帳號:guest(3.140.196.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卡 亦
作者(外文):NGUYEN THI KIM ANH
論文名稱(中文):碳基奈米複合材料之電容去離子增能應用
論文名稱(外文):Enhanced electrochemical performance of carbon-based nanocomposites for advancements in capacitive deionization applications
指導教授(中文):董瑞安
指導教授(外文):DOONG, RUEY-AN
口試委員(中文):劉耕谷
侯嘉洪
王清海
蘇鎮芳
口試委員(外文):Liu, Keng-Ku
Hou, Chia-Hung
Wang, Tsing-Hai
Su, Jenn-Fang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012891
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:220
中文關鍵詞:電容式去離子脫鹽重金屬去除功能化碳電極碳基納米複合材料MXene
外文關鍵詞:Capacitive deionizationDesalinationHeavy metal removalMXenefunctionalized carbon electrodecarbon-based nanocomposite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電容式去離子(CDI)技術以其高效、低能耗、環保等優點,成為海水淡化和水處理領域的一粒新星。 為了達到去離子的目的,低電壓之直流電使電場產生,誘使溶液中的離子定向遷移並吸附到電極中。CDI的去離子性能高度依賴於電極材料。 在CDI電極主要材料的發展方面,碳材因其多項優異特性而受到廣泛關注,其中包括了高比表面面積(SSA)為離子吸附和積累提供更多活性位點,高導電性,高親水性,極佳的電化學穩定性。然而,在使用單一碳材的應用、會因其疏水性、結構過於不規則、電阻力高等方面仍存在一些挑戰。 此外,碳材料的低電吸附能力也阻礙該材料在CDI技術中的實際應用。爲此,這項研究的主要目的是透過各種改便表面特性的方法以提高碳基材的料電吸附能力。其一,雜原子摻雜至碳架構的方式有助於提高該材料的親水性和導電性,同時降低和離子排出的現象發生。因此,本研究中對碳材料的改性( N摻雜碳波、N摻雜碳納米纖維、功能化生物炭來源於生物質)顯著實現了較高的去離子性能。
其二,透過組合不同類型的碳材料或把碳材料與其他法拉第材料(包括金屬氧化物、過渡金屬硫族化物)結合之複合材料也可以進一步提高CDI性能。 該實驗理論是依據法拉第電容遠大於碳材料嘅雙電層(EDL)容量的原理。法拉第電容是指電活性材料在碳材料中的欠電位沉積,從而導致高度可逆嘅化學吸附、解吸或氧化還原反應,與電極電容的電荷電位有關。 因此,利用法拉第材料構建碳的複合結構對於CDI電極研究領域的延伸至關重要。例如,利用水熱工藝所製成的二硫化鉬納米片和N摻雜碳球(MoS2@NCS)核殼結構在2000 mg L−1 NaCl和1.4 V的外加電壓下可達成59.9 mg g−1的優越比電吸附容量(SAC)。該項結果發現別於傳統碳材料的一般表現,更展現金屬二硫族化物可應用於未來CDI材料的潛力。在其他研究中,錳鐵素體也可採用沉澱法修飾到維基活性炭纖維(MnFe2O4/N-ACF)上,用於CDI應用。該複合材料可在500 mg L−1的NaCl系統中,透過流速和施加電壓分別為10 mL min−1和1.4 V下,達到41.2 mg g−1的 SAC。 此外,所製備的電極材料可以回收至少50個循環,並且在50次循環後SEC可以保持原始活性的93%以上,證實了MnFe2O4/N-ACF電極優異的循環穩定性。
插層插入材料(金屬碳化物和/或MXene)在CDI應用中的應用因其在高鹽度溶液中出色的除鹽能力而得到廣泛應用。摒除以往利用離子與碳質電極相關的靜電力作用為吸附基礎,該研究成果也展示了透過插層或氧化還原過程從海水中提取鹹離子的可行性。所製備的MXene Ti3C2Tx在結構改變、成分多樣性和性能韌性方面的靈活性表現出優異的脫鹽性能,在3000 mg L-1 NaCl中具有35.4 mg g−1的最高SAC,證明了MXene Ti3C2Tx在實際CDI中的應用潛力無限。
再者,CDI的選擇性吸附能力也是使用CDI作為水修復處理的關鍵考量因素之一。 特異性吸附對於去除和收集廢水中的各種離子具有重要意義,特別是對於重金屬。本研究構建了一種不對稱CDI裝置,其中部分具備活化生物炭(來源於生物AB 作為陽極,功能化金屬碳化物(V2AlC-OHx)作為陰極,用于有效和選擇性地去離子水溶液中嘅Cr(VI)離子。值得一提的是,AB//V2AlC-OHx不對稱CDI裝置除了具有優異的去離子性能,也備有最高的比電吸附容量(43 mg g−1)等同於99%的去除效率,為CDI技術在工業廢水中有毒金屬離子去離子化的實際應用開闢出新的前景。
Capacitive deionization (CDI) technology has become a new star in the field of desalination and water treatment owing to its merits of high efficiency, low energy usage, and environmentally-friendly. To achieve the purpose of deionization, a low voltage of direct-current is used to create an electric field that make ions in solution directionally migrate and adsorbed into electrode. The deionized performance of CDI is highly based on the electrode material. In terms of the development of key materials for CDI electrodes, carbon has attracted wide attention due to a number of excellent advantages that have witnessed all the requirements for CDI electrode materials, such as high SSA to serve more active sites for ions adsorption and accumulation, high electrical conductivity, high hydrophilicity, excellent electrochemical stability. However, there are still some challenges in single composition, hydrophobicity, too irregular structure, and high resistance of carbon materials that hinder the CDI technology development. However, several issues in the low electrosorption capacity prohibits the practical application of carbon materials for CDI technology. This is the primary rationale for diverse modification methods proposed to increase the electrosorption capability. The functionalization and heteroatom doping into carbon network would be critical for the future advancement of utilizing carbon as a CDI electrode materials by increasing their hydrophilicity and conductivity while decreasing the co-ion expulsion impact. As a result, the modification of carbon materials in this research (N-doped carbon sphere, N-doped carbon nanofiber, functionalized activated biochar derived from biomass) significantly achieved high deionization performance.
In addition, the introduction of the composites obtained by combining different types of carbon materials or by combining carbon materials with other Faradaic materials (including metal oxides, transition metal dichalcogenide) can further enhance the CDI performance. This theory is dependent on the fact that the Faradaic capacitance of Faradaic materials is much larger than the electrical double layer (EDL) capacity of carbon material. Faradaic capacitance refers to the underpotential deposition of electroactive materials in carbon material, thereby leading to highly reversible chemisorption, desorption or redox reactions, which are related to the charge potential of the electrode capacitance. Therefore, to built the composite construction of carbon with Faradaic material is essential for the extension of CDI electrode research fields. For instance, the nanoarchitecture of deposition of molybdenum disulfide nanosheets onto N-doped carbon sphere (MoS2@NCS) has been successfully developed using hydrothermal processes for CDI applications. The superior specific electrosorption capacity (SAC) of 59.9 mg g−1 is obtained at 2000 mg L−1 NaCl and applied voltage of 1.4 V. This result is difficult to achieve with traditional carbon materials, indicating that the deposition of metal dichacogenide into the carbon network may be the key to CDI's future use in actual water desalination. In other work, the manganese ferrite was decorated onto 1-dimensional based activated carbon fiber (MnFe2O4/N-ACF) by precipitation method for CDI application. A SAC of 41.2 mg g−1 in the presence of 500 mg L−1 can be achieved when the flow rate and applied voltage are 10 mL min−1 and 1.4 V, respectively. Moreover, the as-prepared electrode materials can be recycled for at least 50 cycles and the SAC can be maintained over 93% of the original activity after 50 cycles, corroborating the excellent cycling stability of MnFe2O4/N-ACF electrode.
The utilization of intercalation-insertion material (metal carbide and/or Mxene) for CDI application have been widely implemented due to their excellent salt removal capability in high salinity solution. Instead of electrostatic forces associated with the carbonaceous electrode, salty ions can be extracted from sea water through intercalation or redox processes. The flexibility in structural alterations, compositional diversity, and properties tenability of as-prepared MXene Ti3C2Tx exhibits the superior desalination performance with the highest SAC of 35.4 mg g−1 in 3000 mg L-1 NaCl, demonstrating the promising application of MXene Ti3C2Tx for practical CDI.
