帳號:guest(3.143.0.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):挐 炎
作者(外文):Thrinayan Moorthy
論文名稱(中文):開發可植入式有機金屬框架粒子修飾三維列印彈性體應用在局部奈米催化增強免疫治療
論文名稱(外文):Implantable Metal-Organic Framework (MOF)-Modified 3D-Printing Elastomers Hosting In-Situ Catalytic Therapy for Enhanced Immunotherapy
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):張建文
姜文軒
李亦淇
口試委員(外文):Chang, Chien-Wen
Chiang, Wen-Hsuan
Lee, I-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012710
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:96
中文關鍵詞:膠質母細胞瘤納米粒子金屬有機框架支架3D列印免疫療法芬頓反應納米催化癌症治療
外文關鍵詞:Glioblastoma (GBM)NanoparticlesMetal Organic Frameworks (MOFs)Scaffold3D PrintingImmunotherapyFenton ReactionNano-CatalysisCancer Therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
膠質母細胞瘤 (GBM) 是最致命的癌症形式,其特徵是不受約束的惡性腫瘤。由於預後不佳,5 年生存率低於 5%,因此迫切需要開發一種有效的治療材料。自過去幾十年以來,支架一直被廣泛使用,並且已被證明是一種具有潛力遞送媒介,可持續和延長納米粒子的釋放。利用3D列印技術所製造的支架不僅可生產所需形狀和尺寸的支架,更可提高支架的精度,從而為建構具專一性的植入物生產開闢了一條新途徑。支架進一步塗佈有機金屬框架 MOFs–NH2MIL88B,用以啟動納米催化活性。MOFs的添加,不僅可在癌細胞中引發 Fenton 反應,也能與自噬抑制分子一起在腫瘤切除位置誘導免疫反應,從而提高治療效率。
Glioblastoma (GBM) is the most lethal form of cancer characterized by unconstrained malignant neoplasm. With the 5-year survival rate being less than 5% due to penurious prognosis there is a desperate need to develop a potent therapeutic material. Extensive research has been carried out in the past decade for the inhibition of glioblastoma recurrence with most of the results being up to par in few cases with very low survival predictability. Scaffolds have proven to be a potent delivery agent for sustained and prolonged release of therapeutic drugs and nanoparticles. 3D printing of scaffold allows for the production of scaffolds with desired shape and size thereby opening a pathway for the construction of patient specific implant production. Various forms of nanoparticle have been studied and scrutinized for the delivery of drugs which include lipid-based nanoparticles, polymer-based nanoparticles, metallic nanoparticles and viral vectors. A new class of nanoparticles named metal organic frameworks (MOFs) have been bringing significant change with dramatic experimental results in the field of nanotechnology. MOFs are superior class of nanoparticles and their porous structure makes them a suitable candidate for loading and carrying drugs, proteins, and antigens with minimal loss for sustained release.
In this study we fabricated MOFs for efficient cancer therapy. We further successfully surface modified 3D printed scaffold with MOFs nanoparticle. The MOFs NH2-MIL-88B is an Fe ion-based MOF with high catalytic ability. The SRNP MOFs nanoparticle possessed a length of 160 nm and a width of 59 nm whereas the LRNP MOFs possessed a minimal length and width equivalent to 175 nm and 76 nm respectively. Both SRNP and LRNP exhibited a charge of -1.6 mV and 14.3 mV. The MOFs coated scaffold exhibited slow and sustained release of MOF for a period of 11 days. A total of 465 g and 598 g of nanoparticle was released by SNS and LNS scaffolds respectively for a period of 11 days.
We utilized glioblastoma cell line for in-vivo analysis in order to determine the toxicity. We utilized both nanoparticles and MOFs coated scaffolds for in-vitro assays. Both nanoparticles SRNP and LRNP exhibited 50% cell viability at a very low concentration of 10 g. The scaffolds SNS and LNS exhibited cell viability of 41.7% and 32% respectively. The cellular uptake of nanoparticles was determined using fluorescence imaging and flow cytometry. Autophagosome accumulation in cytoplasm was also carried out for MOFs nanoparticles and MOFs nanoparticle coated scaffolds. In the current study we incorporated chloroquine (CQ), the results obtained revealed higher accumulation of autophagosomes for CQ treated groups due to lysosomal deacidification.
In-vivo analysis were carried out using C57BL6 mice, which were injected with ALTS1C1 cells. After 16 days of inoculation the mice were treated with SNS, LNS and Blank HBA/ F127 scaffolds in combination with CQ. Amplification of cytotoxic T cells was observed in CQ treated groups due to ROS mediated immunogenic cell death. The infiltration of T cells was quantified using flow cytometry analysis for lymph nodes and spleen along with immunofluorescence imaging of brain slices. Both flow cytometry and immunofluorescence imaging results were used to interpret the infiltration of T cell. The percentage of CD8+ in SNS, LNS and HBA/ F127 scaffolds treated with CQ accounts to 32%, 35.5% and 40.2% which was much higher when compared with control group (21.4%). Addition of MOFs not only initiated Fenton Reaction in the cancer cells but it also induced immunogenic response at the tumour resected cavity Thus, making surface modified scaffolds with Fenton nano-agent MOF a potential candidate for glioblastoma therapy.
中文摘要
Abstract
Table of Contents
List of Schemes
Chapter 1 Introduction 1
Chapter 2 Literature Review and Theory 5
2.1 Introduction to Glioblastoma 5
2.2 Post Operative Therapy 8
2.3 Immunotherapy for Glioblastoma 13
2.4 Scaffolds for Glioblastoma Therapy 17
2.5 Metal Organic Frameworks (MOFs) 22
Chapter 3 Materials and Methods 30
3.1 Materials 30
3.1.1 Materials used in making 3D printed scaffold: 30
3.1.2 Materials used in synthesis and coating of MOF nanoparticle (NH2MIL-88B): 30
3.1.3 Materials used in Fenton reaction experiment: 30
3.1.4 Materials used for in-vitro studies: 30
3.1.5 Materials used in in-vivo studies 31
3.2 Apparatus and Instruments: 32
3.3 Methods 34
3.3.1 Synthesis of NH2MIL-88B nanoparticles (SRNP): 34
3.3.2 Synthesis of NH2MIL-88B nanoparticles (LRNP): 34
3.3.3 Synthesis of HBA/ F-127 resin mixture for 3D printing: 35
3.3.4 Designing of octahedral shaped scaffold: 35
3.3.5 3D printing of octahedral scaffold and treatment: 36
3.3.6 Synthesis of small nanoparticle coated scaffold (SNS): 37
3.3.7 Synthesis of large nanoparticle coated scaffold (LNS): 37
3.3.8 Preparation of CQ solution for in-vitro experiments: 38
3.3.9 Preparation of CQ solution for in-vivo experiments: 38
3.4 Material Characterisation: 39
