帳號:guest(3.148.113.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宛柔
作者(外文):Lee, Wan-Jo
論文名稱(中文):開發一新型抗氧化抗血管新生之奈米製劑於角膜血管新生治療應用
論文名稱(外文):Development of a Novel Therapeutic Nanoagent for Corneal Neovascularization Treatment through Simultaneous Antioxidant and Anti-Angiogenic Activities
指導教授(中文):黃郁棻
指導教授(外文):Huang, Yu-Fen
口試委員(中文):柯美蘭
林暄婕
黃志清
口試委員(外文):Ko, Mei-Lan
Lin, Hsuan-Chieh
Huang, Chih-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012514
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:81
中文關鍵詞:角膜新生血管活性氧介導的新生血管多酚石墨烯基材料抗氧化抗血管生成
外文關鍵詞:Corneal neovascularizationROS-mediated neovascularizationpolyphenolgraphene-based materialsanti-oxidationanti-angiogenesis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
角膜新生血管可經由缺氧、發炎、感染、熱或化學損傷等所引起的病理狀況。角膜新生血管也是全球第四大致盲原因。造成角膜新生血管的主要原因之一是血管內皮生長因子 (VEGF) 與其受體 (VEGFR2) 結合導致的血管異常生長至無血管的角膜基質中。此外基質中增加累積的活性氧物質 (ROS) 也藉由引發血管新生途徑加速了角膜新生血管的進展和嚴重性。因此,開發一種用於抑制血管生成和減少活性氧物質的多功能藥物有其必要性。兒茶素 (Catechin, Ch) 是一種具有抗氧化、抗發炎和抗血管生成特性的多酚物質。然而,多酚的水溶性和穩定性差,導致其生物利用度低,從而限制了醫學應用性。在本研究中,通過將兒茶素在 210 °C下鍛燒,接著在鹼性條件下聚合一小時,生成靶向角膜新生血管的碳化聚兒茶素奈米粒子 (c-pCh)。此c-pCh表現出優異的抗血管生成作用,並且可通過增強兒茶素與VEGFR2的結合來有效緩解氧化應激依賴性的血管生成。此外,在經由角膜縫合引發新生血管的大鼠模型中,與單體兒茶素相比,c-pCh取得了更好的治療效果。本研究之結果顯示,c-pCh是角膜新生血管病理機制中,ROS介導新生血管治療之有效替代方案。
Corneal neovascularization (CNV), a pathological condition that is caused by hypoxia, inflammation, infection, thermal or chemical injury. CNV is also the fourth leading cause of blindness worldwide. One of the leading causes of CNV is the abnormal growth of blood vessels into the avascular corneal stroma caused by the vascular endothelial growth factor (VEGF) binding to its receptor VEGFR2. The increased accumulation of reactive oxidative species (ROS) in the stroma also accelerates the progression and severity of CNV by ROS-induced angiogenesis. As a result, it is essential to develop a multifunctional medicine for angiogenesis inhibition and ROS reduction. Catechin (Ch) is a polyphenolic substance with antioxidant, anti-inflammatory, and anti-angiogenesis properties. However, the poor water solubility and stability of polyphenols result in low bioavailability and thus limit its medical application. In this work, a carbonized-polycatechin (c-pCh) targeting CNV was generated by calcination of catechin (Ch) at 210 °C followed by polymerization under alkaline condition for one hour. The resultant c-pCh exhibited excellent anti-angiogenesis effect and can effectively alleviate oxidative stress-dependent angiogenesis by enhancing the binding between Ch and VEGFR2. Furthermore, the c-pCh achieved superior treatment effect compared to the monomeric catechin in the rat model of suture-induced corneal neovascularization. In summary, this study demonstrates that c-pCh is a promising alternative for the treatment of ROS-mediated neovascularization in corneal neovascularization pathogenesis.
中文摘要………………………………………………………………………………1
ABSTRACT………………………………………………………………………………2
謝誌………………………………………………………………………………3
Contents………………………………………………………………………………4
Chapter 1 INTRODUCTION………………………………………………………………………………6
1. Corneal neovascularization………………………………………………………………………………6
1.1 Pathological mechanism of CNV………………………………………………………………………………6
1.2 Current methods and dilemma for the treatment of CNV……………………………8
1.3 Literature review on CNV treatment………………………………………………………………………………9
1.3.1 Nanomaterials………………………………………………………………………………9
1.3.2 Graphene-based materials………………………………………………………………………………12
1.3.3 Polyphenol………………………………………………………………………………14
1.4 Research Objectives………………………………………………………………………………19
Chapter 2 EXPERIMENTAL METHODS………………………………………………………………………………22
2.1 Chemicals………………………………………………………………………………22
2.2 General techniques………………………………………………………………………………24
2.3 Synthesis of carbonized polycatechin (c-pCh)………………………………………………25
2.4 Cell lines and cell culture………………………………………………………………………………25
2.5 Anti-angiogenesis effect………………………………………………………………………………25
2.6 The mechanism of the inhibition effect of c-pCh on VEGF-induced angiogenesis………………………………………………………………………………27
2.7 Antioxidant efficacy of c-pCh………………………………………………………………………………28
2.8 In vivo study………………………………………………………………………………29
Chapter 3 RESULTS AND DISCUSSION………………………………………………………………………………32
3.1 Synthesis of carbonized polycatechin (c-pCh) at different temperatures.………………………………………………………………………………32
3.2 Anti-angiogenesis effects of c-pCh on endothelial cell proliferation, migration and tube formation.………………………………………………………………………………35
3.3 Antioxidant activity of c-pCh can attenuate ROS-dependent angiogenesis.………………………………………………………………………………38
3.4 In vivo angiogenesis inhibition by pCh-210 in CNV rat model. ………………………………………………………………………………39
Chapter 4 CONCLUSION………………………………………………………………………………41
REFERENCES………………………………………………………………………………42
Table………………………………………………………………………………54
Figures………………………………………………………………………………55
Abbreviations………………………………………………………………………………79


(1) Gupta, D.; Illingworth, C. Treatments for corneal neovascularization: a review. Cornea 2011, 30 (8), 927-938.
(2) Nicholas, M. P.; Mysore, N. Corneal neovascularization. Experimental Eye Research 2021, 202, 108363.
(3) Chang, J.-H.; Gabison, E. E.; Kato, T.; Azar, D. T. Corneal neovascularization. Current opinion in ophthalmology 2001, 12 (4), 242-249.
(4) Pineda, R. World corneal blindness. In Foundations of Corneal Disease, Springer, 2020; pp 299-305.
(5) Voiculescu, O.; Voinea, L.; Alexandrescu, C. Corneal neovascularization and biological therapy. Journal of Medicine and Life 2015, 8 (4), 444.
(6) Ebrahem, Q.; Minamoto, A.; Hoppe, G.; Anand-Apte, B.; Sears, J. E. Triamcinolone acetonide inhibits IL-6–and VEGF-Induced angiogenesis downstream of the IL-6 and VEGF receptors. Investigative ophthalmology & visual science 2006, 47 (11), 4935-4941.
(7) BenEzra, D.; Griffin, B. W.; Maftzir, G.; Sharif, N. A.; Clark, A. F. Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Investigative ophthalmology & visual science 1997, 38 (10), 1954-1962.
(8) Chang, J.-H.; Garg, N. K.; Lunde, E.; Han, K.-Y.; Jain, S.; Azar, D. T. Corneal neovascularization: an anti-VEGF therapy review. Survey of ophthalmology 2012, 57 (5), 415-429.
(9) Tolentino, M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Survey of ophthalmology 2011, 56 (2), 95-113.
(10) Avisar, I.; Weinberger, D.; Kremer, I. Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model. Current eye research 2010, 35 (2), 108-115.
(11) Doctor, P. P.; Bhat, P. V.; Foster, C. S. Subconjunctival bevacizumab for corneal neovascularization. Cornea 2008, 27 (9), 992-995.
(12) Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S. D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proceedings of the National Academy of Sciences 2002, 99 (17), 11393-11398.
(13) Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M. P.; Shi, E.; Pyles, E. A.; Yancopoulos, G. D.; Stahl, N.; Wiegand, S. J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15 (2), 171-185.
(14) Cursiefen, C.; Chen, L.; Borges, L. P.; Jackson, D.; Cao, J.; Radziejewski, C.; D’Amore, P. A.; Dana, M. R.; Wiegand, S. J.; Streilein, J. W. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. The Journal of clinical investigation 2004, 113 (7), 1040-1050.
(15) Ebrahimiadib, N.; Lashay, A.; Riazi-Esfahani, H.; Jamali, S.; Khodabandeh, A.; Zarei, M.; Roohipoor, R.; Khojasteh, H.; Bazvand, F.; Ojani, M. Intravitreal ziv-aflibercept in patients with diabetic macular edema refractory to intravitreal bevacizumab. Ophthalmic Surgery, Lasers and Imaging Retina 2020, 51 (3), 145-151.
(16) Stewart, M. W.; Rosenfeld, P. J.; Penha, F. M.; Wang, F.; Yehoshua, Z.; Bueno-Lopez, E.; Lopez, P. F. Pharmacokinetic rationale for dosing every 2 weeks versus 4 weeks with intravitreal ranibizumab, bevacizumab, and aflibercept (vascular endothelial growth factor Trap-eye). Retina 2012, 32 (3), 434-457.
(17) Chaurasia, S. S.; Lim, R. R.; Lakshminarayanan, R.; Mohan, R. R. Nanomedicine approaches for corneal diseases. Journal of functional biomaterials 2015, 6 (2), 277-298.
(18) Gonzalez, L.; Loza, R. J.; Han, K.-Y.; Sunoqrot, S.; Cunningham, C.; Purta, P.; Drake, J.; Jain, S.; Hong, S.; Chang, J.-H. Nanotechnology in corneal neovascularization therapy—a review. Journal of ocular pharmacology and therapeutics 2013, 29 (2), 124-134.
(19) Yasukawa, T.; Ogura, Y.; Tabata, Y.; Kimura, H.; Wiedemann, P.; Honda, Y. Drug delivery systems for vitreoretinal diseases. Progress in retinal and eye research 2004, 23 (3), 253-281.
(20) Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. d. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology 2018, 16 (1), 1-33.
(21) Sharma, A.; Rodier, J. T.; Tandon, A.; Klibanov, A. M.; Mohan, R. R. Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer. Molecular Vision 2012, 18, 2598.
(22) Sharma, A.; Tandon, A.; Tovey, J. C.; Gupta, R.; Robertson, J. D.; Fortune, J. A.; Klibanov, A. M.; Cowden, J. W.; Rieger, F. G.; Mohan, R. R. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology and Medicine 2011, 7 (4), 505-513.
(23) Chowdhury, S. P.; Dietel, K.; Rändler, M.; Schmid, M.; Junge, H.; Borriss, R.; Hartmann, A.; Grosch, R. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos one 2013, 8 (7), e68818.
(24) Kamaleddin, M. A. Nano-ophthalmology: applications and considerations. Nanomedicine: Nanotechnology, Biology and Medicine 2017, 13 (4), 1459-1472.
(25) Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced drug delivery reviews 2012, 64, 37-48.
(26) Aliabadi, H. M.; Lavasanifar, A. Polymeric micelles for drug delivery. Expert opinion on drug delivery 2006, 3 (1), 139-162.
(27) Civiale, C.; Licciardi, M.; Cavallaro, G.; Giammona, G.; Mazzone, M. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. International journal of pharmaceutics 2009, 378 (1-2), 177-186.
(28) Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nature reviews Drug discovery 2004, 3 (12), 1023-1035.
(29) SIEFERT, B.; PLEYER, U.; MÜLLER, M.; HARTMANN, C.; KEIPERT, S. Influence of cyclodextrins on the in vitro corneal permeability and in vivo ocular distribution of thalidomide. Journal of ocular pharmacology and therapeutics 1999, 15 (5), 429-438.
(30) Sun, J.-G.; Jiang, Q.; Zhang, X.-P.; Shan, K.; Liu, B.-H.; Zhao, C.; Yan, B. Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy. International Journal of Nanomedicine 2019, 14, 1489.
(31) Kumar, S.; Parekh, S. H. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Communications Chemistry 2020, 3 (1), 1-11.
(32) Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Advanced Materials 2016, 28 (29), 6052-6074.
(33) Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials 2013, 25 (2), 168-186.
(34) Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta biomaterialia 2013, 9 (12), 9243-9257.
(35) Yoon, H. H.; Bhang, S. H.; Kim, T.; Yu, T.; Hyeon, T.; Kim, B. S. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell‐adhesion substrate and growth factor‐delivery carrier. Advanced Functional Materials 2014, 24 (41), 6455-6464.
(36) Lai, P.-X.; Chen, C.-W.; Wei, S.-C.; Lin, T.-Y.; Jian, H.-J.; Lai, I. P.-J.; Mao, J.-Y.; Hsu, P.-H.; Lin, H.-J.; Tzou, W.-S. Ultrastrong trapping of VEGF by graphene oxide: anti-angiogenesis application. Biomaterials 2016, 109, 12-22.
(37) Sies, H.; Berndt, C.; Jones, D. P. Oxidative stress. Annual review of biochemistry 2017, 86, 715-748.
(38) Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity 2019, 2019.
(39) Sanhueza, C.; Wehinger, S.; Castillo Bennett, J.; Valenzuela, M.; Owen, G.; Quest, A. The twisted survivin connection to angiogenesis. Molecular cancer 2015, 14 (1), 1-15.
(40) Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of natural products 2012, 75 (3), 311-335.
(41) Kumar, S.; Pandey, A. K. Chemistry and biological activities of flavonoids: an overview. The scientific world journal 2013, 2013.
(42) Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: an overview. Journal of nutritional science 2016, 5.
(43) Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. The Journal of Immunology 2003, 170 (8), 4335-4341.
(44) Kojima-Yuasa, A.; Hua, J. J.; Kennedy, D. O.; Matsui-Yuasa, I. Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sciences 2003, 73 (10), 1299-1313.
(45) Valcic, S.; Muders, A.; Jacobsen, N. E.; Liebler, D. C.; Timmermann, B. N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (−)-epigallocatechin gallate with peroxyl radicals. Chemical research in toxicology 1999, 12 (4), 382-386.
(46) Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020, 25 (20), 4613.
(47) Tang, F. Y.; Nguyen, N.; Meydani, M. Green tea catechins inhibit VEGF‐induced angiogenesis in vitro through suppression of VE‐cadherin phosphorylation and inactivation of Akt molecule. International Journal of Cancer 2003, 106 (6), 871-878.
(48) Singh, B. N.; Shankar, S.; Srivastava, R. K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical pharmacology 2011, 82 (12), 1807-1821.
(49) Koh, C. H.; Lee, H. S.; Chung, S. K. Effect of topical epigallocatechin gallate on corneal neovascularization in rabbits. Cornea 2014, 33 (5), 527-532.
(50) Chang, C.-Y.; Wang, M.-C.; Miyagawa, T.; Chen, Z.-Y.; Lin, F.-H.; Chen, K.-H.; Liu, G.-S.; Tseng, C.-L. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. International Journal of Nanomedicine 2017, 12, 279.
(51) Li, Y.-J.; Luo, L.-J.; Harroun, S. G.; Wei, S.-C.; Unnikrishnan, B.; Chang, H.-T.; Huang, Y.-F.; Lai, J.-Y.; Huang, C.-C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019, 11 (12), 5580-5594.
(52) Luo, L.-J.; Jian, H.-J.; Harroun, S. G.; Lai, J.-Y.; Unnikrishnan, B.; Huang, C.-C. Targeting nanocomposites with anti-oxidative/inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Applied Materials Today 2021, 24, 101156.
(53) Jiang, P.; Choi, A.; Swindle-Reilly, K. E. Controlled release of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale 2020, 12 (33), 17298-17311.
(54) Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: problems and promises. Current medicinal chemistry 2013, 20 (20), 2572-2582.
(55) Li, Y.-J.; Wei, S.-C.; Chu, H.-W.; Jian, H.-J.; Anand, A.; Nain, A.; Huang, Y.-F.; Chang, H.-T.; Huang, C.-C.; Lai, J.-Y. Poly-quercetin-based nanoVelcro as a multifunctional wound dressing for effective treatment of chronic wound infections. Chemical Engineering Journal 2022, 437, 135315.
(56) Lin, H.-Y.; Zeng, Y.-T.; Lin, C.-J.; Harroun, S. G.; Anand, A.; Chang, L.; Wu, C.-J.; Lin, H.-J.; Huang, C.-C. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. Journal of Colloid and Interface Science 2022, 622, 481-493.
(57) Lin, H.-Y.; Wang, S.-W.; Mao, J.-Y.; Chang, H.-T.; Harroun, S. G.; Lin, H.-J.; Huang, C.-C.; Lai, J.-Y. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chemical Engineering Journal 2021, 411, 128469.
(58) Liu, C. H.; Wang, Z.; Sun, Y.; Chen, J. Animal models of ocular angiogenesis: from development to pathologies. The FASEB Journal 2017, 31 (11), 4665-4681.
(59) Kurisawa, M.; Chung, J. E.; Uyama, H.; Kobayashi, S. Laccase‐catalyzed synthesis and antioxidant property of poly (catechin). Macromolecular Bioscience 2003, 3 (12), 758-764.
(60) Bark, K.-M.; Yeom, J.-E.; Yang, J.-I.; Yang, I.-J.; Park, C.-H.; Park, H.-R. Spectroscopic studies on the oxidation of catechin in aqueous solution. Bulletin of the Korean Chemical Society 2011, 32 (9), 3443-3447.
(61) Oliver, S.; Hook, J. M.; Boyer, C. Versatile oligomers and polymers from flavonoids–a new approach to synthesis. Polymer Chemistry 2017, 8 (15), 2317-2326.
(62) Liang, J.-Y.; Wu, J.-Y.; Yang, M.-Y.; Hu, A.; Chen, L.-Y. Photo-catalytic polymerization of catechin molecules in alkaline aqueous. Journal of Photochemistry and Photobiology B: Biology 2016, 165, 115-120.
(63) Jurasekova, Z.; Torreggiani, A.; Tamba, M.; Sanchez-Cortes, S.; Garcia-Ramos, J. Raman and surface-enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: Evidence of structural changing processes in aqueous solution and on metal nanoparticles. Journal of Molecular Structure 2009, 918 (1-3), 129-137.
(64) Kwee, Y.; Kristanti, A. N.; Aminah, N. S.; Fahmi, M. Z. Design of Catechin-based Carbon Nanodots as Facile Staining Agents of Tumor Cells. Indonesian Journal of Chemistry 2020, 20 (6), 1332-1346.
(65) Höfener, S.; Kooijman, P. C.; Groen, J.; Ariese, F.; Visscher, L. Fluorescence behavior of (selected) flavonols: a combined experimental and computational study. Physical Chemistry Chemical Physics 2013, 15 (30), 12572-12581.
(66) Gan, Z.; Xu, H.; Hao, Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 2016, 8 (15), 7794-7807.
(67) Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green chemistry 2019, 21 (3), 449-471.
(68) Von Staszewski, M.; Jagus, R. J.; Pilosof, A. M. Influence of green tea polyphenols on the colloidal stability and gelation of WPC. Food Hydrocolloids 2011, 25 (5), 1077-1084.
(69) Tsai, C.-H.; Wang, P.-Y.; Lin, I.-C.; Huang, H.; Liu, G.-S.; Tseng, C.-L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. International journal of molecular sciences 2018, 19 (9), 2830.
(70) Maurice, D.; Polgar, J. Diffusion across the sclera. Experimental eye research 1977, 25 (6), 577-582.
(71) Sciortino, A.; Cannizzo, A.; Messina, F. Carbon nanodots: a review—from the current understanding of the fundamental photophysics to the full control of the optical response. C 2018, 4 (4), 67.
(72) Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 2019, 11 (35), 16571-16581.
(73) Johra, F. T.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 2014, 20 (5), 2883-2887.
(74) Yadav, R.; Kumar, D.; Kumari, A.; Yadav, S. K. Encapsulation of catechin and epicatechin on BSA NPs improved their stability and antioxidant potential. Excli Journal 2014, 13, 331.
(75) Mejias, L.; Reihmann, M. H.; Sepulveda‐Boza, S.; Ritter, H. New polymers from natural phenols using horseradish or soybean peroxidase. Macromolecular Bioscience 2002, 2 (1), 24-32.
(76) Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 2014, 195, 145-154.
(77) Tahergorabi, Z.; Khazaei, M. A review on angiogenesis and its assays. Iranian journal of basic medical sciences 2012, 15 (6), 1110.
(78) Wang, X.; Stavchansky, S.; Zhao, B.; Bynum, J. A.; Kerwin, S. M.; Bowman, P. D. Cytoprotection of human endothelial cells from menadione cytotoxicity by caffeic acid phenethyl ester: the role of heme oxygenase-1. European journal of pharmacology 2008, 591 (1-3), 28-35.
(79) Yu, P.; Ye, L.; Wang, H.; Du, G.; Zhang, J.; Zuo, Y.; Zhang, J.; Tian, J. NSK-01105, a novel sorafenib derivative, inhibits human prostate tumor growth via suppression of VEGFR2/EGFR-mediated angiogenesis. PLoS One 2014, 9 (12), e115041.
(80) Pan, Y.; Wu, Q.; Qin, L.; Cai, J.; Du, B. Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway. BioMed research international 2014, 2014.
(81) Srivastava, S.; Zahra, F. T.; Gupta, N.; Tullar, P. E.; Srivastava, S. K.; Mikelis, C. M. Low dose of penfluridol inhibits VEGF-induced angiogenesis. International Journal of Molecular Sciences 2020, 21 (3), 755.
(82) Olsson, A.-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? In control of vascular function. Nature reviews Molecular cell biology 2006, 7 (5), 359-371.
(83) Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nature reviews Molecular cell biology 2016, 17 (10), 611-625.
(84) Kondo, T.; Ohta, T.; Igura, K.; Hara, Y.; Kaji, K. Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer letters 2002, 180 (2), 139-144.
(85) Lin, S.-W.; Huang, S.-C.; Kuo, H.-M.; Chen, C.-H.; Ma, Y.-L.; Chu, T.-H.; Bee, Y.-S.; Wang, E.-M.; Wu, C.-Y.; Sung, P.-J. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Marine drugs 2015, 13 (2), 861-878.
(86) Zhang, K.; Zhang, H.; Gao, Y.-H.; Wang, J.-Q.; Li, Y.; Cao, H.; Hu, Y.; Wang, L. A Monotargeting Peptidic Network Antibody Inhibits More Receptors for Anti-Angiogenesis. ACS nano 2021, 15 (8), 13065-13076.
(87) Abramovič, H.; Grobin, B.; Poklar Ulrih, N.; Cigić, B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. Journal of Chemistry 2018, 2018.
(88) Abramovič, H.; Grobin, B.; Ulrih, N. P.; Cigić, B. The methodology applied in DPPH, ABTS and Folin-Ciocalteau assays has a large influence on the determined antioxidant potential. Acta Chimica Slovenica 2017, 64 (2), 491-499.
(89) Pawlak, K.; Bylka, W.; Jazurek, B.; Matlawska, I.; Sikorska, M.; Manikowski, H.; Bialek-Bylka, G. Antioxidant activity of flavonoids of different polarity, assayed by modified ABTS cation radical decolorization and EPR technique. Acta Biologica Cracoviensia. Series Botanica 2010, 52 (1), 97-104.
(90) Lamuela-Raventós, R. M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. Meas. Antioxid. Act. Capacit. Recent Trends Appl 2017, 107-115.
(91) Bai, J.; Yang, Y.; Wu, D.; Yang, F. SS‐31 protect retinal pigment epithelial cells from H2O2‐induced cell injury by reducing apoptosis. Clinical and Experimental Pharmacology and Physiology 2021, 48 (7), 1016-1023.
(92) Kim, Y.-W.; Byzova, T. V. Oxidative stress in angiogenesis and vascular disease. Blood, the Journal of the American Society of Hematology 2014, 123 (5), 625-631.
(93) Chen, V. M.; Shelke, R.; Nyström, A.; Laver, N.; Sampson, J. F.; Zhiyi, C.; Bhat, N.; Panjwani, N. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye. Experimental Eye Research 2018, 175, 133-141.
(94) Sethuraman, S.; Nair, L. S.; El‐Amin, S.; Farrar, R.; Nguyen, M. T. N.; Singh, A.; Allcock, H. R.; Greish, Y. E.; Brown, P. W.; Laurencin, C. T. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 77 (4), 679-687.
(95) Chautan, M.; Chazal, G.; Cecconi, F.; Gruss, P.; Golstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Current biology 1999, 9 (17), 967-S961.
(96) Kelly, K. J.; Sandoval, R. M.; Dunn, K. W.; Molitoris, B. A.; Dagher, P. C. A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. American Journal of Physiology-Cell Physiology 2003, 284 (5), C1309-C1318.
(97) Chen, W.-L.; Chen, Y.-M.; Chu, H.-S.; Lin, C.-T.; Chow, L.-P.; Chen, C.-T.; Hu, F.-R. Mechanisms controlling the effects of bevacizumab (avastin) on the inhibition of early but not late formed corneal neovascularization. PLoS One 2014, 9 (4), e94205.
(98) Wakamatsu, T. H.; Dogru, M.; Ayako, I.; Takano, Y.; Matsumoto, Y.; Ibrahim, O. M.; Okada, N.; Satake, Y.; Fukagawa, K.; Shimazaki, J. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Molecular vision 2010, 16, 2465.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *