|
[1] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., ... & Tan, W.(2020). A novel coronavirus from patients with pneumonia in China,2019. New England journal of medicine. [2] Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., ... & Zhong, N. S. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine, 382(18), 1708-1720. [3] World Health Organization. Coronavirus disease (COVID-19) pandemic. Geneva:World Health Organization;2000 https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed 25 May 2020) . [4] Arevalo-Rodriguez, I., Buitrago-Garcia, D., Simancas-Racines, D., Zambrano-Achig, P., Del Campo, R., Ciapponi, A., ... & Zamora, J. (2020). False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PloS one, 15(12), e0242958. [5] Purohit, K., Kesarwani, A., Kisku, D. R., & Dalui, M. (2020). Covid-19 detection on chest x-ray and ct scan images using multi-imageaugmented deep learning model. BioRxiv. [6] Hasan, A. M., Al-Jawad, M. M., Jalab, H. A., Shaiba, H., Ibrahim, R. W.,& AL-Shamasneh, A. A. R. (2020). Classification of covid-19 coronavirus, pneumonia and healthy lungs in ct scans using q-deformed entropy and deep learning features. Entropy, 22(5), 517. [7] Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020).Sensitivity of chest CT for COVID-19: comparison to RT- PCR. Radiology, 296(2), E115-E117. [8] Li, X., Fang, X., Bian, Y., & Lu, J. (2020). Comparison of chest CT findings between COVID-19 pneumonia and other types of viral pneumonia: a two-center retrospective study. European radiology, 30, 5470-5478. [9] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in signal processing, 7(3–4), 197-387. [10] Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P. (2020). COVID-CT-Dataset: a CT image dataset about COVID-19. arXiv preprint arxiv:2003.13865, 3. [11] Peng, Y., Tang, Y. X., Lee, S., Zhu, Y., Summers, R. M., & Lu, Z. (2020). COVID-19-CT-CXR: a freely accessible and weakly labeled chest X- ray and CT image collection on COVID-19 from biomedical literature. arXiv preprint arXiv:2006.06177. [12] Jin, C., Chen, W., Cao, Y., Xu, Z., Zhang, X., Deng, L., ... & Feng, J. Development and evaluation of an AI system for COVID-19 diagnosis.medRxiv2020. preprint[https://doi.org/10.1101/2020.03. 20.20039834]. [13] Zhang, Z., & Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv preprint arXiv:1805.07836. [14] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [15] Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the fourteenth internationalconference on artificial intelligence and statistics (pp. 315-323). JMLR Workshop and Conference Proceedings. [16] Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Swish: a self-gated activation function. arXiv preprint arXiv:1710.05941, 7, 1. [17] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun,Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229. [18] LeCun, Y. (2015). LeNet-5, convolutional neural networks. URL: http://yann. lecun. com/exdb/lenet, 20(5), 14. [19] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET) (pp. 1-6). Ieee. [20] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. [21] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [22] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359. [23] Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques (pp. 242-264). IGI global. [24] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. arXiv preprint arXiv:1411.1792. [25] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,Laviolette, F., ... & Lempitsky, V. (2016). Domain-adversarial training of neural networks. The journal of machine learning research, 17(1),2096-2030. [26] Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., ... & Dean, J. (2017). Google’s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5, 339-351. [27] Ning, W., Lei, S., Yang, J., Cao, Y., Jiang, P., Yang, Q., ... & Wang, Z.(2020). Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nature biomedical engineering, 4(12), 1197-1207. [28] Yan, T., Wong, P. K., Ren, H., Wang, H., Wang, J., & Li, Y. (2020).Automatic distinction between covid-19 and common pneumonia using multi-scale convolutional neural network on chest ct scans. Chaos,Solitons & Fractals, 140, 110153. [29] Al-Yasriy, H. F., AL-Husieny, M. S., Mohsen, F. Y., Khalil, E. A., & Hassan, Z. S. (2020, November). Diagnosis of Lung Cancer Based on CT Scans Using CNN. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 2, p. 022035). IOP Publishing. [30] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1-48. [31] Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest:Multi-classification deep learning model for diagnosing COVID-19,pneumonia, and lung cancer chest diseases. Computers in biology andmedicine, 132, 104348. [32] Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic(ROC)curve. Radiology, 143(1), 29-36. [33] Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3), 299-310. |