamer-based biosensing, Materials Science for Energy Technologies, 3(2020) 127-35.
[77] S. Zhang, H. Li, Z. Wang, J. Liu, H. Zhang, B. Wang, et al., A strongly coupled Au/Fe 3 O 4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg 2+ in aqueous solutions, Nanoscale, 7(2015) 8495-502.
[78] N. Singh, M.A. Savanur, S. Srivastava, P. D'Silva, G. Mugesh, A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system, Nanoscale, 11(2019) 3855-63.
[79] M. Tang, Z. Zhang, T. Sun, B. Li, Z. Wu, Manganese‐Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications, Advanced Healthcare Materials, 11(2022) 2201733.
[80] M. Chen, J. Shu, Z. Wang, C. Ren, Porous surface MnO 2 microspheres as oxidase mimetics for colorimetric detection of sulfite, Journal of Porous Materials, 24(2017) 973-7.
[81] N. Stasyuk, O. Smutok, O. Demkiv, T. Prokopiv, G. Gayda, M. Nisnevitch, et al., Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: A review, Sensors, 20(2020) 4509.
[82] J. Shen, A. Chen, Z. Cai, Z. Chen, R. Cao, Z. Liu, et al., Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration, Bioactive Materials, 12(2022) 153-68.
[83] Y. Gan, N. Hu, C. He, S. Zhou, J. Tu, T. Liang, et al., MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye, Biosensors and Bioelectronics, 130(2019) 254-61.
[84] Q.-Y. Cai, J. Li, J. Ge, L. Zhang, Y.-L. Hu, Z.-H. Li, et al., A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots–MnO2 nanocomposites, Biosensors and Bioelectronics, 72(2015) 31-6.
[85] Z. Zhang, Y. Zhang, L. He, Y. Yang, S. Liu, M. Wang, et al., A feasible synthesis of Mn3 (PO4) 2@ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst, Journal of Power Sources, 284(2015) 170-7.
[86] S.H. Lee, Y.J. Kim, J. Park, Shape evolution of ZnTe nanocrystals: nanoflowers, nanodots, and nanorods, Chemistry of Materials, 19(2007) 4670-5.
[87] J.B. Lee, J. Hong, D.K. Bonner, Z. Poon, P.T. Hammond, Self-assembled RNA interference microsponges for efficient siRNA delivery, Nature materials, 11(2012) 316-22.
[88] J. Ge, J. Lei, R.N. Zare, Protein–inorganic hybrid nanoflowers, Nature nanotechnology, 7(2012) 428-32.
[89] L. Zhang, Y. Ma, C. Wang, Z. Wang, X. Chen, M. Li, et al., Application of dual-enzyme nanoflower in the epoxidation of alkenes, Process biochemistry, 74(2018) 103-7.
[90] W.B. Rogers, W.M. Shih, V.N. Manoharan, Using DNA to program the self-assembly of colloidal nanoparticles and microparticles, Nature Reviews Materials, 1(2016) 1-14.
[91] X. Sun, H. Niu, J. Song, D. Jiang, J. Leng, W. Zhuang, et al., Preparation of a copper polyphosphate kinase hybrid nanoflower and its application in ADP regeneration from AMP, ACS omega, 5(2020) 9991-8.
[92] S.W. Lee, S.A. Cheon, M.I. Kim, T.J. Park, Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects, Journal of nanobiotechnology, 13(2015) 1-10.
[93] J. Sun, J. Ge, W. Liu, M. Lan, H. Zhang, P. Wang, et al., Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor, Nanoscale, 6(2014) 255-62.
[94] W. Liang-Bing, W. You-Cheng, H. Rong, Z. Awei, W. Xiaoping, Z. Jie, et al., A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance, (2013).
[95] R. Ye, C. Zhu, Y. Song, Q. Lu, X. Ge, X. Yang, et al., Bioinspired synthesis of all‐in‐one organic–inorganic hybrid nanoflowers combined with a handheld pH meter for on‐site detection of food pathogen, Small, 12(2016) 3094-100.
[96] Z. Zhang, Y. Zhang, R. Song, M. Wang, F. Yan, L. He, et al., Manganese (II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine, Sensors and Actuators B: Chemical, 211(2015) 310-7.
[97] Y. Jin, X. Gao, Plasmonic fluorescent quantum dots, Nature nanotechnology, 4(2009) 571-6.
[98] M.M. Barroso, Quantum dots in cell biology, Journal of Histochemistry & Cytochemistry, 59(2011) 237-51.
[99] E. Haque, J. Kim, V. Malgras, K.R. Reddy, A.C. Ward, J. You, et al., Recent advances in graphene quantum dots: synthesis, properties, and applications, Small Methods, 2(2018) 1800050.
[100] T.A. Tabish, C.J. Scotton, D.C. J Ferguson, L. Lin, A.v. der Veen, S. Lowry, et al., Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy, Nanomedicine, 13(2018) 1923-37.
[101] H. Wang, K. Wang, Q. Mu, Z.R. Stephen, Y. Yu, S. Zhou, et al., Mesoporous carbon nanoshells for high hydrophobic drug loading, multimodal optical imaging, controlled drug release, and synergistic therapy, Nanoscale, 9(2017) 1434-42.
[102] M. Li, W. Wu, W. Ren, H.-M. Cheng, N. Tang, W. Zhong, et al., Synthesis and upconversion luminescence of N-doped graphene quantum dots, Applied Physics Letters, 101(2012) 103107.
[103] A.B. Ganganboina, R.-a. Doong, Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion, Microchimica Acta, 185(2018) 1-11.
[104] N.T.N. Anh, A.D. Chowdhury, R.-a. Doong, Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater, Sensors and Actuators B: Chemical, 252(2017) 1169-78.
[105] I. Sahroni, K. Bindumadhavan, P.-Y. Chang, R.-a. Doong, Boron doped graphene quantum structure and MoS2 nanohybrid as anode materials for highly reversible lithium storage, Frontiers in Chemistry, 7(2019) 116.
[106] J. Qian, C. Shen, J. Yan, F. Xi, X. Dong, J. Liu, Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst, The Journal of Physical Chemistry C, 122(2018) 349-58.
[107] D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science, 271(1996) 53-5.
[108] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature materials, 8(2009) 76-80.
[109] M. Rong, X. Song, T. Zhao, Q. Yao, Y. Wang, X. Chen, Synthesis of highly fluorescent P, OgC 3 N 4 nanodots for the label-free detection of Cu 2+ and acetylcholinesterase activity, Journal of Materials Chemistry C, 3(2015) 10916-24.
[110] Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction, ACS nano, 9(2015) 12480-7.
[111] X. Cao, J. Ma, Y. Lin, B. Yao, F. Li, W. Weng, et al., A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151(2015) 875-80.
[112] D. Xiao, S. Li, S. Liu, H. He, J. Lu, One-step hydrothermal synthesis of photoluminescent carbon nitride dots derived from ionic liquids, New Journal of Chemistry, 40(2016) 320-4.
[113] H. Abdolmohammad-Zadeh, E. Rahimpour, A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanide chemiluminescence system for Hg (II) ion detection, Sensors and Actuators B: Chemical, 225(2016) 258-66.
[114] Y.-L.T. Ngo, W.M. Choi, J.S. Chung, S.H. Hur, Highly biocompatible phenylboronic acid-functionalized graphitic carbon nitride quantum dots for the selective glucose sensor, Sensors and Actuators B: Chemical, 282(2019) 36-44.
[115] O.J. Achadu, N. Revaprasadu, Tannic acid-derivatized graphitic carbon nitride quantum dots as an “on-off-on” fluorescent nanoprobe for ascorbic acid via copper (II) mediation, Microchimica Acta, 186(2019) 1-9.
[116] Q. Cheng, Y. He, Y. Ge, J. Zhou, G. Song, Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (gC 3 N 4) quantum dots, Microchimica Acta, 185(2018) 1-8.
[117] Y. Zhang, S. Meng, J. Ding, Q. Peng, Y. Yu, Transition metal-coordinated graphitic carbon nitride dots as a sensitive and facile fluorescent probe for β-amyloid peptide detection, Analyst, 144(2019) 504-11.
[118] S. Alex, A. Tiwari, Functionalized gold nanoparticles: synthesis, properties and applications—a review, Journal of nanoscience and nanotechnology, 15(2015) 1869-94.
[119] N. Sarfraz, I. Khan, Plasmonic gold nanoparticles (AuNPs): properties, synthesis and their advanced energy, environmental and biomedical applications, Chemistry–An Asian Journal, 16(2021) 720-42.
[120] M. Li, S.K. Cushing, Q. Wang, X. Shi, L.A. Hornak, Z. Hong, et al., Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles, The Journal of Physical Chemistry Letters, 2(2011) 2125-9.
[121] J. Griffin, A.K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, et al., Size‐and distance‐dependent nanoparticle surface‐energy transfer (NSET) method for selective sensing of hepatitis C virus RNA, Chemistry–A European Journal, 15(2009) 342-51.
[122] A.B. Ganganboina, N.K. Dega, H.L. Tran, W. Darmonto, R.-A. Doong, Application of sulfur-doped graphene quantum dots@ gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells, Biosensors and Bioelectronics, 181(2021) 113151.
[123] L. Qin, G. Zeng, C. Lai, D. Huang, C. Zhang, P. Xu, et al., A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition, Sensors and Actuators B: Chemical, 243(2017) 946-54.
[124] K. Takemura, O. Adegoke, N. Takahashi, T. Kato, T.-C. Li, N. Kitamoto, et al., Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses, Biosensors and Bioelectronics, 89(2017) 998-1005.
[125] F. Nasrin, A.D. Chowdhury, K. Takemura, J. Lee, O. Adegoke, V.K. Deo, et al., Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots, Biosensors and Bioelectronics, 122(2018) 16-24.
[126] J.-J. Feng, H. Guo, Y.-F. Li, Y.-H. Wang, W.-Y. Chen, A.-J. Wang, Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity, ACS applied materials & interfaces, 5(2013) 1226-31.
[127] Q. Nie, J. Deng, B. Xie, G. Shi, T. Zhou, A dual-channel colorimetric and fluorescent sensor for the rapid and ultrasensitive detection of kanamycin based on gold nanoparticles-copper nanoclusters, Analytical Methods, 13(2021) 5813-20.
[128] A.-J. Wang, H. Guo, M. Zhang, D.-L. Zhou, R.-Z. Wang, J.-J. Feng, Sensitive and selective colorimetric detection of cadmium (II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole, Microchimica Acta, 180(2013) 1051-7.
[129] H. Dong, S. Liu, Q. Liu, Y. Li, Y. Li, Z. Zhao, A dual-signal output electrochemical immunosensor based on Au–MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection, Biosensors and Bioelectronics, 195(2022) 113648.
[130] R. Devi, S. Gogoi, S. Barua, H.S. Dutta, M. Bordoloi, R. Khan, Electrochemical detection of monosodium glutamate in foodstuffs based on Au@ MoS2/chitosan modified glassy carbon electrode, Food chemistry, 276(2019) 350-7.
[131] S. Wang, B.Y. Guan, L. Yu, X.W. Lou, Rational design of three‐layered TiO2@ Carbon@ MoS2 hierarchical nanotubes for enhanced lithium storage, Advanced materials, 29(2017) 1702724.
[132] P. Wang, S. Sun, Y. Jiang, Q. Cai, Y.-H. Zhang, L. Zhou, et al., Hierarchical microtubes constructed by MoS2 nanosheets with enhanced sodium storage performance, ACS nano, 14(2020) 15577-86.
[133] Y. Yang, H. Zhang, C. Huang, D. Yang, N. Jia, Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-Au-PEI-hemin layered nanocomposites, Biosensors and Bioelectronics, 89(2017) 461-7.
[134] K.-J. Huang, Y.-J. Liu, Y.-M. Liu, L.-L. Wang, Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination, Journal of hazardous materials, 276(2014) 207-15.
[135] A.K. Yagati, A. Go, N.H. Vu, M.-H. Lee, A MoS2–Au nanoparticle-modified immunosensor for T3 biomarker detection in clinical serum samples, Electrochimica Acta, 342(2020) 136065.
[136] K. Lu, J. Liu, X. Dai, L. Zhao, Y. Yang, H. Li, et al., Construction of a Au@ MoS 2 composite nanosheet biosensor for the ultrasensitive detection of a neurotransmitter and understanding of its mechanism based on DFT calculations, RSC advances, 12(2022) 798-809.
[137] S. Su, Z. Lu, J. Li, Q. Hao, W. Liu, C. Zhu, et al., MoS 2–Au@ Pt nanohybrids as a sensing platform for electrochemical nonenzymatic glucose detection, New Journal of Chemistry, 42(2018) 6750-5.
[138] H. Chen, H. Chen, R. Hong, Fabrication of au nanoparticle-decorated mos2 nanoslices as efficient electrocatalysts for electrochemical detection of dopamine, Catalysts, 9(2019) 653.
[139] X. Wang, C. Chu, L. Shen, W. Deng, M. Yan, S. Ge, et al., An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels, Sensors and Actuators B: Chemical, 206(2015) 30-6.
[140] N. Ma, T. Zhang, D. Fan, X. Kuang, A. Ali, D. Wu, et al., Triple amplified ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on MoS2@ Cu2O-Au nanoparticles, Sensors and Actuators B: Chemical, 297(2019) 126821.
[141] H. Sun, S. Wu, X. Zhou, M. Zhao, H. Wu, R. Luo, et al., Electrochemical sandwich immunoassay for insulin detection based on the use of gold nanoparticle-modified MoS 2 nanosheets and the hybridization chain reaction, Microchimica Acta, 186(2019) 1-8.
[142] J. Zhou, Y. Yang, C.-y. Zhang, A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission, Chemical communications, 49(2013) 8605-7.
[143] A. Zak, L.S. Ecker, R. Efrati, L. Drangai, N. Fleischer, R. Tenne, Large-scale Synthesis of WS^ sub 2^ Multiwall Nanotubes and their Dispersion, an Update, Sensors & Transducers, 12(2011) 1.
[144] E.G. Kıvrak, K.K. Yurt, A.A. Kaplan, I. Alkan, G. Altun, Effects of electromagnetic fields exposure on the antioxidant defense system, Journal of microscopy and ultrastructure, 5(2017) 167-76.
[145] M.-Y. Jia, L.-Y. Niu, Y. Zhang, Q.-Z. Yang, C.-H. Tung, Y.-F. Guan, et al., BODIPY-based fluorometric sensor for the simultaneous determination of Cys, Hcy, and GSH in human serum, ACS applied materials & interfaces, 7(2015) 5907-14.
[146] A. Polonikov, Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients, ACS infectious diseases, 6(2020) 1558-62.
[147] C. Song, W. Ding, W. Zhao, H. Liu, J. Wang, Y. Yao, et al., High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione, Biosensors and Bioelectronics, 151(2020) 111983.
[148] F. Yan, Z. Sun, J. Xu, H. Li, Y. Zhang, WS 2 quantum dots-MnO 2 nanosheet system for use in ratiometric fluorometric/scattered light detection of glutathione, Microchimica Acta, 187(2020) 1-9.
[149] S. Campuzano, M. Pedrero, P. Yáñez-Sedeño, J.M. Pingarrón, Nanozymes in electrochemical affinity biosensing, Microchimica Acta, 187(2020) 1-16.
[150] M. Pietrzak, P. Ivanova, Bimetallic and multimetallic nanoparticles as nanozymes, Sensors and Actuators B: Chemical, 336(2021) 129736.
[151] Y. Tian, Y. Chen, M. Chen, Z.-L. Song, B. Xiong, X.-B. Zhang, Peroxidase-like Au@ Pt nanozyme as an integrated nanosensor for Ag+ detection by LSPR spectroscopy, Talanta, 221(2021) 121627.
[152] B. Liu, X. Han, J. Liu, Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn 2+ detection, Nanoscale, 8(2016) 13620-6.
[153] M. Liu, J. Mou, X. Xu, F. Zhang, J. Xia, Z. Wang, High-efficiency artificial enzyme cascade bio-platform based on MOF-derived bimetal nanocomposite for biosensing, Talanta, 220(2020) 121374.
[154] H. Wan, Y. Wang, J. Chen, H.-M. Meng, Z. Li, 2D Co-MOF nanosheet-based nanozyme with ultrahigh peroxidase catalytic activity for detection of biomolecules in human serum samples, Microchimica Acta, 188(2021) 1-8.
[155] S. Li, X. Liu, H. Chai, Y. Huang, Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes, TrAC Trends in Analytical Chemistry, 105(2018) 391-403.
[156] H. Sun, X. Liu, X. Wang, Q. Han, C. Qi, Y. Li, et al., Colorimetric determination of ascorbic acid using a polyallylamine-stabilized IrO 2/graphene oxide nanozyme as a peroxidase mimic, Microchimica Acta, 187(2020) 1-9.
[157] O. Adegoke, S. Zolotovskaya, A. Abdolvand, N.N. Daeid, Biomimetic graphene oxide-cationic multi-shaped gold nanoparticle-hemin hybrid nanozyme: Tuning enhanced catalytic activity for the rapid colorimetric apta-biosensing of amphetamine-type stimulants, Talanta, 216(2020) 120990.
[158] T. Ning, F. Liao, H. Cui, Z. Yin, G. Ma, L. Cheng, et al., A homogeneous electrochemical DNA sensor on the basis of a self-assembled thiol layer on a gold support and by using tetraferrocene for signal amplification, Microchimica Acta, 187(2020) 1-8.
[159] J. Cui, S. Jia, Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules, Coordination Chemistry Reviews, 352(2017) 249-63.
[160] M.-Q. Wang, C. Ye, S.-J. Bao, M.-W. Xu, Controlled synthesis of Mn 3 (PO 4) 2 hollow spheres as biomimetic enzymes for selective detection of superoxide anions released by living cells, Microchimica Acta, 184(2017) 1177-84.
[161] K. Jin, J. Park, J. Lee, K.D. Yang, G.K. Pradhan, U. Sim, et al., Hydrated manganese (II) phosphate (Mn3 (PO4) 2· 3H2O) as a water oxidation catalyst, Journal of the American Chemical Society, 136(2014) 7435-43.
[162] Y. Wang, D. Wang, L.-H. Sun, L.-C. Zhang, Z.-S. Lu, P. Xue, et al., BC@ DNA-Mn3 (PO4) 2 nanozyme for real-time detection of superoxide from living cells, Analytical Chemistry, 92(2020) 15927-35.
[163] W. Gao, Z. Liu, L. Qi, J. Lai, S.A. Kitte, G. Xu, Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets, Analytical chemistry, 88(2016) 7654-9.
[164] R. Deng, X. Xie, M. Vendrell, Y.-T. Chang, X. Liu, Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles, Journal of the American Chemical Society, 133(2011) 20168-71.
[165] Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay, TrAC Trends in Analytical Chemistry, 105(2018) 218-24.
[166] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nature nanotechnology, 2(2007) 577-83.
[167] X.-X. Wang, Q. Wu, Z. Shan, Q.-M. Huang, BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection, Biosensors and Bioelectronics, 26(2011) 3614-9.
[168] A. Swaidan, A. Addad, J.-F. Tahon, A. Barras, J. Toufaily, T. Hamieh, et al., Ultrasmall CuS-BSA-Cu3 (PO4) 2 nanozyme for highly efficient colorimetric sensing of H2O2 and glucose in contact lens care solutions and human serum, Analytica Chimica Acta, 1109(2020) 78-89.
[169] W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, et al., BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions, Biosensors and Bioelectronics, 66(2015) 251-8.
[170] J. Chen, Y. Shu, H. Li, Q. Xu, X. Hu, Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2, Talanta, 189(2018) 254-61.
[171] S.-B. He, F.-Q. Chen, L.-F. Xiu, H.-P. Peng, H.-H. Deng, A.-L. Liu, et al., Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan–coated palladium nanozyme, Analytical and bioanalytical chemistry, 412(2020) 499-506.
[172] G. Aharon, Cu0. 89Zn0. 11O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection, (2016).
[173] X. Han, R. Liu, H. Zhang, Q. Zhou, W. Feng, K. Hu, Enhanced Peroxidase‐mimicking Activity of Plasmonic Gold‐modified Mn3O4 Nanocomposites through Photoexcited Hot Electron Transfer, Chemistry–An Asian Journal, 16(2021) 1603-7.
[174] L.-N. Zhang, H.-H. Deng, F.-L. Lin, X.-W. Xu, S.-H. Weng, A.-L. Liu, et al., In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells, Analytical chemistry, 86(2014) 2711-8.
[175] B. Kaur, R. Srivastava, B. Satpati, A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione, RSC advances, 5(2015) 95028-37.
[176] Y. Qiu, J. Huang, L. Jia, A turn-on fluorescent sensor for glutathione based on bovine serum albumin-stabilized gold nanoclusters, International Journal of Analytical Chemistry, 2018(2018).
[177] N. Zhang, F. Qu, H.Q. Luo, N.B. Li, Sensitive and selective detection of biothiols based on target-induced agglomeration of silvernanoclusters, Biosensors and Bioelectronics, 42(2013) 214-8.
[178] X. Liu, Q. Wang, Y. Zhang, L. Zhang, Y. Su, Y. Lv, Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB, New Journal of Chemistry, 37(2013) 2174-8.
[179] Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M.-J. Li, C. Yi, et al., A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma, Biosensors and Bioelectronics, 56(2014) 39-45.
[180] X. Zhu, M. He, L. Xiao, H. Liu, M. Hu, S. Li, et al., Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC, Journal of Applied Electrochemistry, (2022).
[181] M. Derakhshan, H.R. Ansarian, M. Ghomshei, Possible effect of epinephrine in minimizing COVID-19 severity: a review, Journal of International Medical Research, 48(2020) 0300060520958594.
[182] M.S.-S. Bergh, I.L. Bogen, J.M. Andersen, Å.M.L. Øiestad, T. Berg, Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC–MS/MS, Journal of Chromatography B, 1072(2018) 161-72.
[183] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures, Journal of Chromatography B, 847(2007) 88-94.
[184] D.M. Cavalcanti, C.M. Lotufo, P. Borelli, A.M.C. Tavassi, A.L. Pereira, R.P. Markus, et al., Adrenal deficiency alters mechanisms of neutrophil mobilization, Molecular and cellular endocrinology, 249(2006) 32-9.
[185] A. Thomas, H. Geyer, H. Mester, W. Schänzer, E. Zimmermann, M. Thevis, Quantitative determination of adrenaline and noradrenaline in urine using liquid chromatography-tandem mass spectrometry, Chromatographia, 64(2006) 587-91.
[186] H. Yockell-Lelièvre, F. Lussier, J.-F. Masson, Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS, The Journal of Physical Chemistry C, 119(2015) 28577-85.
[187] X. Liu, D. Yuan Lei, Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods, Scientific reports, 5(2015) 1-13.
[188] A.B. Ganganboina, A. Dutta Chowdhury, R.-a. Doong, N-doped graphene quantum dots-decorated V2O5 nanosheet for fluorescence turn off–on detection of cysteine, ACS applied materials & interfaces, 10(2018) 614-24.
[189] M.R. Patel, S.K. Kailasa, Carbon nitride nanomaterials: properties, synthetic approaches and new insights in fluorescence spectrometry for assaying of metal ions, organic and biomolecules, ChemistrySelect, 7(2022) e202201849.
[190] N.T.N. Anh, R.-a. Doong, One-step synthesis of size-tunable gold@ sulfur-doped graphene quantum dot nanocomposites for highly selective and sensitive detection of nanomolar 4-nitrophenol in aqueous solutions with complex matrix, ACS Applied Nano Materials, 1(2018) 2153-63.
[191] S. Hong, X. Li, Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions, Journal of nanomaterials, 2013(2013).
[192] Y. Zhan, Z. Liu, Q. Liu, D. Huang, Y. Wei, Y. Hu, et al., A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications, New Journal of Chemistry, 41(2017) 3930-8.
[193] S. Gu, C.-T. Hsieh, Y.A. Gandomi, J.-K. Chang, J. Li, J. Li, et al., Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots, Journal of Materials Chemistry C, 7(2019) 5468-76.
[194] A. Lodha, A. Pandya, P.G. Sutariya, S.K. Menon, Melamine modified gold nanoprobe for “on-spot” colorimetric recognition of clonazepam from biological specimens, Analyst, 138(2013) 5411-6.
[195] A.S. Karakoti, R. Shukla, R. Shanker, S. Singh, Surface functionalization of quantum dots for biological applications, Advances in colloid and interface science, 215(2015) 28-45.
[196] R. Bilan, F. Fleury, I. Nabiev, A. Sukhanova, Quantum dot surface chemistry and functionalization for cell targeting and imaging, Bioconjugate chemistry, 26(2015) 609-24.
[197] N. Saraf, A. Bosak, A. Willenberg, S. Das, B.J. Willenberg, S. Seal, Colorimetric detection of epinephrine using an optimized paper-based aptasensor, RSC advances, 7(2017) 49133-43.
[198] U. Sivasankaran, K.G. Kumar, A cost effective strategy for dual channel optical sensing of adrenaline based on ‘in situ’formation of copper nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223(2019) 117292.
[199] S. Baluta, K. Malecha, A. Świst, J. Cabaj, Fluorescence sensing platforms for epinephrine detection based on low temperature cofired ceramics, Sensors, 20(2020) 1429.
[200] M. Wang, Y. Li, L. Wang, X. Su, A label-free fluorescence nanosensor for the determination of adrenaline based on graphene quantum dots, Analytical Methods, 9(2017) 4434-8.
[201] X. Zhou, M. Li, A novel method of adrenaline concentration detection using fiber optical biosensor based on the catalysis of iron (II) phthalocyanine, Photonics and Optoelectronics Meetings (POEM) 2008: Fiber Optic Communication and Sensors, International Society for Optics and Photonics2009, p. 72781O.
[202] J. Guan, M. Wang, R. Ma, Q. Liu, X. Sun, Y. Xiong, et al., Single-atom Rh nanozyme: An efficient catalyst for highly sensitive colorimetric detection of acetylcholinesterase activity and adrenaline, Sensors and Actuators B: Chemical, 375(2023) 132972.
[203] D. Molinnus, G. Hardt, L. Käver, H.S. Willenberg, A. Poghossian, M. Keusgen, et al., Detection of adrenaline based on bioelectrocatalytical system to support tumor diagnostic technology, Multidisciplinary Digital Publishing Institute Proceedings2017, p. 506.
[204] H. Zhou, G. Xu, A. Zhu, Z. Zhao, C. Ren, L. Nie, et al., A multiporous electrochemical sensor for epinephrine recognition and detection based on molecularly imprinted polypyrrole, RSC advances, 2(2012) 7803-8.
[205] D.M. Fouad, W.A. El-Said, Selective electrochemical detection of epinephrine using gold nanoporous film, Journal of Nanomaterials, 2016(2016).
[206] J. Lin, H. Lu, Y. Duan, C. Yu, L. Li, Y.-p. Ding, Fabrication of bimetallic ZIF/carbon nanofibers composite for electrochemical sensing of adrenaline, Journal of Materials Science, 57(2022) 6629-39.
[207] E. Talaat, M.Y. Emran, H. Gomaa, A. Kotb, A.A. Abdelwahab, M. Abdel-Hakim, et al., Two-dimensional sulfur-doped carbon stacked sheets electrode design for potential adrenaline screening in human fluids and pharmaceutical drugs, Surfaces and Interfaces, 36(2023) 102481.
[208] T. Mutić, M. Ognjanović, I. Kodranov, M. Robić, S. Savić, S. Krehula, et al., The influence of bismuth participation on the morphological and electrochemical characteristics of gallium oxide for the detection of adrenaline, Analytical and Bioanalytical Chemistry, (2023) 1-14.
[209] H.-P. Wu, T.-L. Cheng, W.-L. Tseng, Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching, Langmuir, 23(2007) 7880-5.
[210] L.I. Tomé, C.M. Brett, Polymer/iron oxide nanoparticle modified glassy carbon electrodes for the enhanced detection of epinephrine, Electroanalysis, 31(2019) 704-10.
[211] H. Tsai, C. Hsu, I. Chiu, C.B. Fuh, Detection of C-reactive protein based on immunoassay using antibody-conjugated magnetic nanoparticles, Analytical chemistry, 79(2007) 8416-9.
[212] N.L. Phung, J.G. Walter, R. Jonczyk, L.K. Seiler, T. Scheper, C. Blume, Development of an aptamer-based lateral flow assay for the detection of c-reactive protein using microarray technology as a prescreening platform, ACS Combinatorial Science, 22(2020) 617-29.
[213] H.-J. Sheen, B. Panigrahi, T.-R. Kuo, W.-C. Hsu, P.-S. Chung, Q.-Z. Xie, et al., Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection, Biosensors and Bioelectronics, 210(2022) 114338.
[214] A. Firoozbakhtian, A.H. Rezayan, H. Hajghassem, F. Rahimi, M.F. Ghazani, M. Kalantar, et al., Buried-Gate MWCNT FET-Based Nanobiosensing Device for Real-Time Detection of CRP, ACS omega, 7(2022) 7341-9.
[215] H. Zhou, S. Lu, J. Chen, N. Wei, D. Wang, H. Lyu, et al., The landscape of cognitive function in recovered COVID-19 patients, Journal of psychiatric research, 129(2020) 98-102.
[216] W. Chen, K.I. Zheng, S. Liu, Z. Yan, C. Xu, Z. Qiao, Plasma CRP level is positively associated with the severity of COVID-19, Annals of clinical microbiology and antimicrobials, 19(2020) 1-7.
[217] H. Lukas, C. Xu, Y. Yu, W. Gao, Emerging telemedicine tools for remote COVID-19 diagnosis, monitoring, and management, ACS nano, 14(2020) 16180-93.
[218] T. Pinheiro, A.R. Cardoso, C.E. Sousa, A.C. Marques, A.P. Tavares, A.M. Matos, et al., based biosensors for COVID-19: a review of innovative tools for controlling the pandemic, ACS omega, 6(2021) 29268-90.
[219] R. Huang, J. Quan, B. Su, C. Cai, S. Cai, Y. Chen, et al., A two-step competition assay for visual, sensitive and quantitative C-reactive protein detection in low-cost microfluidic particle accumulators, Sensors and Actuators B: Chemical, 359(2022) 131583.
[220] S. Kastner, P. Pritzke, A. Csáki, W. Fritzsche, The effect of layer thickness and immobilization chemistry on the detection of CRP in LSPR assays, Scientific Reports, 12(2022) 1-10.
[221] J. Dai, L. Yao, X. Gao, S. Bai, X. Chen, L. Li, et al., To achieve ultrasensitive electrochemical detection of mercury ions employing metallic 1T-MoS2 nanosheets, Electrochimica Acta, 355(2020) 136800.
[222] M.L. Mekonnen, A.M. Mola, E.M. Abda, Rapid Colorimetric Detection of Thiabendazole Based on Its Inhibition Effect on the Peroxidase Mimetic Activity of Ag-MoS2 Nanozyme, ACS Agricultural Science & Technology, (2023).
[223] Z. Wang, Z. Dai, Carbon nanomaterial-based electrochemical biosensors: an overview, Nanoscale, 7(2015) 6420-31.
[224] A.D. Chowdhury, K. Takemura, T.-C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection, Nature communications, 10(2019) 3737.
[225] P. Chen, J. Hu, M. Yin, W. Bai, X. Chen, Y. Zhang, MoS2 nanoflowers decorated with Au nanoparticles for visible-light-enhanced gas sensing, ACS Applied Nano Materials, 4(2021) 5981-91.
[226] S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, et al., Ultrastable in‐plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction, Advanced Energy Materials, 8(2018) 1801345.
[227] S. Moghimian, P. Sangpour, One-step hydrothermal synthesis of GQDs-MoS 2 nanocomposite with enhanced supercapacitive performance, Journal of Applied Electrochemistry, 50(2020) 71-9.
[228] S. Huang, Z. Liu, Y. Yan, J. Chen, R. Yang, Q. Huang, et al., Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF67 for ultrasensitive CRP detection, Biosensors and Bioelectronics, 207(2022) 114129.
[229] C. Pinyorospathum, S. Chaiyo, P. Sae-Ung, V.P. Hoven, P. Damsongsang, W. Siangproh, et al., Disposable paper-based electrochemical sensor using thiol-terminated poly (2-methacryloyloxyethyl phosphorylcholine) for the label-free detection of C-reactive protein, Microchimica Acta, 186(2019) 1-10.
[230] A. Kowalczyk, J.P. Sęk, A. Kasprzak, M. Poplawska, I.P. Grudzinski, A.M. Nowicka, Occlusion phenomenon of redox probe by protein as a way of voltammetric detection of non-electroactive C-reactive protein, Biosensors and Bioelectronics, 117(2018) 232-9.
[231] X. Zhang, R. Hu, K. Zhang, R. Bai, D. Li, Y. Yang, An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer, Analytical Methods, 8(2016) 6202-7.
[232] S. Dong, D. Zhang, H. Cui, T. Huang, ZnO/porous carbon composite from a mixed-ligand MOF for ultrasensitive electrochemical immunosensing of C-reactive protein, Sensors and Actuators B: chemical, 284(2019) 354-61.
[233] A. Qureshi, J.H. Niazi, S. Kallempudi, Y. Gurbuz, Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays, Biosensors and Bioelectronics, 25(2010) 2318-23.
[234] A. Santos, J.P. Piccoli, N.A. Santos-Filho, E.M. Cilli, P.R. Bueno, Redox-tagged peptide for capacitive diagnostic assays, Biosensors and Bioelectronics, 68(2015) 281-7.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *