帳號:guest(18.221.249.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃暐庭
作者(外文):Huang, Wei-Ting
論文名稱(中文):以感應耦合電漿質譜儀結合液相層析分離技術進行餘甘子中硒物種之連線分析研究
論文名稱(外文):Coupling High Performance Liquid Chromatographic Separation Technique with Inductively Coupled Plasma–Mass Spectrometry for Online Determination of Selenium Species in Phyllanthus emblica Samples
指導教授(中文):吳劍侯
施宗廷
指導教授(外文):Wu, Chien-Hou
Shih, Tsung-Ting
口試委員(中文):陳仁焜
李清福
口試委員(外文):Chen, Jen-Kun
Lee, Tsing-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012517
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:78
中文關鍵詞:物種分析酵素水解餘甘子高效液相層析感應耦合電漿質譜儀
外文關鍵詞:speciation analysisseleniumenzymatic hydrolysisPhyllanthus emblicaHPLCICP-MSHPLC-ICP-MS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
餘甘子 (Phyllanthus emblica) 以對於治療和預防疾病的作用而聞名,並且是微量元素硒 (Selenium) 少見的來源。本研究旨在利用感應耦合電漿質譜儀結合高效液相層析技術,開發一套快速與可靠的硒物種分析方法應用於餘甘子。樣品前處理使用酵素 (蛋白酶 XIV) 水解以保留硒物種完整性,並透過微波的輔助可於 60℃、30 分鐘內完成萃取。高效液相層析–感應耦合電漿質譜連線分析系統使用 PRP-X100 陰離子交換管柱,動相為添加 2 % 甲醇之10 mM 檸檬酸銨緩衝溶液 (pH 5),可於 20 分鐘內同時分離 SeMet、SeCys2、MeSeCys、Se(IV) 和 Se(VI)。五個硒物種的偵測極限介於 11.8–72.2 ng L-1 之間,並已透過驗證參考物質 SELM-1 進行方法確校。此物種分析方法已成功應用於六個不同地區的餘甘子樣品。結果顯示 SeMet 為餘甘子中主要硒物種,亦觀察到不同地區的差異,這些發現為餘甘子中硒物種分布提供了新的資訊。
Phyllanthus emblica (amla) is known for its therapeutic and preventive effects on diseases and is a rare source of the trace element selenium (Se). This study aimed to develop a rapid and reliable Se speciation analysis for P. emblica by coupling high performance liquid chromatographic separation technique with inductively coupled plasma–mass spectrometry. Sample preparation involved enzymatic (protease XIV) hydrolysis to preserve the integrity of Se species, which was accomplished within 30 minutes at 60°C with the assistance of microwaves. The developed high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) online analysis system utilized an anion-exchange column PRP-X100, and the mobile phase was 10 mM ammonium citrate buffer solution (pH 5) containing 2% MeOH. The system was able to simultaneously analyze SeMet, SeCys2, MeSeCys Se(IV) and Se(VI) within 20 mins. The detection limits for the five Se species ranged from 11.8 to 72.2 ng L-1, and the accuracy of the method was verified by analyzing the certified reference material (CRM) SELM-1. The speciation analysis method was successfully applied to P. emblica samples from six different regions. The results revealed that SeMet was the predominant species in P. emblica, and significant differences in the distribution of selenium species were observed among the different regions. These findings provide valuable insights into the distribution of Se species in P. emblica.
摘 要 I
ABSTRACT II
謝 誌 III
目 錄 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 餘甘子簡介 1
1.2 微量元素硒及其物種對於現代生物醫學的重要性 6
1.3 現行硒物種分析技術發展 11
1.4 研究目的及因應策略 12
第二章 儀器分析及原理 14
2.1 高效能液相層析儀 14
2.2 感應耦合電漿質譜儀 16
2.2.1 樣品導入系統 17
2.2.2 感應耦合電漿離子源 19
2.2.3 取樣界面 23
2.2.4 真空系統 25
2.2.5 離子透鏡 26
2.2.6 四極柱質量分析器 27
2.2.7 離子偵測器 29
第三章 實驗 32
3.1 儀器設備與裝置 32
3.2 試劑與材料 33
3.3 連線系統之建立 34
3.4 真實樣品製備 35
3.5 樣品前處理 36
第四章 結果與討論 37
4.1 層析分離條件最適化 38
4.1.1 動相 pH 值對於層析訊號之影響 38
4.1.2 動相濃度對於層析訊號之影響 42
4.1.3 甲醇濃度對於層析訊號之影響 43
4.2 萃取條件最適化 44
4.2.1 萃取方法對於分析物訊號之影響 44
4.2.2 酵素用量對於分析物訊號之影響 47
4.2.3 萃取溫度對於分析物訊號之影響 48
4.2.4 萃取時間對於分析物訊號之影響 49
4.3 連線分析系統效能評估 52
4.4 真實樣品分析 54
第五章 結論 61
第六章 未來展望 63
第七章 參考文獻 66
附錄、論文口試審查委員意見修正情形一覽 75
[1] Tewari, R.; Kumar, V.; Sharma, H. K. Physical and chemical characteristics of different cultivars of Indian gooseberry (Emblica officinalis). J. Food Sci. Technol. 2019, 1641-1648.
[2] Mao, X.; Wu, L. F.; Guo, H. L.; Chen, W. J.; Cui, Y. P.; Qi, Q.; Li, S.; Liang, W. Y.; Yang, G. H.; Shao, Y. Y.; Zhu, D.; She, G. M.; You, Y.; Zhang, L. Z. The Genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review. Evid. Based Complement. Alternat. Med. 2016, 7584952.
[3] Khanna, S.; Das, A.; Spieldenner, J.; Rink, C.; Roy, S. Supplementation of a standardized extract from Phyllanthus emblica improves cardiovascular risk factors and platelet aggregation in overweight/class-1 obese adults. J. Med. Food. 2015, 415-20.
[4] 邱年次; 張光維. 原色臺灣植物藥用植物圖鑑 (2). 第二版; 台北南天書局有限公司, 2003; p 316.
[5] Saini, R.; Sharma, N.; Oladeji, O. S.; Sourirajan, A.; Dev, K.; Zengin, G.; El-Shazly, M.; Kumar, V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J. Ethnopharmacol. 2022, 114570.
[6] Barthakur, N. N.; Arnold, N. P. Chemical analysis of the emblic (Phyllanthus emblica L.) and its potential as a food source. Scientia Horticulturae. 1991, 99-105.
[7] Jain, S. K.; Khurdiya, D. S. Vitamin C enrichment of fruit juice based ready-to-serve beverages through blending of Indian gooseberry (Emblica officinalis Gaertn.) juice. Plant Foods Hum. Nutr. 2004, 63-6.
[8] Chaiyana, W.; Charoensup, W.; Sriyab, S.; Punyoyai, C.; Neimkhum, W. Herbal Extracts as Potential Antioxidant, Anti-Aging, Anti-Inflammatory, and Whitening Cosmeceutical Ingredients. Chemistry and Biodiversity. 2021, e2100245.
[9] Baliga, M. S.; Prabhu, A. N.; Prabhu, D. A.; Shivashankara, A. R.; Abraham, A.; Palatty, P. L. In Bioactive Food as Dietary Interventions for Diabetes; Watson, R. R.; Preedy, V. R., Eds. Academic Press: San Diego, 2013; pp 583-600.
[10] Rajalakshmi, S.; Vijayakumar, S.; Praseetha, P. K. Neuroprotective behaviour of Phyllanthus emblica (L) on human neural cell lineage (PC12) against glutamate-induced cytotoxicity. Gene Reports. 2019, 100545.
[11] Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J. Pharm. Anal. 2018, 109-118.
[12] Gunti, L.; Dass, R. S.; Kalagatur, N. K. Phytofabrication of Selenium Nanoparticles From Emblica officinalis Fruit Extract and Exploring Its Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility. Front. Microbiol. 2019, 931.
[13] Liu, X.; Zhao, M.; Wang, J.; Yang, B.; Jiang, Y. Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. J. Food Compost. Anal. 2008, 219-228.
[14] Wang, H. M.-D.; Fu, L.; Cheng, C. C.; Gao, R.; Lin, M. Y.; Su, H. L.; Belinda, N. E.; Nguyen, T. H.; Lin, W.-H.; Lee, P. C.; Hsieh, L. P. Inhibition of LPS-Induced Oxidative Damages and Potential Anti-Inflammatory Effects of Phyllanthus emblica Extract via Down-Regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants. 2019, 270.
[15] Li, W.; Zhu, H. W.; Chen, Y. J.; Xiao, H.; Ge, Y. Z.; Hu, H. E.; Li, X. L.; Cao, Y. Bioactivity-guided isolation of anti-inflammatory components from Phyllanthus emblica. Food Sci. Nutr. 2020, 2670-2679.
[16] Kumnerdkhonkaen, P.; Saenglee, S.; Asgar, M. A.; Senawong, G.; Khongsukwiwat, K.; Senawong, T. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complement. Altern. Med. 2018, 130.
[17] Zeng, Z.; Lv, W.; Jing, Y.; Chen, Z.; Song, L.; Liu, T.; Yu, R. Structural characterization and biological activities of a novel polysaccharide from Phyllanthus emblica. Drug Discov. Ther. 2017, 54-63.
[18] Singh, M. K.; Yadav, S. S.; Gupta, V.; Khattri, S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complement. Altern. Med. 2013, 193.
[19] Rawal, S.; Singh, P.; Gupta, A.; Mohanty, S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. BioMed Research International. 2014, 910290.
[20] Li, W.; Zhang, X.; Chen, R.; Li, Y.; Miao, J.; Liu, G.; Lan, Y.; Chen, Y.; Cao, Y. HPLC fingerprint analysis of Phyllanthus emblica ethanol extract and their antioxidant and anti-inflammatory properties. J. Ethnopharmacol. 2020, 112740.
[21] Kolachi, N. F.; Kazi, T. G.; Afridi, H. I.; Khan, S.; Wadhwa, S. K.; Shah, A. Q.; Shah, F.; Baig, J. A.; Sirajuddin Determination of selenium content in aqueous extract of medicinal plants used as herbal supplement for cancer patients. Food Chem. Toxicol. 2010, 3327-32.
[22] Parvez, M. Euphorbia granulata Forssk as a Source of Mineral Supplement. Am. Eurasian J. Agric. Environ. Sci. 2013.
[23] Sciences, N. A. o., Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). National Academies Press Washington, DC: 2005; p 1357.
[24] Hatfield, D. L.; Tsuji, P. A.; Carlson, B. A.; Gladyshev, V. N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 2014, 112-20.
[25] Schwarz, K.; Foltz, C. M. Selenium as an Integral Part of Factor 3 Against Dietary Necrotic Liver Degeneration. Nutrition. 1999, 254-256.
[26] Flohe, L.; Günzler, W. A.; Schock, H. H. Glutathione peroxidase: A selenoenzyme. FEBS Lett. 1973, 132-134.
[27] Rahmanto, A. S.; Davies, M. J. Selenium-containing amino acids as direct and indirect antioxidants. IUBMB Life. 2012, 863-71.
[28] Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: a review. Sci. Total Environ. 2008, 115-41.
[29] Ighodaro, O. M.; Akinloye, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2019, 287-293.
[30] Germ, M.; Stibilj, V. Selenium and plants. Acta Agric. Slov. 2007, 65-71.
[31] Ju, W.; Li, X.; Li, Z.; Wu, G. R.; Fu, X. F.; Yang, X. M.; Zhang, X. Q.; Gao, X. B. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J. Trace Elem. Med. Biol. 2017, 8-16.
[32] Gopalakrishna, R.; Gundimeda, U.; Zhou, S.; Bui, H.; Holmgren, A. Redox regulation of protein kinase C by selenometabolites and selenoprotein thioredoxin reductase limits cancer prevention by selenium. Free Radical Biol. Med. 2018, 55-61.
[33] Dai, Z.; Imtiaz, M.; Rizwan, M.; Yuan, Y.; Huang, H.; Tu, S. Dynamics of Selenium uptake, speciation, and antioxidant response in rice at different panicle initiation stages. Sci. Total Environ. 2019, 827-834.
[34] Barros, S. E. L.; Dias, T.; Moura, M. S. B.; Soares, N. R. M.; Pierote, N. R. A.; Araujo, C. O. D.; Maia, C. S. C.; Henriques, G. S.; Barros, V. C.; Moita Neto, J. M.; Parente, J. M. L.; Marreiro, D. D. N.; Nogueira, N. D. N. Relationship between selenium status and biomarkers of oxidative stress in Crohn's disease. Nutrition. 2020, 110762.
[35] Wei, Y.; Zhang, J.; Qiu, S.; Huang, Q.; Yuan, L.; Chen, L.; Dai, T.; Tu, T.; Zhang, B.; Yan, H.; Li, W. Selenium Species Determination in Se-Enriched Grain Crops with Foliar Spray of Sodium Selenite by IP-RP-HPLC-UV-HG-AFS. Food Anal. Methods. 2021, 1345-1358.
[36] Efsa Panel on Nutrition, N. F.; Food, A.; Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K. I.; Knutsen, H. K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H. J.; Pelaez, C.; Pentieva, K.; Siani, A.; Thies, F.; Tsabouri, S.; Vinceti, M.; Aggett, P.; Crous Bou, M.; Cubadda, F.; Ciccolallo, L.; de Sesmaisons Lecarre, A.; Fabiani, L.; Titz, A.; Naska, A. Scientific opinion on the tolerable upper intake level for selenium. EFSA J. 2023, e07704.
[37] Wu, Z.; Banuelos, G. S.; Lin, Z. Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant Sci. 2015, 136.
[38] Thiry, C.; Ruttens, A.; De Temmerman, L.; Schneider, Y.-J.; Pussemier, L. Current knowledge in species-related bioavailability of selenium in food. Food Chem. 2012, 767-784.
[39] Pletnikova, I. Biological effect and tolerance level of Se in drinking water. Gigiena i Sanitariya. 1970, 14-19.
[40] Abdo, K. M. NTP Technical Report on Toxicity Studies of Sodium Selenate and Sodium Selenite N.I.H.: U.S.A., 1994.
[41] Sayato, Y.; Hasegawa, T.; Taniguchi, S.; Maeda, H.; Ozaki, K.; Narama, I.; Nakamuro, K. Acute and subacute oral toxicity of selenocystine in mice. Eisei kagaku. 1993, 289-296.
[42] Aguilar, F.; Autrup, H.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Engel, K.; Gontard, N.; Gott, D.; Grilli, S. Selenium-enriched yeast as source for selenium added for nutritional purposes in foods for particular nutritional uses and foods (including food supplements) for the general population Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food. EFSA J. 2008, 1-42.
[43] Aguilar, F.; Charrondiere, U. R.; Dusemund, B.; Galtier, P.; Gilbert, J.; Gott, D. M.; Grilli, S.; Guertler, R.; Kass, G. E. N.; Koenig, J.; Lambré, C.; Larsen, J.-C.; Leblanc, J.-C.; Mortensen, A.; Parent-Massin, D.; Pratt, I.; Rietjens, I. M. C. M.; Stankovic, I.; Tobback, P.; Verguieva, T.; Woutersen., R. Se-methyl-L-selenocysteine added as a source of selenium for nutritional purposes to food supplements. EFSA Journal. 2009.
[44] Fairweather-Tait, S. J.; Collings, R.; Hurst, R. Selenium bioavailability: current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 1484S-1491S.
[45] Bodnar, M.; Konieczka, P. Evaluation of candidate reference material obtained from selenium-enriched sprouts for the purpose of selenium speciation analysis. Lwt. 2016, 286-295.
[46] Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. Chemical forms of selenium for cancer prevention. J. Trace Elem. Med. Biol. 2005, 141-50.
[47] Presser, T. S.; Luoma, S. N. Linking Selenium Sources to Ecosystems: San Francisco Bay-Delta Model. U.S. Geological Survey. 2004, 2004–3091.
[48] Van Hoewyk, D.; Çakir, O. In Selenium in plants: Molecular, Physiological, Ecological and Evolutionary Aspects; Pilon-Smits, E. A. H.; Winkel, L. H. E.; Lin, Z.-Q., Eds. Springer International Publishing: Cham, 2017; pp 165-176.
[49] Pedrero, Z.; Encinar, J. R.; Madrid, Y.; Camara, C. Identification of selenium species in selenium-enriched Lens esculenta plants by using two-dimensional liquid chromatography-inductively coupled plasma mass spectrometry and [77Se] selenomethionine selenium oxide spikes. J. Chromatogr. A. 2007, 247-53.
[50] Winkel, L. H.; Vriens, B.; Jones, G. D.; Schneider, L. S.; Pilon-Smits, E.; Banuelos, G. S. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients. 2015, 4199-239.
[51] Sotek, Z.; Białecka, B.; Pilarczyk, B.; Drozd, R.; Pilarczyk, R.; Tomza-Marciniak, A.; Kruzhel, B.; Lysak, H.; Bąkowska, M.; Vovk, S. Antioxidant Activity and Selenium and Polyphenols Content from Selected Medicinal Plants Natives from Various Areas Abundant in Selenium (Poland, Lithuania, and Western Ukraine). Processes. 2019.
[52] Zhu, Y. G.; Pilon-Smits, E. A.; Zhao, F. J.; Williams, P. N.; Meharg, A. A. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009, 436-42.
[53] Terry, N.; Zayed, A. M.; de Souza, M. P.; Tarun, A. S. SELENIUM IN HIGHER PLANTS. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 401-432.
[54] Blazina, T.; Sun, Y.; Voegelin, A.; Lenz, M.; Berg, M.; Winkel, L. H. E. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat. Commun. 2014.
[55] Moreda-Pineiro, J.; Sanchez-Pinero, J.; Manana-Lopez, A.; Turnes-Carou, I.; Alonso-Rodriguez, E.; Lopez-Mahia, P.; Muniategui-Lorenzo, S. Selenium species determination in foods harvested in Seleniferous soils by HPLC-ICP-MS after enzymatic hydrolysis assisted by pressurization and microwave energy. Food Res. Int. 2018, 621-630.
[56] Montes-Bayon, M.; Molet, M. J.; Gonzalez, E. B.; Sanz-Medel, A. Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Alliumsativum and Brassicajuncea) and Se speciation by HPLC-ICP-MS. Talanta. 2006, 1287-93.
[57] Oliveira, A. P.; Neto, J. A. G.; Nóbrega, J. A.; Correia, P. R. M.; Oliveira, P. V. Determination of selenium in nutritionally relevant foods by graphite furnace atomic absorption spectrometry using arsenic as internal standard. Food Chem. 2005, 355-360.
[58] Ferreira, S. L. C.; Cerda, V.; Portugal, L. A.; Gonçalves, L. B.; Santos Neto, J. H.; Pereira Junior, J. B.; Palacio, E. State of the art of the methods proposed for selenium speciation analysis by CVG-AFS. TrAC, Trends Anal. Chem. 2022, 116617.
[59] Herrero Latorre, C.; Barciela García, J.; García Martín, S.; Peña Crecente, R. M. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review. Anal. Chim. Acta. 2013, 37─49.
[60] Yang, L.; Mester, Z.; Sturgeon, R. E. Determination of methionine and selenomethionine in yeast by species-specific isotope dilution GC/MS. Anal. Chem. 2004, 5149-56.
[61] Li, K.; Li, S. Speciation Of Selenium And Arsenic Compounds In Natural-Waters By Capillary Zone Electriphoresis After On-Column Preconcentration With Field-Amplified Injenction. Analyst. 1995, 361─366.
[62] Toppner, K. Ultrapure Water for HPLC Analysis. GIT laboratory journal. 2014.
[63] Saunders, D. L. Chromatography. 3rd ed.; 1975; p 81.
[64] Gilstrap Jr, R. A. A colloidal nanoparticle form of indium tin oxide: system development and characterization. Georgia Institute of Technology, 2009.
[65] Dunnivant, F.; Ginsbach, J. Flame atomic absorbance and emission spectroscopy and inductively coupled spectrometry-mass spectrometry. Whitman College. 2009.
[66] Todolí, J. L.; Mermet, J. M. Elemental analysis of liquid microsamples through inductively coupled plasma spectrochemistry. TrAC, Trends Anal. Chem. 2005, 107-116.
[67] Agilent Applications of ICP-MS for trace elemental analysis in the hydrocarbon processing industry. https://www.agilent.com/Library/slidepresentation/Public/GCC2013_Applications_ICP-MS_Trace_Elemental_Analysis_Hydrocarbon_Processing.pdf (accessed 2022-07-09).
[68] Thomas, R. A beginner’s guide to ICP-MS. Spectroscopy. 2001, 16-31.
[69] Jarvis, K. E.; Gray, A. L.; Houk, R. S.; Jarvis, I.; McLaren, J.; Williams, J. G. Handbook of inductively coupled plasma mass spectrometry. Springer, 1992.
[70] Montaser, A. Inductively coupled plasma mass spectrometry. John Wiley & Sons, 1998.
[71] Elmer, P. NexION 5000 ICP-MS Basic Training. PerkinElmer. 2022.
[72] Elmer, P. The 30-minute Guide to ICP-MS. Perkin Elmer, Shelton CT. 2001, 1-8.
[73] Kicman, A.; Parkin, M.; Iles, R. An introduction to mass spectrometry based proteomics—Detection and characterization of gonadotropins and related molecules. Mol. Cell. Endocrinol. 2007, 212-27.
[74] Evans, E. H. In Encyclopedia of Analytical Science (Second Edition); Worsfold, P.; Townshend, A.; Poole, C., Eds. Elsevier: Oxford, 2005; pp 229-237.
[75] Agilent What is P/A Factor? https://community.agilent.com/technical/atomic-spec/f/forum/1161/p-a-factor-what-it-it-is (accessed 2023-01-12).
[76] Tolu, J.; Le Hécho, I.; Bueno, M.; Thiry, Y.; Potin-Gautier, M. Selenium speciation analysis at trace level in soils. Anal. Chim. Acta. 2011, 126-133.
[77] Hsieh, Y. J.; Jiang, S. J. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. J. Agric. Food. Chem. 2012, 2083-9.
[78] Vicente-Zurdo, D.; Gómez-Gómez, B.; Pérez-Corona, M. T.; Madrid, Y. Impact of fish growing conditions and cooking methods on selenium species in swordfish and salmon fillets. J. Food Compost. Anal. 2019.
[79] Shih, T. T.; Lin, C. H.; Hsu, I. H.; Chen, J. Y.; Sun, Y. C. Development of a titanium dioxide-coated microfluidic-based photocatalyst-assisted reduction device to couple high-performance liquid chromatography with inductively coupled plasma-mass spectrometry for determination of inorganic selenium species. Anal. Chem. 2013, 10091-8.
[80] 趙珮鈞、孫毓璋,碩士論文,國立清華大學,台灣,2016。
[81] Kuo, C. Y.; Jiang, S. J. Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2008, 60-6.
[82] Stadlober, M.; Sager, M.; Irgolic, K. J. Effects of selenate supplemented fertilisation on the selenium level of cereals — identification and quantification of selenium compounds by HPLC–ICP–MS. Food Chem. 2001, 357–366.
[83] Li, H. F.; McGrath, S. P.; Zhao, F. J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 92-102.
[84] Fu, Y.; Wang, J.; Liu, Q.; Zeng, H. Water-dispersible magnetic nanoparticle–graphene oxide composites for selenium removal. Carbon. 2014, 710-721.
[85] Rivail da Silva, M.; Muos Olivas, R.; Donard, O. F. X.; Lamotte, M. Determination of the deprotonation constants of seleno-DL-cystine and seleno-DL-methionine and implication to their separation by HPLC. Appl. Organomet. Chem. 1997, 21-30.
[86] Gutz, I. G. R. CurTiPot: An analysis and simulation freeware for pH and acid–base titration curves, 4.3.1. http://www.iq.usp.br/gutz/Curtipot_.html (accessed 2023-02-23).
[87] Guo, W.; Hu, S.; Wang, Y.; Zhang, L.; Hu, Z.; Zhang, J. Trace determination of selenium in biological samples by CH4-Ar mixed gas plasma DRC-ICP-MS. Microchem. J. 2013, 106-112.
[88] Larsen, E. H.; Stürup, S. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J. Anal. At. Spectrom. 1994, 1099-1105.
[89] Nakazawa, T.; Suzuki, D.; Sakuma, H.; Furuta, N. Comparison of signal enhancement by co-existing carbon and by co-existing bromine in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2014, 1299-1305.
[90] Zhang, H.-J.; Gao, P.-F.; Guo, X.-F.; Wang, H. Simultaneous determination of selenium containing amino acids and their sulfur-analogues in green tea and gynostemma pentaphyllum infusion with high performance liquid chromatography based on fluorescence labeling. Microchem. J. 2013, 192-197.
[91] Dumont, E.; Ogra, Y.; Vanhaecke, F.; Suzuki, K. T.; Cornelis, R. Liquid chromatography-mass spectrometry (LC-MS): a powerful combination for selenium speciation in garlic (Allium sativum). Anal. Bioanal. Chem. 2006, 1196-206.
[92] Grant, T. D.; Montes-Bayon, M.; LeDuc, D.; Fricke, M. W.; Terry, N.; Caruso, J. A. Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. J. Chromatogr. A. 2004, 159-66.
[93] Zhang, X.; Yang, L.; Mester, Z. Determination of amino acids in selenium-enriched yeast by gas chromatography-mass spectrometry after microwave assisted hydrolysis. Anal. Chim. Acta. 2012, 54-9.
[94] Cao, J.; Cheng, Y.; Xu, B.; Wang, Y.; Wang, F. Determination of Different Selenium Species in Selenium-Enriched Polysaccharide by HPLC-ICP-MS. Food Anal. Methods. 2021.
[95] Rayman, M. P.; Infante, H. G.; Sargent, M. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr. 2008, 238-53.
[96] Mehdi, Y.; Hornick, J. L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013, 3292-311.
[97] Gilon, N.; Astruc, A.; Astruc, M.; Potin-Gautier, M. Selenoamino acid speciation using HPLC-ETAAS following an enzymic hydrolysis of selenoprotein. Appl. Organomet. Chem. 1995, 623-628.
[98] Zhao, Y.; Wang, M.; Yang, M.; Zhou, J.; Wang, T. Determination of Selenomethionine, Selenocystine, and Methylselenocysteine in Egg Sample by High Performance Liquid Chromatography—Inductively Coupled Plasma Mass Spectrometry. Separations. 2022.
[99] Kápolna, E.; Fodor, P. Speciation analysis of selenium enriched green onions (Allium fistulosum) by HPLC-ICP-MS. Microchem. J. 2006, 56-62.
[100] Vale, G.; Rial-Otero, R.; Mota, A.; Fonseca, L.; Capelo, J. L. Ultrasonic-assisted enzymatic digestion (USAED) for total elemental determination and elemental speciation: A tutorial. Talanta. 2008, 872-884.
[101] Moreda-Piñeiro, J.; Sánchez-Piñero, J.; Mañana-López, A.; Turnes-Carou, I.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S. Multi-element determinations in foods from Amazon region by ICP-MS after enzymatic hydrolysis assisted by pressurisation and microwave energy. Microchem. J. 2018, 402-409.
[102] Pyrzynska, K. Selenium speciation in enriched vegetables. Food Chem. 2009, 1183-1191.
[103] Maldonado, D.; Chirinos, J.; Benzo, Z.; Gómez, C.; Marcano, E. Analytical evaluation of a dual micronebulizer sample introduction system for inductively coupled plasma spectrometry. J. Anal. At. Spectrom. 2006, 743-749.
[104] Siwek, M.; Bari Noubar, A.; Bergmann, J.; Niemeyer, B.; Galunsky, B. Enhancement of enzymatic digestion of Antarctic krill and successive extraction of selenium organic compounds by ultrasound treatment. Anal Bioanal Chem. 2006, 244-9.
[105] Zhao, Y.; Zheng, J.; Yang, M.; Yang, G.; Wu, Y.; Fu, F. Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta. 2011, 983-8.
[106] Tsopelas, F. N.; Ochsenkühn-Petropoulou, M. T.; Mergias, I. G.; Tsakanika, L. V. Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography. Anal. Chim. Acta. 2005, 327-333.
[107] Uden, P. C.; Totoe Boakye, H.; Kahakachchi, C.; Hafezi, R.; Nolibos, P.; Block, E.; Johnson, S.; Tyson, J. F. Element selective characterization of stability and reactivity of selenium species in selenized yeast. J. Anal. At. Spectrom. 2004.
[108] Bermejo, P.; Capelo, J. L.; Mota, A.; Madrid, Y.; Cámara, C. Enzymatic digestion and ultrasonication: a powerful combination in analytical chemistry. TrAC, Trends Anal. Chem. 2004, 654-663.
[109] Sparr Eskilsson, C.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A. 2000, 227-250.
[110] Chan, C. H.; Yusoff, R.; Ngoh, G. C.; Kung, F. W. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A. 2011, 6213-25.
[111] Ekezie, F.-G. C.; Sun, D.-W.; Cheng, J.-H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci. Technol. 2017, 160-172.
[112] In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. ; The National Academies Press. : Washington, DC, 2000; pp 284-324.
[113] Feng, X.; Ma, Q. Transcriptome and proteome profiling revealed molecular mechanism of selenium responses in bread wheat (Triticum aestivum L.). BMC Plant Biol. 2021, 584.
[114] 硒元素對人體的重要性,及台灣土壤的含量多寡 [Podcast]. 神農廣播電台: January 25, 2016. https://www.youtube.com/watch?v=CfBmdxBCopI (accessed 2022-10-18).
[115] White, P. J. Selenium accumulation by plants. Ann. Bot. 2016, 217-35.
[116] do Nascimento da Silva, E.; Aureli, F.; D'Amato, M.; Raggi, A.; Cadore, S.; Cubadda, F. Selenium Bioaccessibility and Speciation in Selenium-Enriched Lettuce: Investigation of the Selenocompounds Liberated after in Vitro Simulated Human Digestion Using Two-Dimensional HPLC-ICP-MS. J. Agric. Food. Chem. 2017, 3031-3038.
[117] Shih, T. T.; Hsu, I. H.; Wu, J. F.; Lin, C. H.; Sun, Y. C. Development of chip-based photocatalyst-assisted reduction device to couple high performance liquid chromatography and inductively coupled plasma-mass spectrometry for determination of inorganic selenium species. J. Chromatogr. A. 2013, 101-8.
[118] Tsai, Y. N.; Lin, C. H.; Hsu, I. H.; Sun, Y. C. Sequential photocatalyst-assisted digestion and vapor generation device coupled with anion exchange chromatography and inductively coupled plasma mass spectrometry for speciation analysis of selenium species in biological samples. Anal. Chim. Acta. 2014, 165-71.
[119] Dobrzynska, M.; Drzymala-Czyz, S.; Wozniak, D.; Drzymala, S.; Przyslawski, J. Natural Sources of Selenium as Functional Food Products for Chemoprevention. Foods. 2023.
(此全文20280410後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用批次及離體模式進行online HPLC-UV/nano-TiO2/HCOOH PCRD-ICP-MS系統在自然水樣及尿液中連線測定硒物種之研究
2. 建立線上HPLC-Photocatalyst-Assisted Digestion and Vaporization Device (PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
3. 利用感應耦合電漿質譜儀進行生物樣品中微量元素及其物種分析研究
4. 利用Microbore-HPLC-ICP-MS連線分析系統進行尿中硒物種的分析研究
5. 開發披覆式晶片型光觸媒輔助還原裝置串連高效能液相層析與感應耦合電漿質譜儀進行環境水樣中無機硒物種之分析研究
6. 水相系統中過氧化氫的活化與量測
7. 空氣中C2至C10之醛酮醇類分析方法的建立
8. 毛細管電泳技術應用於奈米級顆粒的粒徑與形狀分析
9. 水相中銅與胺基酸錯合物之光分解含氮產物研究
10. 自行設計冷凝前濃縮系統搭配自動化氣相層析質譜儀量測空氣中微量揮發性有機化合物
11. 建立超音波震盪固相微萃取自動化分析系統及水中揮發性有機化合物之現場自動化即時監測
12. 建立水中揮發性有機化合物之現場自動化即時連續監測吹氣捕捉/氣象層析分析系統
13. 烷基硫醇修飾金奈米粒子自組裝多層膜於毛細管電層析之研究
14. 水相中銅與胺基酸錯合物之光分解產物研究:醛的定量與分析
15. 水相中銅與胺基酸錯合物之光分解產物研究:氨的定量與分析
 
* *