The selective adsorption capacity of CDI is also one of the critical factors in using CDI as water remediation treatment. Specific adsorption is of great significance to remove and collect various ions from wastewater, especially for heavy metals. In this study, an asymmetric CDI device where functionalized activated biochar (derived from biomass, AB) plays as the anode and funtionalized metal carbide (V2AlC-OHx) serves as the cathode was constructed for the effective and selective deionization of Cr(VI) ions from aqueous solution. Interestingly, the AB//V2AlC-OHx asymmetric CDI device possesses superior deionization performance for Cr(VI) removal with the highest specific electrosorption capacity of 43 mg g−1 and removal efficiency of 99%, indicating the prospect to open a wide window for practical applications of CDI technology in the deionization of toxic metal ions from industrial wastewater.
Contents
Acknowledgements I
Abstract III
摘要 VI
Contents VII
List of figures XI
List of tables XVIII
ABBREVIATIONS, UNITS, AND SYMBOLS XIX
Chapter 1 1
Introduction 1
1.1. Motivation 2
1.2. Water shortage and the need in water treatment technology 4
1.3. Capacitive deionization technology for desalination and water remediation 5
1.3.1. Conventional technology in desalination 5
1.3.2. Capacitive deionization technology 11
1.3.3. The development of CDI technology 14
1.4. Overview of electrochemical reaction and process in CDI 16
1.4.1. Theory of Electrical double layer 16
1.4.2. Theory of Pseudo-capacitance 18
1.5. Carbon-based electrode materials for CDI device 20
1.5.1. Carbon materials 20
1.5.2. Carbon-based nanocomposites 22
1.5.3. Metal carbide and MXene 24
1.6. Aim and objective 30
1.7. Thesis design and summary 31
Chapter 2 34
Fabrication of carbon electrodes for CDI applications 34
2.1. Introduction 35
2.2. Reagents and methods 38
2.2.1. Reagents 38
2.2.2. Synthesis of nitrogen-doped carbon spheres (NCS) 38
2.2.3. Synthesis of carbon nanofiber 39
2.2.4. Synthesis of functionalized activated biochar (AB) derived from the badam tree leaves 39
2.3. Characterization 40
2.4. Electrochemical measurements 40
2.5. Electrosorption of NaCl by carbon electrode 41
2.6. Physicochemical characterization of as-fabricated carbon electrodes 42
2.6.1. Surface characterization of as-fabricated carbon electrodes 42
2.6.2. Electrochemical properties of as-fabricated carbon electrodes 48
2.7. CDI application using different carbon-electrodes 51
2.8. Conclusions 54
Chapter 3 56
Architectures of flower-like MoS2 nanosheet coated N-doped carbon sphere electrode materials for enhanced capacitive deionization 56
Summary 57
3.1. Introduction 58
3.2. Experimental 61
3.2.1. Reagents 61
3.2.2. Synthesis of dopamine-derived N-doped carbon spheres (NCS) 62
3.2.3. Preparation of MoS2@NCS 62
3.2.4. Characterization 63
3.2.5. Electrochemical measurements 63
3.2.6. Electrosorption of NaCl by MoS2@NCS 64
3.2.7. Modeling 65
3.3. Results and discussion 66
3.3.1. Surface characterization of MoS2@NCS 66
3.3.2. Electrochemical property of MoS2@NCS 74
3.3.3. Desalination performance of MoS2@NCS-800 77
3.3.4. Cycling stability 87
3.4. Conclusions 91
Chapter 4 93
Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization 93
Summary 94
4.1. Introduction 95
4.2. Experimental 98
4.2.1. Chemicals 98
4.2.2. Fabrication of MnFe2O4/N-ACF 99
4.2.3. Characterization of N-ACF and MnFe2O4/N-ACF nanocomposites 99
4.2.4. Electrochemical measurement 100
4.2.5. Electrosorption of salt by N-ACF and MnFe2O4/N-ACF 101
4.3. Results and discussion 101
4.3.1. Surface characteristic of N-ACF and MnFe2O4/N-ACF nanocomposites 101
4.3.2. Electrochemical property of MnFe2O4/N-ACF 110
4.3.3. Electrosorption performance of MnFe2O4/N-ACF 115
4.3.4. Regeneration properties of MnFe2O4/N-ACF electrodes 121
4.4. Conclusions 122
Chapter 5 124
Ti3C2Tx MXene as an intercalation-type pseudocapacitive electrode for boosting capacitive deionization performance 124
Summary 125
5.1. Introduction 126
5.2. Experimental and methods 129
5.2.1. Reagents 129
5.2.2. Synthesis of Ti3C2Tx MXene by in-situ generated HF method 130
5.2.3. Surface characterization 130
5.2.4. Electrochemical characterizations 131
5.2.5. CDI application 131
5.3. Results and discussion 132
5.3.1. Surface characteristics of different MXenes 132
5.3.2. Electrochemical characterizations 138
5.3.3. Desalination performance using Ti3C2Tx-1 as CDI electrode martial 141
5.3.4. Electrosorption selectivity in CDI application 145
5.4. Conclusions 151
Chapter 6 152
Effective removal of Cr(VI) using the badam tree leaf-derived carbon and functionalized metal carbide 2D framework for asymmetric CDI electrode 152
Summary 153
6.1. Introduction 154
6.2. Materials and methods 156
6.2.1. Reagents 156
6.2.2. Synthesize of materials 157
6.2.3. Sample characterization 157
6.2.4. Electrochemical measurement 158
6.2.5. CDI application for Cr(VI) removal 159
6.3. Results and discussion 159
6.3.1. Surface characteristics of AB and functionalized V2AlC-OHx 159
6.3.2. Electrochemical performance of AB and V2AlC-OHx 165
6.3.3. Electrosorption performance 167
6.4. Conclusions 179
Chapter 7 181
Conclusions and Perspectives for future research 181
7.1. Conclusions 182
7.2. Perspectives for future research 184
Curriculum vitae 186
List of publications 187
References 189

References
[1] S. A. Hawks, A. Ramachandran, S. Porada, P. G. Campbell, M. E. Suss, P. M. Biesheuvel, J. G. Santiago, and M. Stadermann, Performance metrics for the objective assessment of capacitive deionization systems, Water Research 152 (2019) 126-137.
[2] L. Agartan, B. Hayes-Oberst, B. W. Byles, B. Akuzum, E. Pomerantseva, and E. Caglan Kumbur, Influence of operating conditions and cathode parameters on desalination performance of hybrid CDI systems, Desalination 452 (2019) 1-8.
[3] D. V. Cuong, P.-C. Wu, N.-L. Liu, and C.-H. Hou, Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions, Separation and Purification Technology 242 (2020) 116813.
[4] S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science 58 (2013) 1388-1442.
[5] Z. Chen, H. Zhang, C. Wu, L. Luo, C. Wang, S. Huang, and H. Xu, A study of the effect of carbon characteristics on capacitive deionization (CDI) performance, Desalination 433 (2018) 68-74.
[6] Y. Cheng, Z. Hao, C. Hao, Y. Deng, X. Li, K. Li, and Y. Zhao, A review of modification of carbon electrode material in capacitive deionization, RSC Advances 9 (2019) 24401-24419.
[7] N.-L. Liu, S.-H. Sun, and C.-H. Hou, Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization, Separation and Purification Technology 215 (2019) 403-409.
[8] Y. Cheng, Z. Hao, C. Hao, Y. Deng, X. Li, K. Li, and Y. Zhao, A review of modification of carbon electrode material in capacitive deionization, RSC Advances 9 (2019) 24401-24419.
[9] K. Tang, T. Hong, L. You, and K. Zhou, Carbon-metal compound composite electrodes for capacitive deionization: Synthesis, development and application, Journal of Materials Chemistry A 7 (2019) 26693-26743.
[10] X. Zhao, H. Wei, H. Zhao, Y. Wang, and N. Tang, Electrode materials for capacitive deionization: A review, Journal of Electroanalytical Chemistry 873 (2020) 114416.