3.4.1 SEM sample preparation for nanoparticle: 39
3.4.2 SEM sample preparation for 3D printed scaffolds: 39
3.4.3 TEM sample preparation for nanoparticles: 39
3.4.4 Fourier infrared transform spectroscopy (FTIR) for nanoparticles: 40
3.4.5 Fourier infrared transform spectroscopy (FTIR) for 3D printed scaffolds: 40
3.4.6 Powder X-ray diffraction (XRD) for nanoparticles: 40
3.4.7 Dynamic light scattering (DLS) for MOF nanoparticle: 40
3.4.8 Dynamic light scattering (DLS) for MOF nanoparticle coated scaffold: 40
3.4.9 X-ray Photoelectron Spectrometer (XPS) for nanoparticles: 41
3.4.10 Cumulative MOF nanoparticle release from scaffold: 41
3.4.11 SEM images for MOF dissolve test: 41
3.4.12 Fenton reaction experiment using UV-Vis for nanoparticles: 41
3.4.13 Fenton reaction experiment using UV-Vis for nanoparticles coated scaffold: 42
3.5 In-Vitro Experiments: 42
3.5.1 Cell culture: 42
3.5.2 Cell viability assay of nanoparticles: 42
3.5.3 Cell viability assay of nanoparticles coated scaffold: 43
3.5.4 Cellular uptake (Nanoparticle): 43
3.5.5 LC3B autophagy expression for MOF nanoparticles: 44
3.5.6 LC3B autophagy expression in nanoparticle coated scaffold: 44
3.5.7 Live/ Dead assay: 45
3.6 In-Vivo Experiments: 46
3.6.1 Immunohistochemistry staining: 46
3.6.2 Flow cytometer for immune response: 47
Chapter 4 Result and Discussion 49
4.1 Characterisation of MOF Nanoparticle and MOF Coated Scaffold: 49
4.1.1 SEM, TEM and EDS spectra for MOF nanoparticle: 49
4.1.2 Fourier transform infrared spectroscopy (FTIR) for MOF nanoparticle: 50
4.1.3 X-ray diffraction for MOF nanoparticle: 51
4.1.4 X-ray photoelectron spectroscopy (XPS) for MOF nanoparticle: 51
4.1.5 Dynamic light scattering analysis for MOF nanoparticles: 52
4.1.6 Catalytic performance (Fenton reaction) of MOF nanoparticle: 53
4.1.7 SEM for MOF nanoparticle coated scaffold: 54
4.1.8 MOF dissolve test for MOF coated scaffold: 56
4.1.9 FTIR spectrum for MOF nanoparticle coated scaffold: 56
4.1.10 Cumulative MOF release from the scaffold: 57
4.1.11 Dynamic light scattering analysis for MOF nanoparticle coated scaffold: 58
4.1.12 Catalytic performance (Fenton reaction) of MOF nanoparticle coated scaffold: 60
4.2 In-vitro Assays for MOF Nanoparticle and MOF Coated Scaffolds: 60
4.2.1 Cellular viability assay for nanoparticle: 60
4.2.2 Cellular uptake of MOF nanoparticles fluorescence images: 61
63
4.2.3 Cellular uptake flow cytometry: 64
4.2.4 LC3B expression for nanoparticles treated glioblastoma cells: 64
4.2.5 Cellular viability assay for MOF nanoparticle coated scaffolds: 66
4.2.6 LC3B expression for MOF nanoparticles coated scaffold treated glioblastoma cells: 68
4.2.7 LIVE/ Dead assay for scaffolds coated with MOF nanoparticle: 70
4.3 In-vivo Studies for MOF Coated Scaffolds: 71
4.3.1 Post operative immune response confocal images: 71
4.3.2 Quantification of immune cells using flow cytometry: 77
Chapter 5 Conclusion 80
Reference: 82
1. GRAUWET K, CHIOCCA EA. GLIOMA AND MICROGLIA, A DOUBLE ENTENDRE. NAT IMMUNOL. 2016 OCT 19;17(11):1240-1242.
2. STUPP R, HEGI ME, MASON WP, VAN DEN BENT MJ, TAPHOORN MJ, JANZER RC, LUDWIN SK, ALLGEIER A, FISHER B, BELANGER K, HAU P, BRANDES AA, GIJTENBEEK J, MAROSI C, VECHT CJ, MOKHTARI K, WESSELING P, VILLA S, EISENHAUER E, GORLIA T, WELLER M, LACOMBE D, CAIRNCROSS JG, MIRIMANOFF RO; EUROPEAN ORGANISATION FOR RESEARCH AND TREATMENT OF CANCER BRAIN TUMOUR AND RADIATION ONCOLOGY GROUPS; NATIONAL CANCER INSTITUTE OF CANADA CLINICAL TRIALS GROUP. EFFECTS OF RADIOTHERAPY WITH CONCOMITANT AND ADJUVANT TEMOZOLOMIDE VERSUS RADIOTHERAPY ALONE ON SURVIVAL IN GLIOBLASTOMA IN A RANDOMISED PHASE III STUDY: 5-YEAR ANALYSIS OF THE EORTC-NCIC TRIAL. LANCET ONCOL. 2009 MAY;10(5):459-66.
3. HU S, KANG H, BAEK Y, EL FAKHRI G, KUANG A, CHOI HS. REAL-TIME IMAGING OF BRAIN TUMOR FOR IMAGE-GUIDED SURGERY. ADV HEALTHC MATER. 2018 AUG;7(16):E1800066.
4. WEN PY, KESARI S. MALIGNANT GLIOMAS IN ADULTS. N ENGL J MED. 2008 JUL 31;359(5):492-507.
5. GILBERT MR, DIGNAM JJ, ARMSTRONG TS, WEFEL JS, BLUMENTHAL DT, VOGELBAUM MA, COLMAN H, CHAKRAVARTI A, PUGH S, WON M, JERAJ R, BROWN PD, JAECKLE KA, SCHIFF D, STIEBER VW, BRACHMAN DG, WERNER-WASIK M, TREMONT-LUKATS IW, SULMAN EP, ALDAPE KD, CURRAN WJ JR, MEHTA MP. A RANDOMIZED TRIAL OF BEVACIZUMAB FOR NEWLY DIAGNOSED GLIOBLASTOMA. N ENGL J MED. 2014 FEB 20;370(8):699-708.
6. TAMIMI, A. F., & JUWEID, M. (2017). EPIDEMIOLOGY AND OUTCOME OF GLIOBLASTOMA. EXON PUBLICATIONS, 143-153.
7. ON NH, MILLER DW. TRANSPORTER-BASED DELIVERY OF ANTICANCER DRUGS TO THE BRAIN: IMPROVING BRAIN PENETRATION BY MINIMIZING DRUG EFFLUX AT THE BLOOD-BRAIN BARRIER. CURR PHARM DES. 2014;20(10):1499-509.
8. ODDO A, PENG B, TONG Z, WEI Y, TONG WY, THISSEN H, VOELCKER NH. ADVANCES IN MICROFLUIDIC BLOOD-BRAIN BARRIER (BBB) MODELS. TRENDS BIOTECHNOL. 2019 DEC;37(12):1295-1314.
9. DIXIT S, HINGORANI M, ACHAWAL S, SCOTT I. THE SEQUENTIAL USE OF CARMUSTINE WAFERS (GLIADEL®) AND POST-OPERATIVE RADIOTHERAPY WITH CONCOMITANT TEMOZOLOMIDE FOLLOWED BY ADJUVANT TEMOZOLOMIDE: A CLINICAL REVIEW. BR J NEUROSURG. 2011 AUG;25(4):459-69.
10. ATTENELLO FJ, MUKHERJEE D, DATOO G, MCGIRT MJ, BOHAN E, WEINGART JD, OLIVI A, QUINONES-HINOJOSA A, BREM H. USE OF GLIADEL (BCNU) WAFER IN THE SURGICAL TREATMENT OF MALIGNANT GLIOMA: A 10-YEAR INSTITUTIONAL EXPERIENCE. ANN SURG ONCOL. 2008 OCT;15(10):2887-93.
11. HEERY, C. R., DESJARDINS, A., QUINN, J. A., RICH, J. N., GURURANGAN, S., VREDENBURGH, J. J., ... & FRIEDMAN, H. S. (2006). ACUTE TOXICITY ANALYSIS OF PATIENTS RECEIVING SURGERY, GLIADEL WAFER IMPLANTATION, AND POSTOPERATIVE DAILY TEMOZOLOMIDE WITH RADIATION THERAPY FOR PRIMARY HIGH-GRADE GLIOMA. JOURNAL OF CLINICAL ONCOLOGY, 24(18_SUPPL), 11504-11504.
12. AXPE E, ORIVE G, FRANZE K, APPEL EA. TOWARDS BRAIN-TISSUE-LIKE BIOMATERIALS. NAT COMMUN. 2020 JUL 9;11(1):3423.
13. LEE J, CHO HR, CHA GD, SEO H, LEE S, PARK CK, KIM JW, QIAO S, WANG L, KANG D, KANG T, ICHIKAWA T, KIM J, LEE H, LEE W, KIM S, LEE ST, LU N, HYEON T, CHOI SH, KIM DH. FLEXIBLE, STICKY, AND BIODEGRADABLE WIRELESS DEVICE FOR DRUG DELIVERY TO BRAIN TUMORS. NAT COMMUN. 2019 NOV 15;10(1):5205.
14. ASHBY LS, SMITH KA, STEA B. GLIADEL WAFER IMPLANTATION COMBINED WITH STANDARD RADIOTHERAPY AND CONCURRENT FOLLOWED BY ADJUVANT TEMOZOLOMIDE FOR TREATMENT OF NEWLY DIAGNOSED HIGH-GRADE GLIOMA: A SYSTEMATIC LITERATURE REVIEW. WORLD J SURG ONCOL. 2016 AUG 24;14(1):225.
15. CHUA, C. K., & LEONG, K. F. (2014). 3D PRINTING AND ADDITIVE MANUFACTURING: PRINCIPLES AND APPLICATIONS (WITH COMPANION MEDIA PACK)-OF RAPID PROTOTYPING. WORLD SCIENTIFIC PUBLISHING COMPANY.
16. JOSHI, S. C., & SHEIKH, A. A. (2015). 3D PRINTING IN AEROSPACE AND ITS LONG-TERM SUSTAINABILITY. VIRTUAL AND PHYSICAL PROTOTYPING, 10(4), 175-185.
17. GODOI, F. C., PRAKASH, S., & BHANDARI, B. R. (2016). 3D PRINTING TECHNOLOGIES APPLIED FOR FOOD DESIGN: STATUS AND PROSPECTS. JOURNAL OF FOOD ENGINEERING, 179, 44-54.
18. MOHAMMED, J. S. (2016). APPLICATIONS OF 3D PRINTING TECHNOLOGIES IN OCEANOGRAPHY. METHODS IN OCEANOGRAPHY, 17, 97-117.
19. RICHARDSON, M., & HAYLOCK, B. (2012). DESIGNER/MAKER: THE RISE OF ADDITIVE MANUFACTURING, DOMESTIC-SCALE PRODUCTION AND THE POSSIBLE IMPLICATIONS FOR THE AUTOMOTIVE INDUSTRY. COMPUTER-AIDED DESIGN & APPLICATIONS PACE, 2, 33-48.
20. TAY, Y. W. D., PANDA, B., PAUL, S. C., NOOR MOHAMED, N. A., TAN, M. J., & LEONG, K. F. (2017). 3D PRINTING TRENDS IN BUILDING AND CONSTRUCTION INDUSTRY: A REVIEW. VIRTUAL AND PHYSICAL PROTOTYPING, 12(3), 261-276.
21. LEE, J. Y., TAN, W. S., AN, J., CHUA, C. K., TANG, C. Y., FANE, A. G., & CHONG, T. H. (2016). THE POTENTIAL TO ENHANCE MEMBRANE MODULE DESIGN WITH 3D PRINTING TECHNOLOGY. JOURNAL OF MEMBRANE SCIENCE, 499, 480-490.
22. DERAKHSHANFAR S, MBELECK R, XU K, ZHANG X, ZHONG W, XING M. 3D BIOPRINTING FOR BIOMEDICAL DEVICES AND TISSUE ENGINEERING: A REVIEW OF RECENT TRENDS AND ADVANCES. BIOACT MATER. 2018 FEB 20;3(2):144-156.
23. SAUNDERS RE, GOUGH JE, DERBY B. DELIVERY OF HUMAN FIBROBLAST CELLS BY PIEZOELECTRIC DROP-ON-DEMAND INKJET PRINTING. BIOMATERIALS. 2008 JAN;29(2):193-203.
24. MOON S, HASAN SK, SONG YS, XU F, KELES HO, MANZUR F, MIKKILINENI S, HONG JW, NAGATOMI J, HAEGGSTROM E, KHADEMHOSSEINI A, DEMIRCI U. LAYER BY LAYER THREE-DIMENSIONAL TISSUE EPITAXY BY CELL-LADEN HYDROGEL DROPLETS. TISSUE ENG PART C METHODS. 2010 FEB;16(1):157-66.
25. GRUENE M, DEIWICK A, KOCH L, SCHLIE S, UNGER C, HOFMANN N, BERNEMANN I, GLASMACHER B, CHICHKOV B. LASER PRINTING OF STEM CELLS FOR BIOFABRICATION OF SCAFFOLD-FREE AUTOLOGOUS GRAFTS. TISSUE ENG PART C METHODS. 2011 JAN;17(1):79-87.
26. MIRONOV V, VISCONTI RP, KASYANOV V, FORGACS G, DRAKE CJ, MARKWALD RR. ORGAN PRINTING: TISSUE SPHEROIDS AS BUILDING BLOCKS. BIOMATERIALS. 2009 APR;30(12):2164-74.
27. XU T, JIN J, GREGORY C, HICKMAN JJ, BOLAND T. INKJET PRINTING OF VIABLE MAMMALIAN CELLS. BIOMATERIALS. 2005 JAN;26(1):93-9.
28. XU F, MOON SJ, EMRE AE, TURALI ES, SONG YS, HACKING SA, NAGATOMI J, DEMIRCI U. A DROPLET-BASED BUILDING BLOCK APPROACH FOR BLADDER SMOOTH MUSCLE CELL (SMC) PROLIFERATION. BIOFABRICATION. 2010 MAR;2(1):014105.
29. SCHIELE NR, CORR DT, HUANG Y, RAOF NA, XIE Y, CHRISEY DB. LASER-BASED DIRECT-WRITE TECHNIQUES FOR CELL PRINTING. BIOFABRICATION. 2010 SEP;2(3):032001.
30. SHI J, VOTRUBA AR, FAROKHZAD OC, LANGER R. NANOTECHNOLOGY IN DRUG DELIVERY AND TISSUE ENGINEERING: FROM DISCOVERY TO APPLICATIONS. NANO LETT. 2010 SEP 8;10(9):3223-30.
31. MONOPOLI MP, ABERG C, SALVATI A, DAWSON KA. BIOMOLECULAR CORONAS PROVIDE THE BIOLOGICAL IDENTITY OF NANOSIZED MATERIALS. NAT NANOTECHNOL. 2012 DEC;7(12):779-86.
32. SHI J, KANTOFF PW, WOOSTER R, FAROKHZAD OC. CANCER NANOMEDICINE: PROGRESS, CHALLENGES AND OPPORTUNITIES. NAT REV CANCER. 2017 JAN;17(1):20-37.
33. SIMON-YARZA T, MIELCAREK A, COUVREUR P, SERRE C. NANOPARTICLES OF METAL-ORGANIC FRAMEWORKS: ON THE ROAD TO IN VIVO EFFICACY IN BIOMEDICINE. ADV MATER. 2018 SEP;30(37):E1707365.
34. CHEN W , WU C . SYNTHESIS, FUNCTIONALIZATION, AND APPLICATIONS OF METAL-ORGANIC FRAMEWORKS IN BIOMEDICINE. DALTON TRANS. 2018 FEB 13;47(7):2114-2133.
35. WUTTKE, S. (2018). METAL-ORGANIC FRAMEWORK NANOCARRIERS–A NEW GROUNDBREAKING “MAGIC BULLET”?.
36. VIRMANI, E., BEYER, O., LÜNING, U., RUSCHEWITZ, U., & WUTTKE, S. (2017). TOPOLOGY-GUIDED FUNCTIONAL MULTIPLICITY OF IRON (III)-BASED METAL–ORGANIC FRAMEWORKS. MATERIALS CHEMISTRY FRONTIERS, 1(10), 1965-1974.
37. WANG S, MCGUIRK CM, D'AQUINO A, MASON JA, MIRKIN CA. METAL-ORGANIC FRAMEWORK NANOPARTICLES. ADV MATER. 2018 SEP;30(37):E1800202.
38. KUMAR B, KOUL S, KHANDRIKA L, MEACHAM RB, KOUL HK. OXIDATIVE STRESS IS INHERENT IN PROSTATE CANCER CELLS AND IS REQUIRED FOR AGGRESSIVE PHENOTYPE. CANCER RES. 2008 MAR 15;68(6):1777-85.
39. LIOU GY, STORZ P. REACTIVE OXYGEN SPECIES IN CANCER. FREE RADIC RES. 2010 MAY;44(5):479-96.
40. ADAM-VIZI V, CHINOPOULOS C. BIOENERGETICS AND THE FORMATION OF MITOCHONDRIAL REACTIVE OXYGEN SPECIES. TRENDS PHARMACOL SCI. 2006 DEC;27(12):639-45.
41. BOKARE AD, CHOI W. REVIEW OF IRON-FREE FENTON-LIKE SYSTEMS FOR ACTIVATING H2O2 IN ADVANCED OXIDATION PROCESSES. J HAZARD MATER. 2014 JUN 30;275:121-35.
42. POURAN, S. R., RAMAN, A. A. A., & DAUD, W. M. A. W. (2014). REVIEW ON THE APPLICATION OF MODIFIED IRON OXIDES AS HETEROGENEOUS CATALYSTS IN FENTON REACTIONS. JOURNAL OF CLEANER PRODUCTION, 64, 24-35.
43. WINSTON, G. W., & DI GIULIO, R. T. (1991). PROOXIDANT AND ANTIOXIDANT MECHANISMS IN AQUATIC ORGANISMS. AQUATIC TOXICOLOGY, 19(2), 137-161.
44. OSTROM QT, GITTLEMAN H, FULOP J, LIU M, BLANDA R, KROMER C, WOLINSKY Y, KRUCHKO C, BARNHOLTZ-SLOAN JS. CBTRUS STATISTICAL REPORT: PRIMARY BRAIN AND CENTRAL NERVOUS SYSTEM TUMORS DIAGNOSED IN THE UNITED STATES IN 2008-2012. NEURO ONCOL. 2015 OCT;17 SUPPL 4(SUPPL 4):IV1-IV62
45. CHAICHANA KL, PARKER SL, OLIVI A, QUIÑONES-HINOJOSA A. LONG-TERM SEIZURE OUTCOMES IN ADULT PATIENTS UNDERGOING PRIMARY RESECTION OF MALIGNANT BRAIN ASTROCYTOMAS. CLINICAL ARTICLE. J NEUROSURG. 2009 AUG;111(2):282-92.
46. OMURO A, DEANGELIS LM. GLIOBLASTOMA AND OTHER MALIGNANT GLIOMAS: A CLINICAL REVIEW. JAMA. 2013 NOV 6;310(17):1842-50.
47. KLEIHUES P, LOUIS DN, SCHEITHAUER BW, RORKE LB, REIFENBERGER G, BURGER PC, CAVENEE WK. THE WHO CLASSIFICATION OF TUMORS OF THE NERVOUS SYSTEM. J NEUROPATHOL EXP NEUROL. 2002 MAR;61(3):215-25; DISCUSSION 226-9.
48. OSTROM QT, GITTLEMAN H, LIAO P, ROUSE C, CHEN Y, DOWLING J, WOLINSKY Y, KRUCHKO C, BARNHOLTZ-SLOAN J. CBTRUS STATISTICAL REPORT: PRIMARY BRAIN AND CENTRAL NERVOUS SYSTEM TUMORS DIAGNOSED IN THE UNITED STATES IN 2007-2011. NEURO ONCOL. 2014 OCT;16 SUPPL 4(SUPPL 4):IV1-63.
49. YIN J, YAN M, WANG Y, FU J, SUO H. 3D BIOPRINTING OF LOW-CONCENTRATION CELL-LADEN GELATIN METHACRYLATE (GELMA) BIOINKS WITH A TWO-STEP CROSS-LINKING STRATEGY. ACS APPL MATER INTERFACES. 2018 FEB 28;10(8):6849-6857.
50. BU LL, YAN J, WANG Z, RUAN H, CHEN Q, GUNADHI V, BELL RB, GU Z. ADVANCES IN DRUG DELIVERY FOR POST-SURGICAL CANCER TREATMENT. BIOMATERIALS. 2019 OCT;219:119182.
51. GAO X, YUE Q, LIU Z, KE M, ZHOU X, LI S, ZHANG J, ZHANG R, CHEN L, MAO Y, LI C. GUIDING BRAIN-TUMOR SURGERY VIA BLOOD-BRAIN-BARRIER-PERMEABLE GOLD NANOPROBES WITH ACID-TRIGGERED MRI/SERRS SIGNALS. ADV MATER. 2017 JUN;29(21).
52. FURTADO D, BJÖRNMALM M, AYTON S, BUSH AI, KEMPE K, CARUSO F. OVERCOMING THE BLOOD-BRAIN BARRIER: THE ROLE OF NANOMATERIALS IN TREATING NEUROLOGICAL DISEASES. ADV MATER. 2018 NOV;30(46):E1801362.
53. GRIL B, PARANJAPE AN, WODITSCHKA S, HUA E, DOLAN EL, HANSON J, WU X, KLOC W, IZYCKA-SWIESZEWSKA E, DUCHNOWSKA R, PĘKSA R, BIERNAT W, JASSEM J, NAYYAR N, BRASTIANOS PK, HALL OM, PEER CJ, FIGG WD, PAULY GT, ROBINSON C, DIFILIPPANTONIO S, BIALECKI E, METELLUS P, SCHNEIDER JP, STEEG PS. REACTIVE ASTROCYTIC S1P3 SIGNALING MODULATES THE BLOOD-TUMOR BARRIER IN BRAIN METASTASES. NAT COMMUN. 2018 JUL 13;9(1):2705.
54. XIE J, SHEN Z, ANRAKU Y, KATAOKA K, CHEN X. NANOMATERIAL-BASED BLOOD-BRAIN-BARRIER (BBB) CROSSING STRATEGIES. BIOMATERIALS. 2019 DEC;224:119491.
55. TSOU YH, ZHANG XQ, ZHU H, SYED S, XU X. DRUG DELIVERY TO THE BRAIN ACROSS THE BLOOD-BRAIN BARRIER USING NANOMATERIALS. SMALL. 2017 NOV;13(43).
56. TANG W , FAN W , LAU J , DENG L , SHEN Z , CHEN X . EMERGING BLOOD-BRAIN-BARRIER-CROSSING NANOTECHNOLOGY FOR BRAIN CANCER THERANOSTICS. CHEM SOC REV. 2019 JUN 4;48(11):2967-3014.
57. WANG, C., WU, B., WU, Y., SONG, X., ZHANG, S., & LIU, Z. (2020). CAMOUFLAGING NANOPARTICLES WITH BRAIN METASTATIC TUMOR CELL MEMBRANES: A NEW STRATEGY TO TRAVERSE BLOOD–BRAIN BARRIER FOR IMAGING AND THERAPY OF BRAIN TUMORS. ADVANCED FUNCTIONAL MATERIALS, 30(14), 1909369.
58. BASTIANCICH C, BIANCO J, VANVARENBERG K, UCAKAR B, JOUDIOU N, GALLEZ B, BASTIAT G, LAGARCE F, PRÉAT V, DANHIER F. INJECTABLE NANOMEDICINE HYDROGEL FOR LOCAL CHEMOTHERAPY OF GLIOBLASTOMA AFTER SURGICAL RESECTION. J CONTROL RELEASE. 2017 OCT 28;264:45-54.
59. BRANDSMA D, STALPERS L, TAAL W, SMINIA P, VAN DEN BENT MJ. CLINICAL FEATURES, MECHANISMS, AND MANAGEMENT OF PSEUDOPROGRESSION IN MALIGNANT GLIOMAS. LANCET ONCOL. 2008 MAY;9(5):453-61.
60. SANAI N, BERGER MS. GLIOMA EXTENT OF RESECTION AND ITS IMPACT ON PATIENT OUTCOME. NEUROSURGERY. 2008 APR;62(4):753-64; DISCUSSION 264-6.
61. NI J, MIAO T, SU M, KHAN NU, JU X, CHEN H, LIU F, HAN L. PSMA-TARGETED NANOPARTICLES FOR SPECIFIC PENETRATION OF BLOOD-BRAIN TUMOR BARRIER AND COMBINED THERAPY OF BRAIN METASTASES. J CONTROL RELEASE. 2021 JAN 10;329:934-947.
62. TAM DY, HO JW, CHAN MS, LAU CH, CHANG TJH, LEUNG HM, LIU LS, WANG F, CHAN LLH, TIN C, LO PK. PENETRATING THE BLOOD-BRAIN BARRIER BY SELF-ASSEMBLED 3D DNA NANOCAGES AS DRUG DELIVERY VEHICLES FOR BRAIN CANCER THERAPY. ACS APPL MATER INTERFACES. 2020 JUL 1;12(26):28928-28940.
63. BETZER O, SHILO M, OPOCHINSKY R, BARNOY E, MOTIEI M, OKUN E, YADID G, POPOVTZER R. THE EFFECT OF NANOPARTICLE SIZE ON THE ABILITY TO CROSS THE BLOOD-BRAIN BARRIER: AN IN VIVO STUDY. NANOMEDICINE (LOND). 2017 JUL;12(13):1533-1546.
64. XUE J, ZHAO Z, ZHANG L, XUE L, SHEN S, WEN Y, WEI Z, WANG L, KONG L, SUN H, PING Q, MO R, ZHANG C. NEUTROPHIL-MEDIATED ANTICANCER DRUG DELIVERY FOR SUPPRESSION OF POSTOPERATIVE MALIGNANT GLIOMA RECURRENCE. NAT NANOTECHNOL. 2017 JUL;12(7):692-700.
65. LIU, L., CHEN, Q., WEN, L., LI, C., QIN, H., & XING, D. (2019). PHOTOACOUSTIC THERAPY FOR PRECISE ERADICATION OF GLIOBLASTOMA WITH A TUMOR SITE BLOOD–BRAIN BARRIER PERMEABILITY UPREGULATING NANOPARTICLE. ADVANCED FUNCTIONAL MATERIALS, 29(11), 1808601.
66. DUNN GP, OLD LJ, SCHREIBER RD. THE IMMUNOBIOLOGY OF CANCER IMMUNOSURVEILLANCE AND IMMUNOEDITING. IMMUNITY. 2004 AUG;21(2):137-48.
67. BURNET M. CANCER: A BIOLOGICAL APPROACH. III. VIRUSES ASSOCIATED WITH NEOPLASTIC CONDITIONS. IV. PRACTICAL APPLICATIONS. BR MED J. 1957 APR 13;1(5023):841-7.
68. LAWRENCE, H. S. (ED.). (1959). CELLULAR AND HUMORAL ASPECTS OF THE HYPERSENSITIVE STATES: A SYMPOSIUM OF THE NEW YORK ACADEMY OF MEDICINE. HOEBER-HARPER.
69. BURNET, M. (2014). IMMUNOLOGICAL SURVEILLANCE. ELSEVIER.
70. DUNN GP, BRUCE AT, IKEDA H, OLD LJ, SCHREIBER RD. CANCER IMMUNOEDITING: FROM IMMUNOSURVEILLANCE TO TUMOR ESCAPE. NAT IMMUNOL. 2002 NOV;3(11):991-8.
71. PARDOLL DM. THE BLOCKADE OF IMMUNE CHECKPOINTS IN CANCER IMMUNOTHERAPY. NAT REV CANCER. 2012 MAR 22;12(4):252-64.
72. RIBAS A, WOLCHOK JD. CANCER IMMUNOTHERAPY USING CHECKPOINT BLOCKADE. SCIENCE. 2018 MAR 23;359(6382):1350-1355.
73. MCDERMOTT D, HAANEN J, CHEN TT, LORIGAN P, O'DAY S; MDX010-20 INVESTIGATORS. EFFICACY AND SAFETY OF IPILIMUMAB IN METASTATIC MELANOMA PATIENTS SURVIVING MORE THAN 2 YEARS FOLLOWING TREATMENT IN A PHASE III TRIAL (MDX010-20). ANN ONCOL. 2013 OCT;24(10):2694-2698.
74. HODI FS, O'DAY SJ, MCDERMOTT DF, WEBER RW, SOSMAN JA, HAANEN JB, GONZALEZ R, ROBERT C, SCHADENDORF D, HASSEL JC, AKERLEY W, VAN DEN EERTWEGH AJ, LUTZKY J, LORIGAN P, VAUBEL JM, LINETTE GP, HOGG D, OTTENSMEIER CH, LEBBÉ C, PESCHEL C, QUIRT I, CLARK JI, WOLCHOK JD, WEBER JS, TIAN J, YELLIN MJ, NICHOL GM, HOOS A, URBA WJ. IMPROVED SURVIVAL WITH IPILIMUMAB IN PATIENTS WITH METASTATIC MELANOMA. N ENGL J MED. 2010 AUG 19;363(8):711-23.
75. WEBER J, THOMPSON JA, HAMID O, MINOR D, AMIN A, RON I, RIDOLFI R, ASSI H, MARAVEYAS A, BERMAN D, SIEGEL J, O'DAY SJ. A RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED, PHASE II STUDY COMPARING THE TOLERABILITY AND EFFICACY OF IPILIMUMAB ADMINISTERED WITH OR WITHOUT PROPHYLACTIC BUDESONIDE IN PATIENTS WITH UNRESECTABLE STAGE III OR IV MELANOMA. CLIN CANCER RES. 2009 SEP 1;15(17):5591-8.
76. SHAH A, DOBROVOLSKAIA MA. IMMUNOLOGICAL EFFECTS OF IRON OXIDE NANOPARTICLES AND IRON-BASED COMPLEX DRUG FORMULATIONS: THERAPEUTIC BENEFITS, TOXICITY, MECHANISTIC INSIGHTS, AND TRANSLATIONAL CONSIDERATIONS. NANOMEDICINE. 2018 APR;14(3):977-990.
77. BILLINGHAM RE, BRENT L, MEDAWAR PB. ACTIVELY ACQUIRED TOLERANCE OF FOREIGN CELLS. NATURE. 1953 OCT 3;172(4379):603-6.
78. MEDAWAR PB. IMMUNITY TO HOMOLOGOUS GRAFTED SKIN; THE FATE OF SKIN HOMOGRAFTS TRANSPLANTED TO THE BRAIN, TO SUBCUTANEOUS TISSUE, AND TO THE ANTERIOR CHAMBER OF THE EYE. BR J EXP PATHOL. 1948 FEB;29(1):58-69. PMID: 18865105; PMCID: PMC2073079.
79. BILLINGHAM RE, BRENT L, MEDAWAR PB, SPARROW EM. QUANTITATIVE STUDIES ON TISSUE TRANSPLANTATION IMMUNITY. I. THE SURVIVAL TIMES OF SKIN HOMOGRAFTS EXCHANGED BETWEEN MEMBERS OF DIFFERENT INBRED STRAINS OF MICE. PROC R SOC LOND B BIOL SCI. 1954 DEC 15;143(910):43-58.
80. SCHIFFER D, MELLAI M, BOVIO E, ANNOVAZZI L. THE NEUROPATHOLOGICAL BASIS TO THE FUNCTIONAL ROLE OF MICROGLIA/MACROPHAGES IN GLIOMAS. NEUROL SCI. 2017 SEP;38(9):1571-1577.
81. WOODROOFE MN, BELLAMY AS, FELDMANN M, DAVISON AN, CUZNER ML. IMMUNOCYTOCHEMICAL CHARACTERISATION OF THE IMMUNE REACTION IN THE CENTRAL NERVOUS SYSTEM IN MULTIPLE SCLEROSIS. POSSIBLE ROLE FOR MICROGLIA IN LESION GROWTH. J NEUROL SCI. 1986 JUL;74(2-3):135-52.
82. LIM M, XIA Y, BETTEGOWDA C, WELLER M. CURRENT STATE OF IMMUNOTHERAPY FOR GLIOBLASTOMA. NAT REV CLIN ONCOL. 2018 JUL;15(7):422-442.
83. JACKSON CM, CHOI J, LIM M. MECHANISMS OF IMMUNOTHERAPY RESISTANCE: LESSONS FROM GLIOBLASTOMA. NAT IMMUNOL. 2019 SEP;20(9):1100-1109.
84. WANG H, CHAO Y, ZHAO H, ZHOU X, ZHANG F, ZHANG Z, LI Z, PAN J, WANG J, CHEN Q, LIU Z. SMART NANOMEDICINE TO ENABLE CROSSING BLOOD-BRAIN BARRIER DELIVERY OF CHECKPOINT BLOCKADE ANTIBODY FOR IMMUNOTHERAPY OF GLIOMA. ACS NANO. 2022 JAN 3.
85. YUN YH, LEE BK, PARK K. CONTROLLED DRUG DELIVERY: HISTORICAL PERSPECTIVE FOR THE NEXT GENERATION. J CONTROL RELEASE. 2015 DEC 10;219:2-7.
86. ALLEN, T. M., & CULLIS, P. R. SCIENCE2004, 303, 1818− 1822.
87. MANZANO, M., & VALLET‐REGÍ, M. (2020). MESOPOROUS SILICA NANOPARTICLES FOR DRUG DELIVERY. ADVANCED FUNCTIONAL MATERIALS, 30(2), 1902634.
88. SUN T, ZHANG YS, PANG B, HYUN DC, YANG M, XIA Y. ENGINEERED NANOPARTICLES FOR DRUG DELIVERY IN CANCER THERAPY. ANGEW CHEM INT ED ENGL. 2014 NOV 10;53(46):12320-64.
89. GARG U, CHAUHAN S, NAGAICH U, JAIN N. CURRENT ADVANCES IN CHITOSAN NANOPARTICLES BASED DRUG DELIVERY AND TARGETING. ADV PHARM BULL. 2019 JUN;9(2):195-204.
90. O'NEILL HS, GALLAGHER LB, O'SULLIVAN J, WHYTE W, CURLEY C, DOLAN E, HAMEED A, O'DWYER J, PAYNE C, O'REILLY D, RUIZ-HERNANDEZ E, ROCHE ET, O'BRIEN FJ, CRYAN SA, KELLY H, MURPHY B, DUFFY GP. BIOMATERIAL-ENHANCED CELL AND DRUG DELIVERY: LESSONS LEARNED IN THE CARDIAC FIELD AND FUTURE PERSPECTIVES. ADV MATER. 2016 JUL;28(27):5648-61.
91. MONDAL, D., GRIFFITH, M., & VENKATRAMAN, S. S. (2016). POLYCAPROLACTONE-BASED BIOMATERIALS FOR TISSUE ENGINEERING AND DRUG DELIVERY: CURRENT SCENARIO AND CHALLENGES. INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 65(5), 255-265.
92. GARG T, RATH G, GOYAL AK. BIOMATERIALS-BASED NANOFIBER SCAFFOLD: TARGETED AND CONTROLLED CARRIER FOR CELL AND DRUG DELIVERY. J DRUG TARGET. 2015 APR;23(3):202-21.
93. YEGAPPAN R, SELVAPRITHIVIRAJ V, AMIRTHALINGAM S, JAYAKUMAR R. CARRAGEENAN BASED HYDROGELS FOR DRUG DELIVERY, TISSUE ENGINEERING AND WOUND HEALING. CARBOHYDR POLYM. 2018 OCT 15;198:385-400.
94. DEB, P., DEOGHARE, A. B., BORAH, A., BARUA, E., & LALA, S. D. (2018). SCAFFOLD DEVELOPMENT USING BIOMATERIALS: A REVIEW. MATERIALS TODAY: PROCEEDINGS, 5(5), 12909-12919.
95. ALVAREZ, K., & NAKAJIMA, H. (2009). METALLIC SCAFFOLDS FOR BONE REGENERATION. MATERIALS, 2(3), 790-832.
96. WOODARD JR, HILLDORE AJ, LAN SK, PARK CJ, MORGAN AW, EURELL JA, CLARK SG, WHEELER MB, JAMISON RD, WAGONER JOHNSON AJ. THE MECHANICAL PROPERTIES AND OSTEOCONDUCTIVITY OF HYDROXYAPATITE BONE SCAFFOLDS WITH MULTI-SCALE POROSITY. BIOMATERIALS. 2007 JAN;28(1):45-54.
97. BOSE S, ROY M, BANDYOPADHYAY A. RECENT ADVANCES IN BONE TISSUE ENGINEERING SCAFFOLDS. TRENDS BIOTECHNOL. 2012 OCT;30(10):546-54.
98. CHUNG L, MAESTAS DR JR, HOUSSEAU F, ELISSEEFF JH. KEY PLAYERS IN THE IMMUNE RESPONSE TO BIOMATERIAL SCAFFOLDS FOR REGENERATIVE MEDICINE. ADV DRUG DELIV REV. 2017 MAY 15;114:184-192.
99. DEB, P., DEOGHARE, A. B., BORAH, A., BARUA, E., & LALA, S. D. (2018). SCAFFOLD DEVELOPMENT USING BIOMATERIALS: A REVIEW. MATERIALS TODAY: PROCEEDINGS, 5(5), 12909-12919.
100. GHOSH, K. (2008). BIOCOMPATIBILITY OF HYALURONIC ACID: FROM CELL RECOGNITION TO THERAPEUTIC APPLICATIONS. IN NATURAL-BASED POLYMERS FOR BIOMEDICAL APPLICATIONS (PP. 716-737). WOODHEAD PUBLISHING.
101. PARENTEAU-BAREIL, R., GAUVIN, R., & BERTHOD, F. (2010). COLLAGEN-BASED BIOMATERIALS FOR TISSUE ENGINEERING APPLICATIONS. MATERIALS, 3(3), 1863-1887.
102. DHANDAYUTHAPANI, B., YOSHIDA, Y., MAEKAWA, T., & KUMAR, D. S. (2011). POLYMERIC SCAFFOLDS IN TISSUE ENGINEERING APPLICATION: A REVIEW. INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2011.
103. GRAHAM-GURYSH E, MOORE KM, SATTERLEE AB, SHEETS KT, LIN FC, BACHELDER EM, MILLER CR, HINGTGEN SD, AINSLIE KM. SUSTAINED DELIVERY OF DOXORUBICIN VIA ACETALATED DEXTRAN SCAFFOLD PREVENTS GLIOBLASTOMA RECURRENCE AFTER SURGICAL RESECTION. MOL PHARM. 2018 MAR 5;15(3):1309-1318.
104. SHEETS KT, EWEND MG, MOHITI-ASLI M, TUIN SA, LOBOA EG, ABOODY KS, HINGTGEN SD. DEVELOPING IMPLANTABLE SCAFFOLDS TO ENHANCE NEURAL STEM CELL THERAPY FOR POST-OPERATIVE GLIOBLASTOMA. MOL THER. 2020 APR 8;28(4):1056-1067.
105. LI R, SONG Y, FOULADIAN P, ARAFAT M, CHUNG R, KOHLHAGEN J, GARG S. THREE-DIMENSIONAL PRINTING OF CURCUMIN-LOADED BIODEGRADABLE AND FLEXIBLE SCAFFOLD FOR INTRACRANIAL THERAPY OF GLIOBLASTOMA MULTIFORME. PHARMACEUTICS. 2021 MAR 31;13(4):471.
106. GAO J, GU H, XU B. MULTIFUNCTIONAL MAGNETIC NANOPARTICLES: DESIGN, SYNTHESIS, AND BIOMEDICAL APPLICATIONS. ACC CHEM RES. 2009 AUG 18;42(8):1097-107.
107. MU X, YAN C, TIAN Q, LIN J, YANG S. BSA-ASSISTED SYNTHESIS OF ULTRASMALL GALLIC ACID-FE(III) COORDINATION POLYMER NANOPARTICLES FOR CANCER THERANOSTICS. INT J NANOMEDICINE. 2017 OCT 3;12:7207-7223.
108. ZHOU P, ZHAO H, WANG Q, ZHOU Z, WANG J, DENG G, WANG X, LIU Q, YANG H, YANG S. PHOTOACOUSTIC-ENABLED SELF-GUIDANCE IN MAGNETIC-HYPERTHERMIA FE@FE3 O4 NANOPARTICLES FOR THERANOSTICS IN VIVO. ADV HEALTHC MATER. 2018 MAY;7(9):E1701201.
109. WYSZOGRODZKA-GAWEŁ G, DOROŻYŃSKI P, GIOVAGNOLI S, STRZEMPEK W, PESTA E, WĘGLARZ WP, GIL B, MENASZEK E, KULINOWSKI P. AN INHALABLE THERANOSTIC SYSTEM FOR LOCAL TUBERCULOSIS TREATMENT CONTAINING AN ISONIAZID LOADED METAL ORGANIC FRAMEWORK FE-MIL-101-NH2-FROM RAW MOF TO DRUG DELIVERY SYSTEM. PHARMACEUTICS. 2019 DEC 17;11(12):687.
110. WANG, Z., YU, W., YU, N., LI, X., FENG, Y., GENG, P., ... & CHEN, Z. (2020). CONSTRUCTION OF CUS@ FE-MOF NANOPLATFORMS FOR MRI-GUIDED SYNERGISTIC PHOTOTHERMAL-CHEMO THERAPY OF TUMORS. CHEMICAL ENGINEERING JOURNAL, 125877.
111. BHATTACHARJEE, A., GUMMA, S., & PURKAIT, M. K. (2018). FE3O4 PROMOTED METAL ORGANIC FRAMEWORK MIL-100 (FE) FOR THE CONTROLLED RELEASE OF DOXORUBICIN HYDROCHLORIDE. MICROPOROUS AND MESOPOROUS MATERIALS, 259, 203-210.
112. FAN K, CAO C, PAN Y, LU D, YANG D, FENG J, SONG L, LIANG M, YAN X. MAGNETOFERRITIN NANOPARTICLES FOR TARGETING AND VISUALIZING TUMOUR TISSUES. NAT NANOTECHNOL. 2012 JUN 17;7(7):459-64.
113. SHEN Z, SONG J, YUNG BC, ZHOU Z, WU A, CHEN X. EMERGING STRATEGIES OF CANCER THERAPY BASED ON FERROPTOSIS. ADV MATER. 2018 MAR;30(12):E1704007.
114. SAEED M , REN W , WU A . THERAPEUTIC APPLICATIONS OF IRON OXIDE BASED NANOPARTICLES IN CANCER: BASIC CONCEPTS AND RECENT ADVANCES. BIOMATER SCI. 2018 MAR 26;6(4):708-725.
115. GUO, H., YI, S., FENG, K., XIA, Y., QU, X., WAN, F., ... & ZHANG, C. IN SITU FORMATION OF METAL ORGANIC FRAMEWORK ONTO GOLD NANORODS/MESOPOROUS SILICA WITH FUNCTIONAL INTEGRATION FOR TARGETED THERANOSTICS. CHEMICAL ENGINEERING JOURNAL, 403, 126432.
116. HANG, L., ZHANG, T., WEN, H., LIANG, L., LI, W., MA, X., & JIANG, G. (2020). CONTROLLABLE PHOTODYNAMIC PERFORMANCE VIA AN ACIDIC MICROENVIRONMENT BASED ON TWO-DIMENSIONAL METAL-ORGANIC FRAMEWORKS FOR PHOTODYNAMIC THERAPY. NANO RESEARCH, 1-7.
117. GAO, H., CHI, B., TIAN, F., XU, M., XU, Z., LI, L., & WANG, J. PRUSSIAN BLUE MODIFIED METAL ORGANIC FRAMEWORKS FOR IMAGING GUIDED SYNERGETIC TUMOR THERAPY WITH HYPOXIA MODULATION. JOURNAL OF ALLOYS AND COMPOUNDS, 853, 157329.
118. WANG, Z., YU, W., YU, N., LI, X., FENG, Y., GENG, P., ... & CHEN, Z. (2020). CONSTRUCTION OF CUS@ FE-MOF NANOPLATFORMS FOR MRI-GUIDED SYNERGISTIC PHOTOTHERMAL-CHEMO THERAPY OF TUMORS. CHEMICAL ENGINEERING JOURNAL, 125877.
119. LI WP, SU CH, CHANG YC, LIN YJ, YEH CS. ULTRASOUND-INDUCED REACTIVE OXYGEN SPECIES MEDIATED THERAPY AND IMAGING USING A FENTON REACTION ACTIVABLE POLYMERSOME. ACS NANO. 2016 FEB 23;10(2):2017-27.
120. HOU H, HUANG X, WEI G, XU F, WANG Y, ZHOU S. FENTON REACTION-ASSISTED PHOTODYNAMIC THERAPY FOR CANCER WITH MULTIFUNCTIONAL MAGNETIC NANOPARTICLES. ACS APPL MATER INTERFACES. 2019 AUG 21;11(33):29579-29592.
121. TANG Z, ZHANG H, LIU Y, NI D, ZHANG H, ZHANG J, YAO Z, HE M, SHI J, BU W. ANTIFERROMAGNETIC PYRITE AS THE TUMOR MICROENVIRONMENT-MEDIATED NANOPLATFORM FOR SELF-ENHANCED TUMOR IMAGING AND THERAPY. ADV MATER. 2017 DEC;29(47).
122. HU P, WU T, FAN W, CHEN L, LIU Y, NI D, BU W, SHI J. NEAR INFRARED-ASSISTED FENTON REACTION FOR TUMOR-SPECIFIC AND MITOCHONDRIAL DNA-TARGETED PHOTOCHEMOTHERAPY. BIOMATERIALS. 2017 OCT;141:86-95.
123. CIOLOBOC D, KENNEDY C, BOICE EN, CLARK ER, KURTZ DM JR. TROJAN HORSE FOR LIGHT-TRIGGERED BIFURCATED PRODUCTION OF SINGLET OXYGEN AND FENTON-REACTIVE IRON WITHIN CANCER CELLS. BIOMACROMOLECULES. 2018 JAN 8;19(1):178-187.
124. HUANG G, CHEN H, DONG Y, LUO X, YU H, MOORE Z, BEY EA, BOOTHMAN DA, GAO J. SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES: AMPLIFYING ROS STRESS TO IMPROVE ANTICANCER DRUG EFFICACY. THERANOSTICS. 2013;3(2):116-26.
125. MA P, XIAO H, YU C, LIU J, CHENG Z, SONG H, ZHANG X, LI C, WANG J, GU Z, LIN J. ENHANCED CISPLATIN CHEMOTHERAPY BY IRON OXIDE NANOCARRIER-MEDIATED GENERATION OF HIGHLY TOXIC REACTIVE OXYGEN SPECIES. NANO LETT. 2017 FEB 8;17(2):928-937.
126. ZHENG DW, LEI Q, ZHU JY, FAN JX, LI CX, LI C, XU Z, CHENG SX, ZHANG XZ. SWITCHING APOPTOSIS TO FERROPTOSIS: METAL-ORGANIC NETWORK FOR HIGH-EFFICIENCY ANTICANCER THERAPY. NANO LETT. 2017 JAN 11;17(1):284-291.
127. MA H, LI T, HUAN Z, ZHANG M, YANG Z, WANG J, CHANG J, WU C. 3D PRINTING OF HIGH-STRENGTH BIOSCAFFOLDS FOR THE SYNERGISTIC TREATMENT OF BONE CANCER. NPG ASIA MATERIALS. 2018 APR;10(4):31-44.
128. XU X, CHEN Y, ZHANG Y, YAO Y, JI P. HIGHLY STABLE AND BIOCOMPATIBLE HYALURONIC ACID-REHABILITATED NANOSCALE MOF-FE2+ INDUCED FERROPTOSIS IN BREAST CANCER CELLS. J MATER CHEM B. 2020 SEP 18.
129. WANG X, XU J, YANG D, SUN C, SUN Q, HE F, GAI S, ZHONG C, LI C, YANG P. FE3O4@ MIL-100 (FE)-UCNPS HETEROJUNCTION PHOTOSENSITIZER: RATIONAL DESIGN AND APPLICATION IN NEAR INFRARED LIGHT MEDIATED HYPOXIC TUMOR THERAPY. CHEMICAL ENGINEERING JOURNAL. 2018 DEC 15;354:1141-52.
130. NEISI Z, ANSARI-ASL Z, JAFARINEJAD-FARSANGI S, TARZI ME, SEDAGHAT T, NOBAKHT V. SYNTHESIS, CHARACTERIZATION AND BIOCOMPATIBILITY OF POLYPYRROLE/CU(II) METAL-ORGANIC FRAMEWORK NANOCOMPOSITES. COLLOIDS SURF B BIOINTERFACES. 2019 JUN 1;178:365-376.
131. CAI X, XIE Z, DING B, SHAO S, LIANG S, PANG M, LIN J. MONODISPERSED COPPER(I)-BASED NANO METAL-ORGANIC FRAMEWORK AS A BIODEGRADABLE DRUG CARRIER WITH ENHANCED PHOTODYNAMIC THERAPY EFFICACY. ADV SCI (WEINH). 2019 MAY 22;6(15):1900848.
132. YANG S, LI D, CHEN L, ZHOU X, FU L, YOU Y, YOU Z, KANG L, LI M, HE C. COUPLING METAL ORGANIC FRAMEWORKS WITH MOLYBDENUM DISULFIDE NANOFLAKES FOR TARGETED CANCER THERANOSTICS. BIOMATER SCI. 2021 MAY 4;9(9):3306-3318.
133. LIU WL, ZOU MZ, LIU T, ZENG JY, LI X, YU WY, LI CX, YE JJ, SONG W, FENG J, ZHANG XZ. CYTOMEMBRANE NANOVACCINES SHOW THERAPEUTIC EFFECTS BY MIMICKING TUMOR CELLS AND ANTIGEN PRESENTING CELLS. NAT COMMUN. 2019 JUL 19;10(1):3199.
134. CHEN PM, PAN WY, MIAO YB, LIU YM, LUO PK, PHUNG HN, WU WW, TING YH, YEH CY, CHIANG MC, CHIA WT. BIOINSPIRED ENGINEERING OF A BACTERIUM‐LIKE METAL–ORGANIC FRAMEWORK FOR CANCER IMMUNOTHERAPY. ADVANCED FUNCTIONAL MATERIALS. 2020 OCT;30(42):2003764.
135. XU C, BAO M, REN J, ZHANG Z. NH 2-MIL-88B (FE Α IN 1− Α) MIXED-MOFS DESIGNED FOR ENHANCING PHOTOCATALYTIC CR (VI) REDUCTION AND TETRACYCLINE ELIMINATION. RSC ADVANCES. 2020;10(64):39080-6.
136. YANG B, DING L, YAO H, CHEN Y, SHI J. A METAL-ORGANIC FRAMEWORK (MOF) FENTON NANOAGENT-ENABLED NANOCATALYTIC CANCER THERAPY IN SYNERGY WITH AUTOPHAGY INHIBITION. ADV MATER. 2020 MAR;32(12):E1907152.
137. YI X, HE X, YIN F, YANG T, CHEN B, LI G. NH2–MIL-88B–FE FOR ELECTROCATALYTIC N2 FIXATION TO NH3 WITH HIGH FARADAIC EFFICIENCY UNDER AMBIENT CONDITIONS IN NEUTRAL ELECTROLYTE. JOURNAL OF MATERIALS SCIENCE. 2020 SEP;55(26):12041-52.
138. LI Z. THE DESIGNS, SYNTHESES AND MEDICAL APPLICATIONS OF MESOPOROUS SILICA NANOPARTICLE BASED DRUG DELIVERY SYSTEMS. UNIVERSITY OF CALIFORNIA, LOS ANGELES; 2012.
139. HU Q, YU J, LIU M, LIU A, DOU Z, YANG Y. A LOW CYTOTOXIC CATIONIC METAL-ORGANIC FRAMEWORK CARRIER FOR CONTROLLABLE DRUG RELEASE. J MED CHEM. 2014 JUL 10;57(13):5679-85. DOI: 10.1021/JM5004107. EPUB 2014 JUN 25. PMID: 24922463.
140. WU MX, YANG YW. METAL-ORGANIC FRAMEWORK (MOF)-BASED DRUG/CARGO DELIVERY AND CANCER THERAPY. ADV MATER. 2017 JUN;29(23). DOI: 10.1002/ADMA.201606134. EPUB 2017 MAR 29. PMID: 28370555.
141. ILIA G, MACARIE L, PLESU N, ILIESCU S, POPA A. SOLVENT-FREE SYNTHESIS OF TRIS (4-HYDROXYBUTYL ACRYLATE) PHOSPHATE IN THE PRESENCE OF 1-METHYLIMIDAZOLE. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY. 2018 JAN;15(1):17-21.
142. KAROLEWICZ B, GÓRNIAK A, OWCZAREK A, ŻURAWSKA-PŁAKSEJ E, PIWOWAR A, PLUTA J. THERMAL, SPECTROSCOPIC, AND DISSOLUTION STUDIES OF KETOCONAZOLE–PLURONIC F127 SYSTEM. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY. 2014 MAR;115(3):2487-93.
143. AOKI K, SATOI S, HARADA S, UCHIDA S, IWASA Y, IKENOUCHI J. COORDINATED CHANGES IN CELL MEMBRANE AND CYTOPLASM DURING MATURATION OF APOPTOTIC BLEB. MOL BIOL CELL. 2020 APR 1;31(8):833-844. DOI: 10.1091/MBC.E19-12-0691. EPUB 2020 FEB 12. PMID: 32049595; PMCID: PMC7185959.
144. HAO G, XU ZP, LI L. MANIPULATING EXTRACELLULAR TUMOUR PH: AN EFFECTIVE TARGET FOR CANCER THERAPY. RSC ADVANCES. 2018;8(39):22182-92.
145. COSTA EC, GASPAR VM, MARQUES JG, COUTINHO P, CORREIA IJ. EVALUATION OF NANOPARTICLE UPTAKE IN CO-CULTURE CANCER MODELS. PLOS ONE. 2013 JUL 26;8(7):E70072. DOI: 10.1371/JOURNAL.PONE.0070072. PMID: 23922909; PMCID: PMC3724604.
146. DU JZ, DU XJ, MAO CQ, WANG J. TAILOR-MADE DUAL PH-SENSITIVE POLYMER-DOXORUBICIN NANOPARTICLES FOR EFFICIENT ANTICANCER DRUG DELIVERY. J AM CHEM SOC. 2011 NOV 9;133(44):17560-3. DOI: 10.1021/JA207150N. EPUB 2011 OCT 17. PMID: 21985458.
147. YE WL, DU JB, ZHANG BL, NA R, SONG YF, MEI QB, ZHAO MG, ZHOU SY. CELLULAR UPTAKE AND ANTITUMOR ACTIVITY OF DOX-HYD-PEG-FA NANOPARTICLES. PLOS ONE. 2014 MAY 14;9(5):E97358. DOI: 10.1371/JOURNAL.PONE.0097358. PMID: 24828815; PMCID: PMC4020841.
148. https://www.mayoclinic.org/diseases-conditions/glioblastoma/cdc-20350148
149. Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng.
150. Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, Jin X, Liu J, Mo S, Zhang T, Cheng F, Zhou Y, Zhang H, Tang K, Ma J, Liu Y, Huang B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 合成聚硼酸酯聚合物微胞:一種潛在的硼藥物透過結合BNCT和PD-1/PD-L1檢查點阻斷免疫療法以增強癌症治療效果
2. 抗菌肽W5K11白介素2融合蛋白以及白介素2之表現和其活性之探討
3. 遞送CXCR4拮抗劑之奈米載體應用於癌症治療
4. 脂質分子修飾具芬頓效應粒子應用於肺轉移腫瘤免疫治療
5. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
6. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
7. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
8. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
9. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
10. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
11. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
12. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
13. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
14. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
15. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
 
* *