|
(1) Gupta, D.; Illingworth, C. Treatments for corneal neovascularization: a review. Cornea 2011, 30 (8), 927-938. (2) Nicholas, M. P.; Mysore, N. Corneal neovascularization. Experimental Eye Research 2021, 202, 108363. (3) Chang, J.-H.; Gabison, E. E.; Kato, T.; Azar, D. T. Corneal neovascularization. Current opinion in ophthalmology 2001, 12 (4), 242-249. (4) Pineda, R. World corneal blindness. In Foundations of Corneal Disease, Springer, 2020; pp 299-305. (5) Voiculescu, O.; Voinea, L.; Alexandrescu, C. Corneal neovascularization and biological therapy. Journal of Medicine and Life 2015, 8 (4), 444. (6) Ebrahem, Q.; Minamoto, A.; Hoppe, G.; Anand-Apte, B.; Sears, J. E. Triamcinolone acetonide inhibits IL-6–and VEGF-Induced angiogenesis downstream of the IL-6 and VEGF receptors. Investigative ophthalmology & visual science 2006, 47 (11), 4935-4941. (7) BenEzra, D.; Griffin, B. W.; Maftzir, G.; Sharif, N. A.; Clark, A. F. Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Investigative ophthalmology & visual science 1997, 38 (10), 1954-1962. (8) Chang, J.-H.; Garg, N. K.; Lunde, E.; Han, K.-Y.; Jain, S.; Azar, D. T. Corneal neovascularization: an anti-VEGF therapy review. Survey of ophthalmology 2012, 57 (5), 415-429. (9) Tolentino, M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Survey of ophthalmology 2011, 56 (2), 95-113. (10) Avisar, I.; Weinberger, D.; Kremer, I. Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model. Current eye research 2010, 35 (2), 108-115. (11) Doctor, P. P.; Bhat, P. V.; Foster, C. S. Subconjunctival bevacizumab for corneal neovascularization. Cornea 2008, 27 (9), 992-995. (12) Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S. D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proceedings of the National Academy of Sciences 2002, 99 (17), 11393-11398. (13) Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M. P.; Shi, E.; Pyles, E. A.; Yancopoulos, G. D.; Stahl, N.; Wiegand, S. J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15 (2), 171-185. (14) Cursiefen, C.; Chen, L.; Borges, L. P.; Jackson, D.; Cao, J.; Radziejewski, C.; D’Amore, P. A.; Dana, M. R.; Wiegand, S. J.; Streilein, J. W. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. The Journal of clinical investigation 2004, 113 (7), 1040-1050. (15) Ebrahimiadib, N.; Lashay, A.; Riazi-Esfahani, H.; Jamali, S.; Khodabandeh, A.; Zarei, M.; Roohipoor, R.; Khojasteh, H.; Bazvand, F.; Ojani, M. Intravitreal ziv-aflibercept in patients with diabetic macular edema refractory to intravitreal bevacizumab. Ophthalmic Surgery, Lasers and Imaging Retina 2020, 51 (3), 145-151. (16) Stewart, M. W.; Rosenfeld, P. J.; Penha, F. M.; Wang, F.; Yehoshua, Z.; Bueno-Lopez, E.; Lopez, P. F. Pharmacokinetic rationale for dosing every 2 weeks versus 4 weeks with intravitreal ranibizumab, bevacizumab, and aflibercept (vascular endothelial growth factor Trap-eye). Retina 2012, 32 (3), 434-457. (17) Chaurasia, S. S.; Lim, R. R.; Lakshminarayanan, R.; Mohan, R. R. Nanomedicine approaches for corneal diseases. Journal of functional biomaterials 2015, 6 (2), 277-298. (18) Gonzalez, L.; Loza, R. J.; Han, K.-Y.; Sunoqrot, S.; Cunningham, C.; Purta, P.; Drake, J.; Jain, S.; Hong, S.; Chang, J.-H. Nanotechnology in corneal neovascularization therapy—a review. Journal of ocular pharmacology and therapeutics 2013, 29 (2), 124-134. (19) Yasukawa, T.; Ogura, Y.; Tabata, Y.; Kimura, H.; Wiedemann, P.; Honda, Y. Drug delivery systems for vitreoretinal diseases. Progress in retinal and eye research 2004, 23 (3), 253-281. (20) Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. d. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology 2018, 16 (1), 1-33. (21) Sharma, A.; Rodier, J. T.; Tandon, A.; Klibanov, A. M.; Mohan, R. R. Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer. Molecular Vision 2012, 18, 2598. (22) Sharma, A.; Tandon, A.; Tovey, J. C.; Gupta, R.; Robertson, J. D.; Fortune, J. A.; Klibanov, A. M.; Cowden, J. W.; Rieger, F. G.; Mohan, R. R. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology and Medicine 2011, 7 (4), 505-513. (23) Chowdhury, S. P.; Dietel, K.; Rändler, M.; Schmid, M.; Junge, H.; Borriss, R.; Hartmann, A.; Grosch, R. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos one 2013, 8 (7), e68818. (24) Kamaleddin, M. A. Nano-ophthalmology: applications and considerations. Nanomedicine: Nanotechnology, Biology and Medicine 2017, 13 (4), 1459-1472. (25) Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced drug delivery reviews 2012, 64, 37-48. (26) Aliabadi, H. M.; Lavasanifar, A. Polymeric micelles for drug delivery. Expert opinion on drug delivery 2006, 3 (1), 139-162. (27) Civiale, C.; Licciardi, M.; Cavallaro, G.; Giammona, G.; Mazzone, M. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. International journal of pharmaceutics 2009, 378 (1-2), 177-186. (28) Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nature reviews Drug discovery 2004, 3 (12), 1023-1035. (29) SIEFERT, B.; PLEYER, U.; MÜLLER, M.; HARTMANN, C.; KEIPERT, S. Influence of cyclodextrins on the in vitro corneal permeability and in vivo ocular distribution of thalidomide. Journal of ocular pharmacology and therapeutics 1999, 15 (5), 429-438. (30) Sun, J.-G.; Jiang, Q.; Zhang, X.-P.; Shan, K.; Liu, B.-H.; Zhao, C.; Yan, B. Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy. International Journal of Nanomedicine 2019, 14, 1489. (31) Kumar, S.; Parekh, S. H. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Communications Chemistry 2020, 3 (1), 1-11. (32) Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Advanced Materials 2016, 28 (29), 6052-6074. (33) Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials 2013, 25 (2), 168-186. (34) Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta biomaterialia 2013, 9 (12), 9243-9257. (35) Yoon, H. H.; Bhang, S. H.; Kim, T.; Yu, T.; Hyeon, T.; Kim, B. S. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell‐adhesion substrate and growth factor‐delivery carrier. Advanced Functional Materials 2014, 24 (41), 6455-6464. (36) Lai, P.-X.; Chen, C.-W.; Wei, S.-C.; Lin, T.-Y.; Jian, H.-J.; Lai, I. P.-J.; Mao, J.-Y.; Hsu, P.-H.; Lin, H.-J.; Tzou, W.-S. Ultrastrong trapping of VEGF by graphene oxide: anti-angiogenesis application. Biomaterials 2016, 109, 12-22. (37) Sies, H.; Berndt, C.; Jones, D. P. Oxidative stress. Annual review of biochemistry 2017, 86, 715-748. (38) Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity 2019, 2019. (39) Sanhueza, C.; Wehinger, S.; Castillo Bennett, J.; Valenzuela, M.; Owen, G.; Quest, A. The twisted survivin connection to angiogenesis. Molecular cancer 2015, 14 (1), 1-15. (40) Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of natural products 2012, 75 (3), 311-335. (41) Kumar, S.; Pandey, A. K. Chemistry and biological activities of flavonoids: an overview. The scientific world journal 2013, 2013. (42) Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: an overview. Journal of nutritional science 2016, 5. (43) Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. The Journal of Immunology 2003, 170 (8), 4335-4341. (44) Kojima-Yuasa, A.; Hua, J. J.; Kennedy, D. O.; Matsui-Yuasa, I. Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sciences 2003, 73 (10), 1299-1313. (45) Valcic, S.; Muders, A.; Jacobsen, N. E.; Liebler, D. C.; Timmermann, B. N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (−)-epigallocatechin gallate with peroxyl radicals. Chemical research in toxicology 1999, 12 (4), 382-386. (46) Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020, 25 (20), 4613. (47) Tang, F. Y.; Nguyen, N.; Meydani, M. Green tea catechins inhibit VEGF‐induced angiogenesis in vitro through suppression of VE‐cadherin phosphorylation and inactivation of Akt molecule. International Journal of Cancer 2003, 106 (6), 871-878. (48) Singh, B. N.; Shankar, S.; Srivastava, R. K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical pharmacology 2011, 82 (12), 1807-1821. (49) Koh, C. H.; Lee, H. S.; Chung, S. K. Effect of topical epigallocatechin gallate on corneal neovascularization in rabbits. Cornea 2014, 33 (5), 527-532. (50) Chang, C.-Y.; Wang, M.-C.; Miyagawa, T.; Chen, Z.-Y.; Lin, F.-H.; Chen, K.-H.; Liu, G.-S.; Tseng, C.-L. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. International Journal of Nanomedicine 2017, 12, 279. (51) Li, Y.-J.; Luo, L.-J.; Harroun, S. G.; Wei, S.-C.; Unnikrishnan, B.; Chang, H.-T.; Huang, Y.-F.; Lai, J.-Y.; Huang, C.-C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019, 11 (12), 5580-5594. (52) Luo, L.-J.; Jian, H.-J.; Harroun, S. G.; Lai, J.-Y.; Unnikrishnan, B.; Huang, C.-C. Targeting nanocomposites with anti-oxidative/inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Applied Materials Today 2021, 24, 101156. (53) Jiang, P.; Choi, A.; Swindle-Reilly, K. E. Controlled release of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale 2020, 12 (33), 17298-17311. (54) Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: problems and promises. Current medicinal chemistry 2013, 20 (20), 2572-2582. (55) Li, Y.-J.; Wei, S.-C.; Chu, H.-W.; Jian, H.-J.; Anand, A.; Nain, A.; Huang, Y.-F.; Chang, H.-T.; Huang, C.-C.; Lai, J.-Y. Poly-quercetin-based nanoVelcro as a multifunctional wound dressing for effective treatment of chronic wound infections. Chemical Engineering Journal 2022, 437, 135315. (56) Lin, H.-Y.; Zeng, Y.-T.; Lin, C.-J.; Harroun, S. G.; Anand, A.; Chang, L.; Wu, C.-J.; Lin, H.-J.; Huang, C.-C. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. Journal of Colloid and Interface Science 2022, 622, 481-493. (57) Lin, H.-Y.; Wang, S.-W.; Mao, J.-Y.; Chang, H.-T.; Harroun, S. G.; Lin, H.-J.; Huang, C.-C.; Lai, J.-Y. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chemical Engineering Journal 2021, 411, 128469. (58) Liu, C. H.; Wang, Z.; Sun, Y.; Chen, J. Animal models of ocular angiogenesis: from development to pathologies. The FASEB Journal 2017, 31 (11), 4665-4681. (59) Kurisawa, M.; Chung, J. E.; Uyama, H.; Kobayashi, S. Laccase‐catalyzed synthesis and antioxidant property of poly (catechin). Macromolecular Bioscience 2003, 3 (12), 758-764. (60) Bark, K.-M.; Yeom, J.-E.; Yang, J.-I.; Yang, I.-J.; Park, C.-H.; Park, H.-R. Spectroscopic studies on the oxidation of catechin in aqueous solution. Bulletin of the Korean Chemical Society 2011, 32 (9), 3443-3447. (61) Oliver, S.; Hook, J. M.; Boyer, C. Versatile oligomers and polymers from flavonoids–a new approach to synthesis. Polymer Chemistry 2017, 8 (15), 2317-2326. (62) Liang, J.-Y.; Wu, J.-Y.; Yang, M.-Y.; Hu, A.; Chen, L.-Y. Photo-catalytic polymerization of catechin molecules in alkaline aqueous. Journal of Photochemistry and Photobiology B: Biology 2016, 165, 115-120. (63) Jurasekova, Z.; Torreggiani, A.; Tamba, M.; Sanchez-Cortes, S.; Garcia-Ramos, J. Raman and surface-enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: Evidence of structural changing processes in aqueous solution and on metal nanoparticles. Journal of Molecular Structure 2009, 918 (1-3), 129-137. (64) Kwee, Y.; Kristanti, A. N.; Aminah, N. S.; Fahmi, M. Z. Design of Catechin-based Carbon Nanodots as Facile Staining Agents of Tumor Cells. Indonesian Journal of Chemistry 2020, 20 (6), 1332-1346. (65) Höfener, S.; Kooijman, P. C.; Groen, J.; Ariese, F.; Visscher, L. Fluorescence behavior of (selected) flavonols: a combined experimental and computational study. Physical Chemistry Chemical Physics 2013, 15 (30), 12572-12581. (66) Gan, Z.; Xu, H.; Hao, Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 2016, 8 (15), 7794-7807. (67) Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green chemistry 2019, 21 (3), 449-471. (68) Von Staszewski, M.; Jagus, R. J.; Pilosof, A. M. Influence of green tea polyphenols on the colloidal stability and gelation of WPC. Food Hydrocolloids 2011, 25 (5), 1077-1084. (69) Tsai, C.-H.; Wang, P.-Y.; Lin, I.-C.; Huang, H.; Liu, G.-S.; Tseng, C.-L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. International journal of molecular sciences 2018, 19 (9), 2830. (70) Maurice, D.; Polgar, J. Diffusion across the sclera. Experimental eye research 1977, 25 (6), 577-582. (71) Sciortino, A.; Cannizzo, A.; Messina, F. Carbon nanodots: a review—from the current understanding of the fundamental photophysics to the full control of the optical response. C 2018, 4 (4), 67. (72) Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 2019, 11 (35), 16571-16581. (73) Johra, F. T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 2014, 20 (5), 2883-2887. (74) Yadav, R.; Kumar, D.; Kumari, A.; Yadav, S. K. Encapsulation of catechin and epicatechin on BSA NPs improved their stability and antioxidant potential. Excli Journal 2014, 13, 331. (75) Mejias, L.; Reihmann, M. H.; Sepulveda‐Boza, S.; Ritter, H. New polymers from natural phenols using horseradish or soybean peroxidase. Macromolecular Bioscience 2002, 2 (1), 24-32. (76) Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 2014, 195, 145-154. (77) Tahergorabi, Z.; Khazaei, M. A review on angiogenesis and its assays. Iranian journal of basic medical sciences 2012, 15 (6), 1110. (78) Wang, X.; Stavchansky, S.; Zhao, B.; Bynum, J. A.; Kerwin, S. M.; Bowman, P. D. Cytoprotection of human endothelial cells from menadione cytotoxicity by caffeic acid phenethyl ester: the role of heme oxygenase-1. European journal of pharmacology 2008, 591 (1-3), 28-35. (79) Yu, P.; Ye, L.; Wang, H.; Du, G.; Zhang, J.; Zuo, Y.; Zhang, J.; Tian, J. NSK-01105, a novel sorafenib derivative, inhibits human prostate tumor growth via suppression of VEGFR2/EGFR-mediated angiogenesis. PLoS One 2014, 9 (12), e115041. (80) Pan, Y.; Wu, Q.; Qin, L.; Cai, J.; Du, B. Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway. BioMed research international 2014, 2014. (81) Srivastava, S.; Zahra, F. T.; Gupta, N.; Tullar, P. E.; Srivastava, S. K.; Mikelis, C. M. Low dose of penfluridol inhibits VEGF-induced angiogenesis. International Journal of Molecular Sciences 2020, 21 (3), 755. (82) Olsson, A.-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? In control of vascular function. Nature reviews Molecular cell biology 2006, 7 (5), 359-371. (83) Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nature reviews Molecular cell biology 2016, 17 (10), 611-625. (84) Kondo, T.; Ohta, T.; Igura, K.; Hara, Y.; Kaji, K. Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer letters 2002, 180 (2), 139-144. (85) Lin, S.-W.; Huang, S.-C.; Kuo, H.-M.; Chen, C.-H.; Ma, Y.-L.; Chu, T.-H.; Bee, Y.-S.; Wang, E.-M.; Wu, C.-Y.; Sung, P.-J. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Marine drugs 2015, 13 (2), 861-878. (86) Zhang, K.; Zhang, H.; Gao, Y.-H.; Wang, J.-Q.; Li, Y.; Cao, H.; Hu, Y.; Wang, L. A Monotargeting Peptidic Network Antibody Inhibits More Receptors for Anti-Angiogenesis. ACS nano 2021, 15 (8), 13065-13076. (87) Abramovič, H.; Grobin, B.; Poklar Ulrih, N.; Cigić, B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. Journal of Chemistry 2018, 2018. (88) Abramovič, H.; Grobin, B.; Ulrih, N. P.; Cigić, B. The methodology applied in DPPH, ABTS and Folin-Ciocalteau assays has a large influence on the determined antioxidant potential. Acta Chimica Slovenica 2017, 64 (2), 491-499. (89) Pawlak, K.; Bylka, W.; Jazurek, B.; Matlawska, I.; Sikorska, M.; Manikowski, H.; Bialek-Bylka, G. Antioxidant activity of flavonoids of different polarity, assayed by modified ABTS cation radical decolorization and EPR technique. Acta Biologica Cracoviensia. Series Botanica 2010, 52 (1), 97-104. (90) Lamuela-Raventós, R. M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. Meas. Antioxid. Act. Capacit. Recent Trends Appl 2017, 107-115. (91) Bai, J.; Yang, Y.; Wu, D.; Yang, F. SS‐31 protect retinal pigment epithelial cells from H2O2‐induced cell injury by reducing apoptosis. Clinical and Experimental Pharmacology and Physiology 2021, 48 (7), 1016-1023. (92) Kim, Y.-W.; Byzova, T. V. Oxidative stress in angiogenesis and vascular disease. Blood, the Journal of the American Society of Hematology 2014, 123 (5), 625-631. (93) Chen, V. M.; Shelke, R.; Nyström, A.; Laver, N.; Sampson, J. F.; Zhiyi, C.; Bhat, N.; Panjwani, N. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye. Experimental Eye Research 2018, 175, 133-141. (94) Sethuraman, S.; Nair, L. S.; El‐Amin, S.; Farrar, R.; Nguyen, M. T. N.; Singh, A.; Allcock, H. R.; Greish, Y. E.; Brown, P. W.; Laurencin, C. T. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 77 (4), 679-687. (95) Chautan, M.; Chazal, G.; Cecconi, F.; Gruss, P.; Golstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Current biology 1999, 9 (17), 967-S961. (96) Kelly, K. J.; Sandoval, R. M.; Dunn, K. W.; Molitoris, B. A.; Dagher, P. C. A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. American Journal of Physiology-Cell Physiology 2003, 284 (5), C1309-C1318. (97) Chen, W.-L.; Chen, Y.-M.; Chu, H.-S.; Lin, C.-T.; Chow, L.-P.; Chen, C.-T.; Hu, F.-R. Mechanisms controlling the effects of bevacizumab (avastin) on the inhibition of early but not late formed corneal neovascularization. PLoS One 2014, 9 (4), e94205. (98) Wakamatsu, T. H.; Dogru, M.; Ayako, I.; Takano, Y.; Matsumoto, Y.; Ibrahim, O. M.; Okada, N.; Satake, Y.; Fukagawa, K.; Shimazaki, J. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Molecular vision 2010, 16, 2465.
|