[11] J. J. Lado, R. L. Zornitta, F. A. Calvi, M. Martins, M. A. Anderson, F. G. E. Nogueira, and L. A. M. Ruotolo, Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes, Journal of Analytical and Applied Pyrolysis 126 (2017) 143-153.
[12] K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, and L. C. P. M. de Smet, Timeline on the application of intercalation materials in Capacitive Deionization, Desalination 455 (2019) 115-134.
[13] Y. H. Teow, and A. W. Mohammad, New generation nanomaterials for water desalination: A review, Desalination 451 (2019) 2-17.
[14] S.-Y. Pan, A. Z. Haddad, A. Kumar, and S.-W. Wang, Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus, Water Research 183 (2020) 116064.
[15] D. Brogioli, F. La Mantia, and N. Y. Yip, Thermodynamic analysis and energy efficiency of thermal desalination processes, Desalination 428 (2018) 29-39.
[16] E. Jones, M. Qadir, M. T. H. van Vliet, V. Smakhtin, and S.-m. Kang, The state of desalination and brine production: A global outlook, Science of The Total Environment 657 (2019) 1343-1356.
[17] S. K. Patel, P. M. Biesheuvel, and M. Elimelech, Energy consumption of brackish water desalination: identifying the sweet spots for electrodialysis and reverse osmosis, ACS ES&T Engineering TBD (2021) Page TBD.
[18] C. Kaya, Y. A. Jarma, E. Guler, N. Kabay, M. Arda, and M. Yükse, Seawater desalination by using nanofiltration (nf) and brackish water reverse osmosis (BWRO) membranes in sequential mode of operation, Journal of Membrane Science and Research 6 (2020) 40-46.
[19] B. Castillo-Téllez, I. Pilatowsky Figueroa, K. Allaf, R. Marzoug, and M. Castillo Téllez, Experimental analysis of saline diffusion during saltwater freezing for desalination purposes, Water and Environment Journal 34 (2020) 929-936.
[20] Z. Hao, Y. Cai, Y. Wang, S. Xu, and J. Wang, A coupling technology of capacitive deionization and MoS2/nitrogen-doped carbon spheres with abundant active sites for efficiently and selectively adsorbing low-concentration copper ions, Journal of Colloid and Interface Science 564 (2020) 428-441.
[21] D. Likhachev, and F.-C. Li, Large-scale water desalination methods: A review and new perspectives, Desalination and Water Treatment 51 (2013) 2836-2849.
[22] Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review), Desalination 228 (2008) 10-29.
[23] Z. Wang, Y. Hu, Q. Wei, W. Li, X. Liu, and F. Chen, Enhanced desalination performance of a flow-electrode capacitive deionization system by adding vanadium redox couples and carbon nanotubes, The Journal of Physical Chemistry C 125 (2021) 1234-1239.
[24] P. Sharan, T. J. Yoon, S. M. Jaffe, T. Ju, R. P. Currier, and A. T. Findikoglu, Can capacitive deionization outperform reverse osmosis for brackish water desalination?, Cleaner Engineering and Technology 3 (2021) 100102.
[25] X. Su, and T. A. Hatton, Redox-electrodes for selective electrochemical separations, Advances in Colloid and Interface Science 244 (2017) 6-20.
[26] A. V. Delgado, M. L. Jiménez, G. R. Iglesias, and S. Ahualli, Electrical double layers as ion reservoirs: applications to the deionization of solutions, Current Opinion in Colloid & Interface Science 44 (2019) 72-84.
[27] J. Kang, J. Wen, S. H. Jayaram, A. Yu, and X. Wang, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochimica Acta 115 (2014) 587-598.
[28] T. Wang, H. Liang, L. Bai, X. Zhu, Z. Gan, J. Xing, G. Li, and T. M. Aminabhavi, Adsorption behavior of powdered activated carbon to control capacitive deionization fouling of organic matter, Chemical Engineering Journal 384 (2020) 123277.
[29] C. Barrera-Díaz, P. Cañizares, F. J. Fernández, R. Natividad, and M. A. Rodrigo, Electrochemical advanced oxidation processes: An overview of the current applications to actual industrial effluents, J. Mex. Chem. Soc. 58 (2014) 256-275.
[30] C. Zhang, D. He, J. Ma, W. Tang, and T. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review, Water Research 128 (2017)
[31] S. Porada, R. Zhao, A. Wal, V. Presser, and M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science 58 (2013) 1388–1442.
[32] S.-Y. Huang, C.-S. Fan, and C.-H. Hou, Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization, Journal of Hazardous Materials 278 (2014) 8-15.
[33] D. He, C. E. Wong, W. Tang, P. Kovalsky, and T. D. Waite, Faradaic reactions in water desalination by batch-mode capacitive deionization, Environmental Science & Technology Letters 3 (2016) 222-226.
[34] T. Wang, C. Zhang, L. Bai, B. Xie, Z. Gan, X. Jiajian, G. Li, and H. Liang, Scaling behavior of iron in capacitive deionization (CDI) system, Water Research 171 (2019) 115370.
[35] Y. Cai, X. Zhao, Y. Wang, D. Ma, and S. Xu, Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process, Separation and Purification Technology 237 (2020) 116381.
[36] M. Kim, H. Lim, X. Xu, M. S. A. Hossain, J. Na, N. N. Awaludin, J. Shah, L. K. Shrestha, K. Ariga, A. K. Nanjundan, D. J. Martin, J. G. Shapter, and Y. Yamauchi, Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage, Microporous and Mesoporous Materials 312 (2021) 110757.
[37] M. A. Luciano, H. Ribeiro, G. E. Bruch, and G. G. Silva, Efficiency of capacitive deionization using carbon materials based electrodes for water desalination, Journal of Electroanalytical Chemistry 859 (2020) 113840.
[38] S. Vafakhah, Z. Beiramzadeh, M. Saeedikhani, and H. Y. Yang, A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization, Desalination 493 (2020) 114662.
[39] J. Elisadiki, T. E. Kibona, R. L. Machunda, M. W. Saleem, W.-S. Kim, and Y. A. C. Jande, Biomass-based carbon electrode materials for capacitive deionization: a review, Biomass Conversion and Biorefinery 10 (2020) 1327-1356.
[40] M. Torkamanzadeh, L. Wang, Y. Zhang, Ö. Budak, P. Srimuk, and V. Presser, MXene/Activated-carbon hybrid capacitive deionization for permselective ion removal at low and high salinity, ACS Applied Materials & Interfaces 12 (2020) 26013-26025.
[41] Z. U. Khan, T. Yan, J. Han, L. Shi, and D. Zhang, Capacitive deionization of saline water using graphene nanosphere decorated N-doped layered mesoporous carbon frameworks, Environ. Sci. Nano 6 (2019) 3442-3453.
[42] X. Xu, A. E. Allah, C. Wang, H. Tan, A. A. Farghali, M. H. Khedr, V. Malgras, T. Yang, and Y. Yamauchi, Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination, Chem. Eng. J. 362 (2019) 887-896.
[43] A. Ganganboina, and R.-a. Doong, Nitrogen doped graphene quantum dot-decorated earth-abundant nanotubes for enhanced capacitive deionization, Environmental Science: Nano 7 (2019) 228-237.
[44] L. Zou, G. Morris, and D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination 225 (2008) 329-340.
[45] T. Alencherry, N. A.R, S. Ghosh, J. Daniel, and V. R, Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization, Desalination 415 (2017) 14-19.
[46] P. A. Chen, H. C. Cheng, and H. P. Wang, Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water, Journal of Cleaner Production 174 (2018) 927-932.
[47] H. Wang, L. Edaño, L. Valentino, Y. J. Lin, V. M. Palakkal, D.-L. Hu, B.-H. Chen, and D.-J. Liu, Capacitive deionization using carbon derived from an array of zeolitic-imidazolate frameworks, Nano Energy 77 (2020) 105304.
[48] A. G. El-Deen, J.-H. Choi, C. S. Kim, K. A. Khalil, A. A. Almajid, and N. A. M. Barakat, TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination 361 (2015) 53-64.
[49] M. A. Jaoude, E. Alhseinat, K. Polychronopoulou, G. Bharath, I. F. F. Darawsheh, S. Anwer, M. A. Baker, S. J. Hinder, and F. Banat, Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization, Electrochimica Acta 330 (2020) 135202.
[50] H. M. Moustafa, M. Obaid, M. M. Nassar, M. A. Abdelkareem, and M. S. Mahmoud, Titanium dioxide-decorated rGO as an effective electrode for ultrahigh-performance capacitive deionization, Sep. Purif. Technol. 235 (2020) 116178.
[51] A. S. Yasin, A. Y. Mohamed, I. M. A. Mohamed, D.-Y. Cho, C. H. Park, and C. S. Kim, Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization, Chemical Engineering Journal 371 (2019) 166-181.
[52] Y. Yang, B.-W. Deng, X. Liu, Y. Li, B. Yin, and M.-b. Yang, Rational design of MnO2-nanosheets-decroated hierarchical porous carbon nanofiber frameworks as high-performance supercapacitor electrode materials, Electrochimica Acta 324 (2019) 134891.
[53] M. Verma, A. Kumar, K. P. Singh, R. Kumar, V. Kumar, C. M. Srivastava, V. Rawat, G. Rao, S. Kumari, P. Sharma, and H. Kim, Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium, Journal of Molecular Liquids 315 (2020) 113769.
[54] L. H. Nonaka, T. S. D. Almeida, C. B. Aquino, S. H. Domingues, R. V. Salvatierra, and V. H. R. Souza, Crumpled graphene decorated with manganese ferrite nanoparticles for hydrogen peroxide sensing and electrochemical supercapacitors, ACS Applied Nano Materials 3 (2020) 4859-4869.
[55] C. Yang, M. Shi, Y. Nuli, X. Song, L. Zhao, J. Liu, P. Zhang, and L. Gao, Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors, Electrochimica Acta 331 (2020) 135386.
[56] H. Younes, F. Ravaux, N. E. Hadri, and L. Zou, Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization, Electrochimica Acta 306 (2019) 1-8.
[57] S. Tian, X. Zhang, and Z. Zhang, Capacitive deionization with MoS2/g-C3N4 electrodes, Desalination 479 (2020) 114348.
[58] W. Peng, W. Wang, G. Han, Y. Huang, and Y. Zhang, Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization, Desalination 473 (2020) 114191.
[59] S. Kamila, B. Mohanty, A. K. Samantara, P. Guha, A. Ghosh, B. Jena, P. V. Satyam, B. K. Mishra, and B. K. Jena, Highly active 2D layered MoS2-rGO hybrids for energy conversion and storage applications, Sci. Rep. 7 (2017) 8378.
[60] V. O. Koroteev, L. G. Bulusheva, I. P. Asanov, E. V. Shlyakhova, D. V. Vyalikh, and A. V. Okotrub, Charge transfer in the MoS2/Carbon nanotube composite, The Journal of Physical Chemistry C 115 (2011) 21199-21204.
[61] Q. Ke, X. Zhang, W. Zang, A. M. Elshahawy, Y. Hu, Q. He, S. J. Pennycook, Y. Cai, and J. Wang, Strong charge transfer at 2H–1T phase boundary of MoS2 for superb high-performance energy storage, Small 15 (2019) 1900131.
[62] P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann, N. Jäckel, M. C. Tekeli, M. Aslan, M. E. Suss, and V. Presser, MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization, J. Mater. Chem. A 4 (2016) 18265-18271.
[63] T. S. Gopal, S. K. Jeong, T. A. Alrebdi, S. Pandiaraj, A. Alodhayb, M. Muthuramamoorthy, and G. Andrews Nirmala, MXene-based composite electrodes for efficient electrochemical sensing of glucose by non-enzymatic method, Mater. Today Chem. 24 (2022) 100891.
[64] M. Berkani, A. Smaali, F. Almomani, and Y. Vasseghian, Recent advances in MXene-based nanomaterials for desalination at water interfaces, Environ. Res. 203 (2022) 111845.
[65] A. Raza, U. Qumar, A. A. Rafi, and M. Ikram, MXene-based nanocomposites for solar energy harvesting, Sustain. Mater. Technol. 33 (2022) e00462.
[66] N. Zouli, R. M. A. Hameed, A. Abutaleb, M. M. El-Halwany, M. H. El-Newehy, and A. Yousef, Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance, J. Mater. Res. Technol. 15 (2021) 3795-3806.
[67] B. C. Wyatt, A. Rosenkranz, and B. Anasori, 2D MXenes: Tunable Mechanical and Tribological Properties, Advanced Materials 33 (2021) 2007973.
[68] S. Dahiya, A. Singh, and B. K. Mishra, Capacitive deionized hybrid systems for wastewater treatment and desalination: A review on synergistic effects, mechanisms and challenges, Chem. Eng. J. 417 (2021) 128129.
[69] Y. Gogotsi, and B. Anasori, The Rise of MXenes, ACS Nano 13 (2019) 8491-8494.
[70] L. Gao, W. Bao, A. V. Kuklin, S. Mei, H. Zhang, and H. Ågren, Hetero-MXenes: Theory, Synthesis, and Emerging Applications, Advanced Materials 33 (2021) 2004129.
[71] B. Xu, and Y. Gogotsi, MXenes: From Discovery to Applications, Advanced Functional Materials 30 (2020) 2007011.
[72] R. A. P. E. P. K. A. M. P. Y. G. Samantha Buczek; Michael L. Barsoum; Simge Uzun; Dr. Narendra Kurra, Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization, Energy & Environmental Materials 3 (2020) 398-404.
[73] B. Chen, A. Feng, R. Deng, K. Liu, Y. Yu, and L. Song, MXene as a cation-selective cathode material for asymmetric capacitive deionization, ACS Appl. Mater. Interfaces 12 (2020) 13750-13758.
[74] P. Srimuk, J. Halim, J. Lee, Q. Tao, J. Rosen, and V. Presser, Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation, ACS Sustainable Chemistry & Engineering 6 (2018) 3739-3747.
[75] Y.-H. Liu, H.-C. Hsi, K.-C. Li, and C.-H. Hou, Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization, ACS Sustainable Chemistry & Engineering 4 (2016) 4762-4770.
[76] Y. Zhang, L. Chen, S. Mao, Z. Sun, Y. Song, and R. Zhao, Fabrication of porous graphene electrodes via CO2 activation for the enhancement of capacitive deionization, Journal of Colloid and Interface Science 536 (2019) 252-260.
[77] G. Bharath, N. Arora, A. Hai, F. Banat, D. Savariraj, H. Taher, and R. V. Mangalaraja, Synthesis of hierarchical Mn3O4 nanowires on reduced graphene oxide nanoarchitecture as effective pseudocapacitive electrodes for capacitive desalination application, Electrochimica Acta 337 (2020) 135668.
[78] P. Srimuk, J. Lee, S. Fleischmann, S. Choudhury, N. Jäckel, M. Zeiger, C. Kim, M. Aslan, and V. Presser, Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide, J. Mater. Chem. A 5 (2017) 15640-15649.
[79] S. Anwer, D. H. Anjum, S. Luo, Y. Abbas, B. Li, S. Iqbal, and K. Liao, 2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination, J. Chem. Eng. 406 (2021) 126827.
[80] Z. Chen, X. Xu, Z. Ding, K. Wang, X. Sun, T. Lu, M. Konarova, M. Eguchi, J. G. Shapter, L. Pan, and Y. Yamauchi, Ti3C2 MXenes-derived NaTi2(PO4)3/MXene nanohybrid for fast and efficient hybrid capacitive deionization performance, J. Chem. Eng. 407 (2021) 127148.
[81] A. Amiri, Y. Chen, C. Bee Teng, and M. Naraghi, Porous nitrogen-doped MXene-based electrodes for capacitive deionization, Energy Storage Materials 25 (2020) 731-739.
[82] T. Wu, G. Wang, Q. Dong, B. Qian, Y. Meng, and J. Qiu, Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode, Electrochimica Acta 176 (2015) 426-433.
[83] S. K. Mohamed, M. Abuelhamd, N. K. Allam, A. Shahat, M. Ramadan, and H. M. A. Hassan, Eco-friendly facile synthesis of glucose–derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization, Desalination 477 (2020) 114278.
[84] J. Adorna, M. Borines, V. D. Dang, and R.-A. Doong, Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization, Desalination 492 (2020) 114602.
[85] G. Yang, X. Li, Z. Guan, Y. Tong, B. Xu, X. Wang, Z. Wang, and L. Chen, Insights into lithium and sodium storage in porous carbon, Nano Letters 20 (2020) 3836–3843.
[86] H. Okuda, R. J. Young, D. Wolverson, F. Tanaka, G. Yamamoto, and T. Okabe, Investigating nanostructures in carbon fibres using Raman spectroscopy, Carbon 130 (2018) 178-184.
[87] S.-M. You, C.-K. Tasi, P. Millet, and R.-A. Doong, Electrochemically capacitive deionization of copper (II) using 3D hierarchically reduced graphene oxide architectures, Sep. Purif. Technol. 251 (2020) 117368.
[88] T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H. S. Park, and D. Zhang, Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy, Environmental Science: Nano 5 (2018) 2722-2730.
[89] J. Kim, Y. Yi, D.-H. Peck, S.-H. Yoon, D.-H. Jung, and H. S. Park, Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance, Environ. Sci. Nano 6 (2019) 916-924.
[90] S. K. Mohamed, S. Abd Elsalam, A. Shahat, H. M. Hassan, and R. M. Kamel, Efficient sucrose-derived mesoporous carbon sphere electrodes with enhanced hydrophilicity for water capacitive deionization at low cell voltages, New J Chem 45 (2021) 1904-1914.
[91] M. Mi, X. Liu, W. Kong, Y. Ge, W. Dang, and J. Hu, Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization, Desalination 464 (2019) 18-24.
[92] R. L. Zornitta, F. J. García-Mateos, J. J. Lado, J. Rodríguez-Mirasol, T. Cordero, P. Hammer, and L. A. M. Ruotolo, High-performance activated carbon from polyaniline for capacitive deionization, Carbon 123 (2017) 318-333.
[93] J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, and E. Alhseinat, A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice, Sep. Purif. Technol. 207 (2018) 291-320.
[94] J. Kim, J. Kim, J. H. Kim, and H. S. Park, Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance, Chem. Eng. J. 382 (2020) 122996.
[95] M. Qin, A. Deshmukh, R. Epsztein, S. K. Patel, O. M. Owoseni, W. S. Walker, and M. Elimelech, Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis, Desalination 455 (2019) 100-114.
[96] M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci. 8 (2015) 2296-2319.
[97] W. Dianbudiyanto, and S.-H. Liu, Outstanding performance of capacitive deionization by a hierarchically porous 3D architectural graphene, Desalination 468 (2019) 114069.
[98] K. A. Khalil, N. A. Barakat, M. Motlak, and F. S. Al-Mubaddel, A novel graphene oxide-based ceramic composite as an efficient electrode for capacitive deionization, Sci. Rep. 10 (2020) 1-9.
[99] J. J. Lado, V. Cartolano, E. García-Quismondo, G. García, I. Almonacid, V. Senatore, V. Naddeo, J. Palma, and M. A. Anderson, Performance analysis of a capacitive deionization stack for brackish water desalination, Desalination 501 (2021) 114912.
[100] C. Santos, E. García-Quismondo, J. Palma, M. A. Anderson, and J. J. Lado, Understanding capacitive deionization performance by comparing its electrical response with an electrochemical supercapacitor: Strategies to boost round-trip efficiency, Electrochim. Acta 330 (2020) 135216.
[101] T. Trunzer, P. Fraga-García, M.-P. Apollinaire Tschuschner, D. Voltmer, and S. Berensmeier, The electrosorptive response of a carbon nanotube flow-through electrode in aqueous systems, Chem. Eng. J. 428 (2021) 131009.
[102] C. Santos, I. V. Rodríguez, J. J. Lado, M. Vila, E. García-Quismondo, M. A. Anderson, J. Palma, and J. J. Vilatela, Low-energy consumption, free-form capacitive deionization through nanostructured networks, Carbon 176 (2021) 390-399.
[103] P. Ratajczak, M. E. Suss, F. Kaasik, and F. Béguin, Carbon electrodes for capacitive technologies, Energy Storage Mater. 16 (2019) 126-145.
[104] F. Xing, T. Li, J. Li, H. Zhu, N. Wang, and X. Cao, Chemically exfoliated MoS2 for capacitive deionization of saline water, Nano Energy 31 (2017) 590-595.
[105] C. Zhang, H. B. Wu, Z. Guo, and X. W. Lou, Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties, Electrochemistry Communications 20 (2012) 7-10.
[106] S. Tian, X. Zhang, and Z. Zhang, Novel MoS2/NOMC electrodes with enhanced capacitive deionization performances, Chem. Eng. J. 409 (2021) 128200.
[107] J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. de Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci. 14 (2021) 1095-1120.
[108] Z. Wei, and R. Semiat, Applying a modified Donnan model to describe the surface complexation of chromate to iron oxyhydroxide agglomerates with heteromorphous pores, J. Colloid Interface Sci. 506 (2017) 66-75.
[109] S. D. Datar, K. Mohanapriya, D. J. Ahirrao, and N. Jha, Comparative study of electrosorption performance of solar reduced graphene oxide in flow-between and flow-through capacitive deionization architectures, Sep. Purif. Technol. 257 (2021) 117972.
[110] Q. Geng, X. Tong, G. E. Wenya, C. Yang, J. Wang, A. S. Maloletnev, Z. M. Wang, and X. Su, Humate-assisted synthesis of MoS2/C nanocomposites via co-precipitation/calcination route for high performance Lithium ion batteries, Nanoscale Res. Lett. 13 (2018) 129.
[111] M. Wu, J. Zhan, K. Wu, Z. Li, L. Wang, B. Geng, L. Wang, and D. Pan, Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance, J. Mater. Chem. A 5 (2017) 14061-14069.
[112] X. Hu, Y. Li, G. Zeng, J. Jia, H. Zhan, and Z. Wen, Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for Lithium and sodium storage, ACS Nano 12 (2018) 1592-1602.
[113] D. Joseph, Investigations on megalithic pottery samples by X-ray emission spectroscopy (EDXRF and XANES), Asian J. of Adv. Basic Sci. 1 (2014) 60-66.
[114] S. Yang, K. Zhang, C. Wang, Y. Zhang, S. Chen, C. Wu, A. Vasileff, S.-Z. Qiao, and L. Song, Hierarchical 1T-MoS2 nanotubular structures for enhanced supercapacitive performance, J. Mater. Chem. A 5 (2017) 23704-23711.
[115] S. Jayabal, J. Wu, J. Chen, D. Geng, and X. Meng, Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications, Mater. Today Energy 10 (2018) 264-279.
[116] M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, and A. Seabaugh, The MoS2 nanotubes with defect-controlled electric properties, Nanoscale Res. Lett. 6 (2010) 1-6.
[117] M. Ayiania, M. Smith, A. J. R. Hensley, L. Scudiero, J.-S. McEwen, and M. Garcia-Perez, Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles, Carbon 162 (2020) 528-544.
[118] M. Inagaki, M. Toyoda, Y. Soneda, and T. Morishita, Nitrogen-doped carbon materials, Carbon 132 (2018) 104-140.
[119] P. G. Rouxhet, and M. J. Genet, XPS analysis of bio-organic systems, Surf Interface Anal 43 (2011) 1453-1470.
[120] B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu, Y. Zhao, Z. Cheng, and Y. Lu, Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water, Sci. Rep. 7 (2017) 1.
[121] N. P. Kondekar, M. G. Boebinger, E. V. Woods, and M. T. McDowell, In situ XPS investigation of transformations at crystallographically oriented MoS2 interfaces, ACS Appl. Mater. Interfaces 9 (2017) 32394-32404.
[122] T. K. A. Nguyen, E. P. Kuncoro, and R.-A. Doong, Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization, Electrochimica Acta 401 (2022) 139488.
[123] M. Qin, A. Deshmukh, R. Epsztein, S. K. Patel, O. M. Owoseni, W. S. Walker, and M. Elimelech, Response to comments on “comparison of energy consumption in desalination by capacitive deionization and reverse osmosis”, Desalination 462 (2019) 48-55.
[124] J. E. Dykstra, S. Porada, A. van der Wal, and P. M. Biesheuvel, Energy consumption in capacitive deionization – Constant current versus constant voltage operation, Water Res. 143 (2018) 367-375.
[125] N. Yoon, S. Park, J. Shim, J. Lee, M. Son, and K. H. Cho, Membrane capacitive deionization model including fouling indexes obtained via real-time fouling layer measurements, Desalination 536 (2022) 115852.
[126] T. Kim, J. E. Dykstra, S. Porada, A. van der Wal, J. Yoon, and P. M. Biesheuvel, Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci. 446 (2015) 317-326.
[127] F. Jia, K. Sun, B. Yang, X. Zhang, Q. Wang, and S. Song, Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water, Desalination 446 (2018) 21-30.
[128] Z. Liang, H. Xia, H. Liu, L. Zhang, J. Zhou, H. Li, and W. Xie, Enhanced capacitance characteristic of microporous carbon spheres through surface modification by oxygen-containing groups, Results in Physics 15 (2019) 102586.
[129] T. Gao, H. Li, F. Zhou, M. Gao, S. Liang, and M. Luo, Mesoporous carbon derived from ZIF-8 for high efficient electrosorption, Desalination 451 (2019) 133-138.
[130] J. Nordstrand, and J. Dutta, Design principles for enhanced up-scaling of flow-through capacitive deionization for water desalination, Desalination 500 (2021) 114842.
[131] G. S. S. Mamaril, M. D. G. de Luna, K. Bindumadhavan, D. C. Ong, J. A. I. Pimentel, and R.-A. Doong, Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions, Separation and Purification Technology 272 (2021) 117559.
[132] M. Wang, X. Xu, J. Tang, S. Hou, M. S. A. Hossain, L. Pan, and Y. Yamauchi, High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches, Chemical Communications 53 (2017) 10784-10787.
[133] Y. Lu, S. Zhang, X. Han, X. Wan, J. Gao, C. Bai, Y. Li, Z. Ge, L. Wei, and Y. Chen, Controlling and optimizing the morphology and microstructure of 3D interconnected activated carbons for high performance supercapacitors, Nanotechnology 32 (2020) 085401.
[134] Z. Zhu, and Z. Xu, The rational design of biomass-derived carbon materials towards next-generation energy storage: A review, Renewable and Sustainable Energy Reviews 134 (2020) 110308.
[135] Z. Li, K. Gao, G. Han, R. Wang, H. Li, G. Zhao, and P. Guo, Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties, New J. Chem. 39 (2014) 361-368.
[136] G. Luo, Y. Wang, L. Gao, D. Zhang, and T. Lin, Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability, Electrochimica Acta 260 (2018) 656-663.
[137] Z. Awan, Improved electrocatalytic activity of carbon materials by nitrogen doping, Applied Catalysis B: Environmental 147 (2013) 633–641.
[138] Z. Wu, Shang, and Chiu, Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling, Molecules 24 (2019) 2755.
[139] Y. Li, L. Liu, Y. Wu, t. wu, H. Wu, Q. Cai, Y. Xu, B. Zeng, C. Yuan, and L. Dai, Facile synthesis of nitrogen-doped carbon materials with hierarchical porous structures for high-performance supercapacitors in both acid and alkaline electrolytes, Journal of Materials Chemistry A 7 (2019) 13154-13163.
[140] Y. Zhao, G. Luo, L. Zhang, L. Gao, D. Zhang, and Z. Fan, Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization, Electrochimica Acta 331 (2020) 135420.
[141] D. Cheng, M. Tian, B. Wang, J. Zhang, J. Chen, X. Feng, Z. He, L. Dai, and L. Wang, One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery, Journal of Colloid and Interface Science 572 (2020) 216-226.
[142] P. Duan, T. Ma, Y. Yue, Y. Li, X. Zhang, Y. Shang, W. Zhou, Q. Zhang, Q. Yue, and X. Xu, Fe/Mn nanoparticles encapsulated nitrogen-doped carbon nanotubes as peroxymonosulfate activator for acetamiprid degradation, Environmental Science: Nano 6 (2019) 1799-1811.
[143] W. Zhong, J. Chen, P. Zhang, L. Deng, L. Yao, X. Ren, Y. Li, H. Mi, and L. Sun, Air plasma etching towards rich active sites in Fe/N-porous carbon for the oxygen reduction reaction with superior catalytic performance, Journal of Materials Chemistry A 5 (2017) 16605-16610.
[144] T. Yamamoto, Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?, X-Ray Spectrometry 37 (2008) 572-584.
[145] F. H. Martins, F. G. Silva, F. L. O. Paula, J. de A. Gomes, R. Aquino, J. Mestnik-Filho, P. Bonville, F. Porcher, R. Perzynski, and J. Depeyrot, Local structure of core–shell MnFe2O4+δ-based nanocrystals: cation distribution and valence states of manganese ions, Journal of Physical Chemistry C 121 (2017) 8982 - 8991.
[146] H. L. Andersen, M. Saura-Múzquiz, C. Granados-Miralles, E. Canévet, N. Lock, and M. Christensen, Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles, Nanoscale 10 (2018) 14902-14914.
[147] A. Yadav, S. Haque, S. Tripathi, D. Shukla, M. Ahmed, D. Phase, S. Bandyopadhyay, S. Jha, and D. Bhattacharyya, Investigation on Fe doped ZnO thin films by X-ray absorption spectroscopy, RSC Adv. 6 (2016) 74982-74990.
[148] V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science 7 (2014) 1597-1614.
[149] A. Allagui, J. Ashraf, M. Khalil, M. Abdelkareem, and H. Alawadhi, All-solid-state double-layer capacitors using binderless reduced graphene oxide thin films prepared by bipolar electrochemistry, ChemElectroChem 4 (2017) 2084-2090.
[150] A. S. Yasin, H. O. Mohamed, I. M. A. Mohamed, H. M. Mousa, and N. A. M. Barakat, Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Separation and Purification Technology 171 (2016) 34-43.
[151] J. J. Lado, R. L. Zornitta, I. s. Vázquez Rodríguez, K. Malverdi Barcelos, and L. A. Ruotolo, Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications, ACS Sustainable Chemistry & Engineering 7 (2019) 18992-19004.
[152] S. Tian, Z. Zhang, X. Zhang, and K. Ostrikov, Capacitative deionization using commercial activated carbon fiber decorated with polyaniline, Journal of Colloid and Interface Science 537 (2019) 247-255.
[153] Y. Zhao, Y. Zhang, P. Tian, L. Wang, K. Li, C. Lv, and B. Liang, Nitrogen-rich mesoporous carbons derived from zeolitic imidazolate framework-8 for efficient capacitive deionization, Electrochimica Acta 321 (2019) 134665.
[154] G. Tan, S. Lu, N. Xu, D. Gao, and X. Zhu, Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO2 Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization, Environmental Science & Technology 54 (2020) 5843-5852.
[155] D. Liu, X.-a. Ning, Y. Hong, Y. Li, Q. Bian, and J. Zhang, Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization, Electrochimica Acta 296 (2019) 327-334.
[156] D. J. Ahirrao, and N. Jha, Comparative study on the electrosorption properties of carbon fabric, functionalized multiwall carbon nanotubes and solar-reduced graphene oxide for flow through electrode based desalination studies, Carbon 152 (2019) 837-850.
[157] M. A. Alkhadra, X. Su, M. E. Suss, H. Tian, E. N. Guyes, A. N. Shocron, K. M. Conforti, J. P. de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. G. Wenten, J. G. Santiago, T. A. Hatton, and M. Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev. 122 (2022) 13547-13635.
[158] P. Srimuk, X. Su, J. Yoon, D. Aurbach, and V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements, Nat. Rev. Mater. 5 (2020) 517-538.
[159] J. Choi, P. Dorji, H. K. Shon, and S. Hong, Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency, Desalination 449 (2019) 118-130.
[160] S. Venkateshalu, and A. N. Grace, MXenes—A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond, Appl. Mater. Today 18 (2020) 100509.
[161] T. Amrillah, C. A. Abdullah, A. Hermawan, F. N. Sari, and V. N. Alviani, Towards greener and more sustainable synthesis of MXenes: a review, Nanomaterials 12 (2022) 4280.
[162] S. Hong, F. Al Marzooqi, J. K. El-Demellawi, N. Al Marzooqi, H. A. Arafat, and H. N. Alshareef, Ion-selective separation using MXene-based membranes: a review, ACS Mater. Lett. 5 (2023) 341-356.
[163] S. Asad, A. Zahoor, F. A. Butt, S. Hashmi, F. Raza, I. U. Ahad, J. Hakami, S. Ullah, A. Al-Ahmed, F. Khan, and M. Christy, Recent advances in titanium carbide MXene (Ti3C2Tx) cathode material for lithium–air battery, ACS Appl. Energy Mater. 5 (2022) 11933-11946.
[164] X. Xu, Y. Zhang, H. Sun, J. Zhou, F. Yang, H. Li, H. Chen, Y. Chen, Z. Liu, Z. Qiu, D. Wang, L. Ma, J. Wang, Q. Zeng, and Z. Peng, Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices, Adv. Electron. Mater. 7 (2021) 2000967.
[165] B. Zhang, A. Boretti, and S. Castelletto, Mxene pseudocapacitive electrode material for capacitive deionization, J. Chem. Eng. 435 (2022) 134959.
[166] N. Liu, L. Yu, B. Liu, F. Yu, L. Li, Y. Xiao, J. Yang, and J. Ma, Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization, Adv. Sci. 10 (2022) 2204041.
[167] X. Shen, L. Li, Y. Xiong, F. Yu, and J. Ma, Graphene-assisted Ti3C2 MXene-derived ultrathin sodium titanate for capacitive deionization with excellent rate performance and long cycling stability, J. Mater. Chem. A 10 (2022) 10192-10200.
[168] P. Das, and Z.-S. Wu, MXene for energy storage: present status and future perspectives, JPhys energy. 2 (2020) 032004.
[169] A. Feng, Y. Yu, L. Mi, Y. Yu, and L. Song, Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization, Ionics 25 (2019) 727-735.
[170] A. VahidMohammadi, J. Rosen, and Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes), Science 372 (2021) eabf1581.
[171] A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao, and A. Qurashi, Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications, NPJ 2D Mater. Appl. 5 (2021) 61.
[172] C. B. Cockreham, V. G. Goncharov, E. Hammond-Pereira, M. E. Reece, A. C. Strzelecki, W. Xu, S. R. Saunders, H. Xu, X. Guo, and D. Wu, Energetic stability and interfacial complexity of Ti3C2Tx MXenes synthesized with HF/HCl and CoF2/HCl as etching agents, ACS Appl. Mater. Interfaces 14 (2022) 41542-41554.
[173] A. Jawaid, A. Hassan, G. Neher, D. Nepal, R. Pachter, W. J. Kennedy, S. Ramakrishnan, and R. A. Vaia, Halogen etch of Ti3AlC2 MAX Phase for MXene fabrication, ACS Nano 15 (2021) 2771-2777.
[174] M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78-81.
[175] L. Verger, V. Natu, M. Ghidiu, and M. W. Barsoum, Effect of cationic exchange on the hydration and swelling behavior of Ti3C2Tz MXenes, The Journal of Physical Chemistry C 123 (2019) 20044-20050.
[176] A. Shayesteh Zeraati, S. A. Mirkhani, P. Sun, M. Naguib, P. V. Braun, and U. Sundararaj, Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance, Nanoscale 13 (2021) 3572-3580.
[177] Y. Zhou, Y. Wang, Y. Wang, and X. Li, Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti3C2Tx MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets, Anal. Chem. 92 (2020) 16033-16042.
[178] J. Zhang, N. Kong, D. Hegh, K. A. S. Usman, G. Guan, S. Qin, I. Jurewicz, W. Yang, and J. M. Razal, Freezing titanium carbide aqueous dispersions for ultra-long-term storage, ACS Appl. Mater. Interfaces 12 (2020) 34032-34040.
[179] W. Y. Chen, X. Jiang, S.-N. Lai, D. Peroulis, and L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds, Nat. Commun. 11 (2020) 1302.
[180] V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier, and M. W. Barsoum, A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes, Matter 4 (2021) 1224-1251.
[181] Q. X. Xia, J. Fu, J. M. Yun, R. S. Mane, and K. H. Kim, High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor, RSC Advances 7 (2017) 11000-11011.
[182] T. Liu, L. Li, X. Geng, C. Yang, X. Zhang, X. Lin, P. Lv, Y. Mu, and S. Huang, Heterostructured MXene-derived oxides as superior photocatalysts for MB degradation, J. Alloys Compd. 919 (2022) 165629.
[183] S. Wang, Y. Liu, Y. Liu, and W. Hu, Effect of HF etching on titanium carbide (Ti3C2Tx) microstructure and its capacitive properties, J. Chem. Eng. 452 (2023) 139512.
[184] Y. Guan, R. Zhao, K. Li, K. Chen, H. Zhu, X. Li, Q. Zhang, N. Yang, Z. Dong, G. Yuan, Y. Li, and Y. Cong, Tailoring surface chemistry of MXenes to boost initial coulombic efficiency for lithium storage, Appl. Surf. Sci. 612 (2023) 155875.
[185] Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai, H. Chen, Y. Liu, K. Gopalsamy, W. Gao, and C. Gao, MXene/graphene hybrid fibers for high performance flexible supercapacitors, J. Mater. Chem. A 5 (2017) 22113-22119.
[186] W. Deng, X. Jia, Y. Chen, Z. Wang, F. Chen, W. Chen, and T. Ao, The mechanism and regulation of the electrosorption selectivity of inorganic anions during capacitive deionization, New Journal of Chemistry 45 (2021) 16722-16731.
[187] Z. Zhang, Z. Wang, and H. Li, The origin of selective electro-adsorption of cations by few-layered 2D MXene electrode, Desalination 548 (2023) 116295.
[188] J. Nordstrand, and J. Dutta, Simplified Prediction of Ion Removal in Capacitive Deionization of Multi-Ion Solutions, Langmuir 36 (2020) 1338-1344.
[189] R. Uwayid, E. N. Guyes, A. N. Shocron, J. Gilron, M. Elimelech, and M. E. Suss, Perfect divalent cation selectivity with capacitive deionization, Water Res. 210 (2022) 117959.
[190] M. R. Cerón, F. Aydin, S. A. Hawks, D. I. Oyarzun, C. K. Loeb, A. Deinhart, C. Zhan, T. A. Pham, M. Stadermann, and P. G. Campbell, Cation selectivity in capacitive deionization: elucidating the role of pore size, electrode potential, and ion dehydration, ACS Appl. Mater. Interfaces 12 (2020) 42644-42652.
[191] L. Guo, X. Wang, Z. Y. Leong, R. Mo, L. Sun, and H. Y. Yang, Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination, FlatChem 8 (2018) 17-24.
[192] S. Buczek, M. L. Barsoum, S. Uzun, N. Kurra, R. Andris, E. Pomerantseva, K. A. Mahmoud, and Y. Gogotsi, Rational design of titanium carbide mxene electrode architectures for hybrid capacitive deionization, ENERGY & ENVIRONMENTAL MATERIALS 3 (2020) 398-404.
[193] Z. Y. Leong, and H. Y. Yang, Capacitive deionization of divalent cations for water softening using functionalized carbon electrodes, ACS Omega 5 (2020) 2097-2106.
[194] O. Pastushok, D. L. Ramasamy, M. Sillanpää, and E. Repo, Enhanced ammonium removal and recovery from municipal wastewater by asymmetric CDI cell equipped with oxygen functionalized carbon electrode, Sep. Purif. Technol. 274 (2021) 119064.
[195] A. Hassanvand, G. Q. Chen, P. A. Webley, and S. E. Kentish, A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization, Water Res. 131 (2018) 100-109.
[196] P. Nie, X. Shang, B. Hu, T. Hussain, J. Yang, M. Huang, and J. Liu, Enhanced capacitive removal of hardness ions by hierarchical porous carbon cathode with high mesoporosity and negative surface charges, J. Colloid Interface Sci. 612 (2022) 277-286.
[197] S. Chaleawlert-umpon, S. Phiromrak, and N. Pimpha, Sustainable N-doped lignin-derived porous carbon showing ion selectivity in capacitive deionization applications, Environmental Science: Water Research & Technology 7 (2021) 1828-1839.
[198] T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart, Z. Wang, Z. He, and G. Liu, Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers, Science Advances 6 (2020) eaaz0906.
[199] M. P. Maniscalco, C. Corrado, R. Volpe, and A. Messineo, Evaluation of the optimal activation parameters for almond shell bio-char production for capacitive deionization, Bioresource Technology Reports 11 (2020) 100435.
[200] A. U. Rajapaksha, R. Selvasembian, A. Ashiq, V. Gunarathne, A. Ekanayake, V. O. Perera, H. Wijesekera, S. Mia, M. Ahmad, M. Vithanage, and Y. S. Ok, A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances, Sci. Total Environ. 809 (2022) 152055.
[201] H. Karimi-Maleh, A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, L. Fu, and M. Sillanpää, Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review, J. Mol. Liq. 329 (2021) 115062.
[202] T. Masinga, M. Moyo, and V. E. Pakade, Removal of hexavalent chromium by polyethyleneimine impregnated activated carbon: intra-particle diffusion, kinetics and isotherms, J. Mater. Res. Technol. 18 (2022) 1333-1344.
[203] J. Augustynowicz, E. Sitek, D. Latowski, K. Wołowski, A. Kowalczyk, and R. Przejczowski, Unique biocenosis as a foundation to develop a phytobial consortium for effective bioremediation of Cr(VI)-polluted waters and sediments, Environ. Pollut. 273 (2021) 116506.
[204] P. Prema, V.-H. Nguyen, K. Venkatachalam, J. M. Murugan, H. M. Ali, M. Z. M. Salem, B. Ravindran, and P. Balaji, Hexavalent chromium removal from aqueous solutions using biogenic iron nanoparticles: Kinetics and equilibrium study, Environ. Res. 205 (2022) 112477.
[205] Y.-C. Tsai, and R.-a. Doong, Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization application, Synth Met. 205 (2015) 48-57.
[206] A. T. Angeles, and J. Lee, Carbon-based capacitive deionization electrodes: development techniques and its influence on electrode properties, Chem. Rec. 21 (2021) 820-840.
[207] S. Hand, and R. D. Cusick, Emerging investigator series: capacitive deionization for selective removal of nitrate and perchlorate: impacts of ion selectivity and operating constraints on treatment costs, Environ. Sci. Water Res. 6 (2020) 925-934.
[208] S. D. Datar, R. Mane, and N. Jha, Recent progress in materials and architectures for capacitive deionization: A comprehensive review, Water Environ. Res. 94 (2022) e10696.
[209] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces 4 (2012) 1194-1199.
[210] G. Bharath, A. Hai, K. Rambabu, D. Savariraj, Y. Ibrahim, and F. Banat, The fabrication of activated carbon and metal-carbide 2D framework-based asymmetric electrodes for the capacitive deionization of Cr (vi) ions toward industrial wastewater remediation, Environ. Sci. Water Res. 6 (2020) 351-361.
[211] C. M. Stern, T. O. Jegede, V. A. Hulse, and N. Elgrishi, Electrochemical reduction of Cr(vi) in water: lessons learned from fundamental studies and applications, Chem. Soc. Rev. 50 (2021) 1642-1667.
[212] E. N. Guyes, A. N. Shocron, Y. Chen, C. E. Diesendruck, and M. E. Suss, Long-lasting, monovalent-selective capacitive deionization electrodes, npj Clean Water 4 (2021) 22.
[213] Y. Kim, A. Gkountaras, O. Chaix-Pluchery, I. Gélard, J. Coraux, C. Chapelier, M. W. Barsoum, and T. Ouisse, Elementary processes governing V2AlC chemical etching in HF, RSC Adv. 10 (2020) 25266-25274.
[214] J.-Y. Si, B. Tawiah, W.-L. Sun, B. Lin, C. Wang, A. C. Yuen, B. Yu, A. Li, W. Yang, H.-D. Lu, Q. N. Chan, and G. H. Yeoh, Functionalization of Mxene nanosheets for polystyrene towards high thermal stability and flame retardant properties, Polymers 11 (2019)
[215] P. Sharma, K. Singh, and O. P. Pandey, Investigation on oxidation stability of V2AlC MAX phase, Thermochim. Acta 704 (2021) 179010.
[216] R. Thakur, A. VahidMohammadi, J. Moncada, W. R. Adams, M. Chi, B. Tatarchuk, M. Beidaghi, and C. A. Carrero, Insights into the thermal and chemical stability of multilayered V2CTx MXene, Nanoscale 11 (2019) 10716-10726.
[217] S. M. Lee, S. H. Lee, S. Park, S.-H. Yoon, and D.-H. Jung, Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization, Desalination 539 (2022) 115901.
[218] W. Feng, X. Han, H. Hu, M. Chang, L. Ding, H. Xiang, Y. Chen, and Y. Li, 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases, Nat. Commun. 12 (2021) 2203.
[219] Z. Wang, X. Li, J. Zhou, P. Liu, Q. Huang, P. Ke, and A. Wang, Microstructure evolution of V–Al–C coatings synthesized from a V2AlC compound target after vacuum annealing treatment, J. Alloys Compd. 661 (2016) 476-482.
[220] T. Bashir, S. A. Ismail, J. Wang, W. Zhu, J. Zhao, and L. Gao, MXene terminating groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl?, J. Energy Chem. 76 (2023) 90-104.
[221] H.-J. Liu, and B. Dong, Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage, Mater. Today Phys. 20 (2021) 100469.
[222] H. Stephanie, T. E. Mlsna, and D. O. Wipf, Functionalized biochar electrodes for asymmetrical capacitive deionization, Desalination 516 (2021) 115240.
[223] J. J. Lado, R. L. Zornitta, I. Vázquez Rodríguez, K. Malverdi Barcelos, and L. A. M. Ruotolo, Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications, ACS Sustain. Chem. Eng. 7 (2019) 18992-19004.
[224] O. Norouzi, S. E. M. Pourhosseini, H. R. Naderi, F. Di Maria, and A. Dutta, Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors, Sci. Rep. 11 (2021) 5387.
[225] V. Smulders, N. Simic, A. S. O. Gomes, B. Mei, and G. Mul, Electrochemical formation of Cr(III)-based films on Au electrodes, Electrochim. Acta 296 (2019) 1115-1121.
[226] G. Bharath, K. Rambabu, F. Banat, A. Hai, A. F. Arangadi, and N. Ponpandian, Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions, Sci. Total Environ. 691 (2019) 713-726.
[227] X. Zhang, B. Ren, X. Wu, X. Yan, Y. Sun, H. Gao, and F. Qu, Efficient removal of Chromium(VI) using a novel waste biomass chestnut shell-based carbon electrode by electrosorption, ACS Omega 6 (2021) 25389-25396.
[228] M. S. Gaikwad, and C. Balomajumder, Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study, Sep. Purif. Technol. 186 (2017) 272-281.
[229] S. Hou, X. Xu, M. Wang, T. Lu, C. Q. Sun, and L. Pan, Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization, Chem. Eng. J. 337 (2018) 398-404.
[230] X. F. Zhang, B. Wang, J. Yu, X. N. Wu, Y. H. Zang, H. C. Gao, P. C. Su, and S. Q. Hao, Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization, RSC Adv. 8 (2018) 1159-1167.
[231] M. S. Gaikwad, C. Balomajumder, and A. K. Tiwari, Acid treated RHWBAC electrode performance for Cr(VI) removal by capacitive deionization and CFD analysis study, Chemosphere 254 (2020) 126781.
[232] H. Wang, and C. Na, Binder-Free Carbon Nanotube Electrode for Electrochemical Removal of Chromium, ACS Appl. Mater. Interfaces 6 (2014) 20309-20316.






 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *