帳號:guest(3.133.113.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳威全
作者(外文):Chen, Wei-Chuan
論文名稱(中文):輻射膠片應用於清華水池式反應器硼中子捕獲治療射束之中子二維分佈
論文名稱(外文):Application EBT3 Film in 2D-Neutron Distribution Measurement for Tsing Hua Open-pool Reactor Boron Neutron Capture Therapy Beam
指導教授(中文):許靖涵
蔡惠予
指導教授(外文):Hsu, Ching-Han
Tsai, Hui-Yu
口試委員(中文):張力允
許榮鈞
口試委員(外文):Chang, Li-Yun
Sheu, Rong-Jiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012526
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:76
中文關鍵詞:硼中子捕獲治療中子通量EBT3輻射膠片底片劑量計
外文關鍵詞:BNCTNeutron fluenceEBT3 filmFilm dosimetry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:225
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
硼中子捕獲治療是利用10B元素與熱中子具有高捕獲截面的特性,藉由藥物將10B元素選擇性的地進入腫瘤細胞中,透過體外中子源的照射,使聚集在腫瘤處的10B元素與中子發生核反應釋放重荷電粒子,以其短射程、高線線性能量轉移的特性壞腫瘤細胞,並同時降低對周圍正常組織的傷害。體內10B元素的分佈與中子通量的分佈對於治療的劑量分佈具有決定性的關鍵。
本研究引入EBT3輻射膠片劑量測定術,遵循美國醫學物理協會(American Association of Physicists in Medicine, AAPM)發表之TG-235報告,仔細謹慎地建立輻射膠片劑量量測系統,應用於硼中子捕獲治療射束,並且透過蒙地卡羅的模擬計算,區別硼中子捕獲治療射束的光子射源貢獻的劑量,以中子射源對於輻射膠片的劑量響應反映出由中子射源貢獻中子通量,建立中子通量分佈量測方法,同時推導出中子射源貢獻的輻射膠片劑量與中子吸收劑量之間的關係。
由實驗結果顯示,在假體中深度2~9 cm處,光子射源貢獻的劑量在混合場中的輻射膠劑量佔比小,中子射源貢獻的輻射膠片劑量與蒙地卡羅的模擬計算的中子通量之間有相同的分佈情況。中子射源貢獻的輻射膠片劑量與中子通量之間的響應函數,與對應深度下的平均克馬因子有相同的變化趨勢,並且兩者之商對深度並未發現有依存性;在輻射膠片量測結果經過計算之中子通量與蒙地卡羅模擬計算之中子通量的比較中,兩者的差異在大部分位置中會在5%以內。
由實驗結果得知,EBT3在混合輻射場中的響應,搭配蒙地卡羅計算結果進行計算,可以指示出中子通量,證實EBT3輻射膠片可作為中子通量量測之工具,具有指出相對中子劑量的分佈的潛力,對後續的應用提供基礎。
Boron neutron capture therapy (BNCT) is a radiotherapy for cancer treatment, based on nuclear capture and fission reactions that occur when 10B is irradiated with thermal neutrons to produce heavy charged particles to kill tumor cells. The 10B atoms are transported to the tumor cell with tumor-seeking drugs. The heavy charged particles produced by (n,α) reaction have high-linear energy transfer (LET) with short range to kill tumor cells locally. Thus, in vivo boron distribution and the neutron distribution play important roles in BNCT.
In this study, EBT3 film dosimetry was introduced. The film dosimetry system used in the BNCT was carefully established following the TG-235 report, which was published by the American Association of Physicists in Medicine (AAPM). The response of the EBT3 film in the BNCT field is converted into the film dose, which is almost equal to the absorbed dose of the EBT3 film in the photon field. The film dose contributed from the photon source was estimated through a Monte Carlo simulation calculation and was subtracted from the total film dose. Thus, the remaining film dose is contributed by a neutron source and has a spatial distribution corresponding to that of neutrons, especially for thermal neutrons.
The results of this work not only show that the photon source contribution to the film dose only accounts for a small proportion of the total film dose, but also observe that the distribution is different from the neutron source contribution to film dose. Analyzing the response function between neutron fluence and neutron source contributed to film dose, find out that it has the same trend as average kerma factor in phantom at depth 2 to 9 cm. The ratio of the response function to the average kerma factor is constant in this range. Finally, the calculated neutron fluence from film dosimetry resembles the Monte Carlo simulation result within a 5% difference in most locations of detection. This work provides a method to measure the neutron spatial distribution of the BNCT beam with the EBT3 film and points out the neutron response of the EBT3 film for subsequent applications.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
第一節 研究目的與動機 1
第二節 研究方法與步驟 2
第三節 名詞解釋 2
第二章 介紹與文獻回顧 5
第一節 硼中子捕獲治療原理 5
第二節 BNCT劑量學的物理量 5
第三節 中子度量技術 6
第四節 輻射膠片劑量測定術 8
一、輻射膠片種類 8
二、輻射膠片讀取系統 13
三、軟體種類 14
四、操作建議 14
五、分析方法 15
第五節 中子射束二維分佈量測之文獻回顧 17
一、THOR BNCT射束的特性 17
二、輻射膠片應用於BNCT二維分佈量測之國際文獻 17
第六節 研究理論基礎 18
第三章 研究設計與方法 22
第一節 系統建立所需設備與軟體 22
一、EBT3輻射膠片 22
二、Epson Perfection V800 Photo掃描儀 22
三、使輻射膠片平貼於掃描平台之玻璃板 23
四、SilverFast 23
五、Matlab 24
六、PMMA假體 25
第二節 建立輻射膠片劑量量測系統 25
一、掃描之空間解析度 25
二、輻射膠片與掃描儀的平貼性 26
三、掃描儀均勻性修正 27
四、輻射膠片淨光密度與劑量轉換 29
第三節 BNCT射束中子通量模擬計算 30
一、模擬計算計分大小設定 30
二、後假體長度對回散射中子影響 31
三、硼中子捕獲治療射束射源項模擬二維劑量分佈 31
第四節 輻射膠片於BNCT射束照射實驗 32
第四章 結果與討論 34
第一節 輻射膠片劑量量測系統 34
一、優化掃描解析度 34
二、輻射膠片於掃描平台之平貼性 35
三、掃描儀自動校正區域影響 36
四、掃描儀均勻性修正 37
五、輻射膠片劑量響應曲線 39
六、輻射膠片劑量量測系統的建立 40
第二節 BNCT射束模擬計算結果 43
一、設定適合的計分大小 43
二、後假體長度對回散射中子影響 44
三、中子射源項模擬中子通量與能譜 45
四、光子射源項模擬劑量二維分佈 48
第三節 輻射膠片於BNCT射束照射實驗 50
一、輻射膠片劑量二維分佈 51
二、光子射源項劑量與輻射膠片劑量佔比 54
三、中子輻射膠片劑量二維分佈 57
四、通量響應函數 60
五、中子通量二維分佈 61
六、BNCT各射源項對輻射膠片響應的二維分佈 64
第四節 優勢與限制 67
第五章 結論與未來工作 69
第一節 結論 69
第二節 未來工作 69
第六章 參考文獻 71
Aldelaijan, S., & Devic, S. (2018). Comparison of dose response functions for EBT3 model GafChromicTM film dosimetry system. Physica Medica, 49(May), 112–118. https://doi.org/10.1016/j.ejmp.2018.05.014
Bavarnegin, E., Khalafi, H., Sadremomtaz, A., Kasesaz, Y., & Khajeali, A. (2017). Investigation of Dose Distribution in Mixed Neutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel. Nuclear Engineering and Technology, 49(1), 189–195. https://doi.org/10.1016/j.net.2016.07.012
Brockman, J. D., Nigg, D. W., Hawthorne, M. F., Lee, M. W., & McKibben, C. (2009). Characterization of a boron neutron capture therapy beam line at the University of Missouri Research Reactor. Journal of Radioanalytical and Nuclear Chemistry, 282(1), 157–160. https://doi.org/10.1007/s10967-009-0169-5
Butson, M. J., Cheung, T., & Yu, P. K. N. (2008). Measuring energy response for RTQA radiochromic film to improve quality assurance procedures. Australasian Physical and Engineering Sciences in Medicine, 31(3), 203–206. https://doi.org/10.1007/BF03179345
Castriconi, R., Ciocca, M., Mirandola, A., Sini, C., Broggi, S., Schwarz, M., Fracchiolla, F., Martišíková, M., Aricò, G., Mettivier, G., & Russo, P. (2017). Dose–response of EBT3 radiochromic films to proton and carbon ion clinical beams. Physics in Medicine and Biology, 62(2), 377–393. https://doi.org/10.1088/1361-6560/aa5078
Chang, L., Chui, C. S., Ding, H. J., Hwang, I. M., & Ho, S. Y. (2012). Calibration of EBT2 film by the PDD method with scanner non-uniformity correction. Physics in Medicine and Biology, 57(18), 5875–5887. https://doi.org/10.1088/0031-9155/57/18/5875
Chang, L., Ho, S. Y., Lee, T. F., Yeh, S. A., Ding, H. J., & Chen, P. Y. (2015). The suitable dose range for the calibration of EBT2 film by the PDD method with a comparison of two curve fitting algorithms. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 777, 85–90. https://doi.org/10.1016/j.nima.2014.12.092
Daquino, G. G., & Voorbraak, W. P. (2008). A Review of the Recommendations for the Physical Dosimetry of Boron Neutron Capture Therapy (BNCT). In JRC Scientific and Technical Reports. https://doi.org/10.2790/22862
Devic, S., Tomic, N., & Lewis, D. (2016). Reference radiochromic film dosimetry: Review of technical aspects. Physica Medica, 32(4), 541–556. https://doi.org/10.1016/j.ejmp.2016.02.008
Devic, S., Tomic, N., Pang, Z., Seuntjens, J., Podgorsak, E. B., & Soares, C. G. (2007). Absorption spectroscopy of EBT model GAFCHROMICTM film. Medical Physics, 34(1), 112–118. https://doi.org/10.1118/1.2400615
Di Lillo, F., Mettivier, G., Sarno, A., Tromba, G., Tomic, N., Devic, S., & Russo, P. (2016). Energy dependent calibration of XR-QA2 radiochromic film with monochromatic and polychromatic x-ray beams. Medical Physics, 43(1), 583–588. https://doi.org/10.1118/1.4939063
Gambarini, G., Magni, D., Regazzoni, V., Borroni, M., Carrara, M., Pignoli, E., Burian, J., Marek, M., Klupak, V., & Viererbl, L. (2014). Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700. Radiation Protection Dosimetry, 161(1–4), 422–427. https://doi.org/10.1093/rpd/nct363
Gibbons, J. P. (2019). Khan’s the physics of radiation therapy. In Khan’s The Physics of Radiation Therapy (pp. 1–570). https://doi.org/10.4103/jmp.jmp_17_20
Hammer, C. G., Rosen, B. S., Fagerstrom, J. M., Culberson, W. S., & DeWerd, L. A. (2018). Experimental investigation of GafChromic® EBT3 intrinsic energy dependence with kilovoltage x rays, 137Cs, and 60Co. Medical Physics, 45(1), 448–459. https://doi.org/10.1002/MP.12682
Hsiao, M. C., Chen, W. L., Tsai, P. E., Huang, C. K., Liu, Y. H., Liu, H. M., & Jiang, S. H. (2011). A preliminary study on using the radiochromic film for 2D beam profile QC/QA at the THOR BNCT facility. Applied Radiation and Isotopes, 69(12), 1915–1917. https://doi.org/10.1016/j.apradiso.2011.04.007
Hsiao, M. C., & Jiang, S. H. (2019). In-phantom neutron dose measurement using Gafchromic film dosimeter for QA of BNCT beams. Applied Radiation and Isotopes, 143, 79–86. https://doi.org/10.1016/j.apradiso.2018.09.030
Hsiao, M. C., Liu, Y. H., Chen, W. L., & Jiang, S. H. (2013). Neutron response of GafChromic® EBT2 film. Physics in Medicine and Biology, 58(5), 1391–1413. https://doi.org/10.1088/0031-9155/58/5/1391
Ishikawa, A., Yamazaki, A., Watanabe, K., Yoshihashi, S., Uritani, A., Fukuda, K., Koike, A., Ogawara, R., Suda, M., & Hamano, T. (2020). Sensitivity and linearity of optical fiber-based neutron detectors using small6Li-based scintillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954. https://doi.org/10.1016/j.nima.2018.11.120
Khachonkham, S., Dreindl, R., Heilemann, G., Lechner, W., Fuchs, H., Palmans, H., Georg, D., & Kuess, P. (2018). Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Physics in Medicine and Biology, 63(6). https://doi.org/10.1088/1361-6560/aab1ee
Khajeali, A., Farajollahi, A. R., Khodadadi, R., Kasesaz, Y., & Khalili, A. (2015). Role of gel dosimeters in boron neutron capture therapy. Applied Radiation and Isotopes, 103, 72–81. https://doi.org/10.1016/j.apradiso.2015.05.017
Lárraga-Gutiérrez, J. M., García-Garduño, O. A., Treviño-Palacios, C., & Herrera-González, J. A. (2018). Evaluation of a LED-based flatbed document scanner for radiochromic film dosimetry in transmission mode. Physica Medica, 47(January), 86–91. https://doi.org/10.1016/j.ejmp.2018.02.010
Lewis, D., & Chan, M. F. (2015). Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry. Medical Physics, 42(1), 416–429. https://doi.org/10.1118/1.4903758
Lewis, D., Micke, A., Yu, X., & Chan, M. F. (2012). An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Medical Physics, 39(10), 6339–6350. https://doi.org/10.1118/1.4754797
Liu, Y. H., Tsai, P. E., Lin, Y. C., Huang, C. K., Liu, H. M., & Jiang, S. H. (2011). Quality control and quality assurance procedures at the THOR BNCT facility. Applied Radiation and Isotopes, 69(12), 1897–1900. https://doi.org/10.1016/j.apradiso.2011.03.012
Liu, Y. H., Tsai, P. E., Yu, H. T., Lin, Y. C., Huang, Y. S., Huang, C. K., Hsueh Liu, Y. W., Liu, H. M., & Jiang, S. H. (2011). Performance evaluation of the source description of the THOR BNCT epithermal neutron beam. Applied Radiation and Isotopes, 69(12), 1892–1896. https://doi.org/10.1016/j.apradiso.2011.04.005
Niroomand-Rad, A., Chiu-Tsao, S. T., Grams, M. P., Lewis, D. F., Soares, C. G., Van Battum, L. J., Das, I. J., Trichter, S., Kissick, M. W., Massillon-JL, G., Alvarez, P. E., & Chan, M. F. (2020). Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Medical Physics, 47(12), 5986–6025. https://doi.org/10.1002/mp.14497
Porcari, P., Capuani, S., & Saverio, F. (2011). Novel Pharmacological and Magnetic Resonance Strategies to Enhance Boron Neutron Capture Therapy (BNCT) Efficacy in the Clinical Treatment of Malignant Glioma. Management of CNS Tumors. https://doi.org/10.5772/24756
Santos, T., Ventura, T., & Lopes, M. do C. (2021). A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiation Physics and Chemistry, 179(September 2020), 109217. https://doi.org/10.1016/j.radphyschem.2020.109217
Schoenfeld, A. A., Wieker, S., Harder, D., & Poppe, B. (2016a). The origin of the flatbed scanner artifacts in radiochromic film dosimetry - Key experiments and theoretical descriptions. Physics in Medicine and Biology, 61(21), 7704–7724. https://doi.org/10.1088/0031-9155/61/21/7704
Schoenfeld, A. A., Wieker, S., Harder, D., & Poppe, B. (2016b). The origin of the flatbed scanner artifacts in radiochromic film dosimetry - Key experiments and theoretical descriptions. Physics in Medicine and Biology, 61(21), 7704–7724. https://doi.org/10.1088/0031-9155/61/21/7704
Tsai, W. C., Huang, C. K., & Jiang, S. H. (2018). QA measurement of gamma-ray dose and neutron activation using TLD-400 for BNCT beam. Applied Radiation and Isotopes, 137(April 2017), 73–79. https://doi.org/10.1016/j.apradiso.2018.03.010
Watanabe, K., Kawabata, Y., Yamazaki, A., Uritani, A., Iguchi, T., Fukuda, K., & Yanagida, T. (2015). Development of an optical fiber type detector using a Eu:LiCaAlF6 scintillator for neutron monitoring in boron neutron capture therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 802, 1–4. https://doi.org/10.1016/j.nima.2015.08.056
Yonai, S., Arai, C., Shimoyama, K., & Fournier-Bidoz, N. (2018). Experimental evaluation of dosimetric characterization of gafchromic EBT3 and EBT-XD films for clinical carbon ion beams. Radiation Protection Dosimetry, 180(1–4), 314–318. https://doi.org/10.1093/RPD/NCY006
(此全文20270718後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *