帳號:guest(3.145.163.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李劭恩
作者(外文):Li, Shau-En
論文名稱(中文):基因網絡分析探究ALDH1A1抗藥性淋巴瘤以阿黴素結合蘿蔔硫素治療之潛在凋亡路徑
論文名稱(外文):Gene-network analysis identifies the potential apoptotic pathway in the ALDH1A1-drug resistant lymphoma with treatment of doxorubicin combined with sulforaphane
指導教授(中文):莊淳宇
指導教授(外文):Chuang, Chun-Yu
口試委員(中文):廖憶純
陳之碩
口試委員(外文):Liao, Yi-Chun
Chen, Chi-Shuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012513
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:活化B細胞淋巴瘤阿黴素蘿蔔硫素抗藥性
外文關鍵詞:ALDH1A1diffuse large B-cell lymphomaDoxorubicinSulforaphanegene networkdrug-resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:382
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
瀰漫性大B細胞淋巴瘤(diffuse large B-cell lymphoma; DLBCL)為常見的非霍奇金淋巴瘤(non-Hodgkin lymphoma; NHL)。DLBCL可分為生髮中心B細胞(germinal center B cell)淋巴瘤、活化B細胞(activated B cell; ABC)淋巴瘤及原發縱隔大B細胞(primary mediastinal B-cell)淋巴瘤,其中ABC DLBCL具有較差預後和復發之情形。長時間持續給予同一藥物易使癌細胞產生抗藥性(drug-resistance),是影響治療效果和腫瘤轉移之主要關鍵。近年發展合併療法(combination therapy)為能有效治療抗藥性腫瘤。有研究指出DLBCL中ALDH1A1表現為癌細胞產生抗藥性原因之一,因此,本研究目的為探究阿黴素(Doxorubicin; DOX)與蘿蔔硫素(sulforaphane; SFN)合併療法是否能藉由調控ALDH1A1介導之目標基因表現以有效治療ABC DLBCL。
本研究從ArrayExpress和Gene Expression Omnibus網站蒐集100個ABC DLBCL臨床組織樣本、175個人類細胞株經DOX處理及39個人類細胞株經SFN處理之微陣列資料,以NetworkAnalyst網站進行巨量資料分析,並使用Cytoscape軟體構建ABC DLBCL接受DOX與SFN治療相關之潛在基因網路圖與基因調控路徑。分析結果表示,ABC DLBCL接受DOX與SFN治療可能藉由潛在路徑F2R-GNAQ-GNAI1-KRAS-IL-1-EGFR-CCL2-STAT1-MYC-PLK1-CDKN1A-CASP3之基因調控,調控ABC DLBCL抗藥性。後續使用ABC DLBCL型細胞株進行驗證,顯示合併DOX與SFN處理能下降細胞存活率,降低ALDH1A1表現進而減少G0/G1期細胞,誘導Caspase-3和促使細胞程序性死亡。因此,本研究發現暴露DOX與SFN並降低ALDH1A1表現能逆轉ABC DLBCL抗藥性並有助於誘導細胞死亡,在臨床運用上具有治療潛力。
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). DLBCL is classified into germinal center B cell (GCB), activated B cell (ABC) and primary mediastinal B-cell (PMBL) lymphoma. ABC DLBCL has poor prognosis and recurrence when administrated with conventional chemotherapy. Continuous treatment of the same drug for a long time may make cancer cells develop drug resistance, which is the key to affect the therapeutic effect and tumor metastasis. In recent years, combination therapy has been developed to effectively treat drug-resistant tumors. Some studies have pointed out that ALDH1A1 in DLBCL is one of the reasons for the drug-resistance of cancer cells. Therefore, the purpose of this study was to investigate whether the combination treatment of doxorubicin (DOX) and sulforaphane (SFN) could modulate the expression of ALDH1A1 mediated target genes to improve the treatment of ABC DLBCL.
This study gathered microarray datasets of 100 clinical human tissue of ABC DLBCL, 175 human cell lines treated with DOX and 39 human cell lines treated with SFN from ArrayExpress and Gene Expression Omnibus (GEO), and further performed meta-analysis using NetworkAnalyst website to identify differential expression genes (DEGs) and module genes of ABC DLBCL, DOX and SFN. Cytoscape was applied to construct the gene-network and potential pathway of ABC DLBCL receiving DOX and SFN treatment. The results indicated that DOX and SFN treatment of ABC DLBCL may regulate the drug resistance of ABC DLBCL through the potential pathway F2R-GNAQ-GNAI1-KRAS-IL-1-EGFR-CCL2-STAT1-MYC-PLK1-CDKN1A-CASP3. This study subsequently validated using ABC DLBCL-like SU-DHL-2 cells, which showed that combined treatment with DOX and SFN decreased cell viability, diminished ALDH1A1 expression, reduced G0/G1 phase cells, attenuated cell proliferation, induced Caspase-3 and promoted programmed cell death. This study suggested that the combined treatment of DOX and SFN can reduce ALDH1A1 expression and assist the process of apoptosis and cell programmed cell death to reverse the drug-resistance of ABC DLBCL, which has the potential for clinical application.
摘要----I
ABSTRACT----III
圖目錄----VIII
ㄧ、前言----1
二、文獻回顧----2
2.1 淋巴癌----2
2.2 瀰漫性大B細胞淋巴癌----6
2.3活化型B細胞癌臨床治療----7
2.4 阿黴素----9
2.5 蘿蔔硫素----10
2.6 細胞週期對化療的影響----12
2.7細胞凋亡之癌症療法----14
三、研究目的----16
四、研究材料與方法----17
4.1基因網絡分析尋找目標基因----17
4.1.1蒐集微陣列數據庫資料----17
4.1.2 微陣列數據資料的處理與標準化----19
4.1.3 差異表現基因的分析與基因模塊提取----19
4.1.4 建構基因網絡以探究潛在基因路徑----19
4.2細胞實驗----20
4.2.1 細胞培養與暴露處理----20
4.2.2 偵測細胞存活----21
4.2.3 RNA萃取----21
4.2.4 反轉錄聚合酶連鎖反應(RT-PCR)與即時聚合酶連鎖反應定量(QPCR)----22
4.2.5 SU-DHL-2細胞轉染ALDH1A1質體----23
4.2.6 細胞凋亡驗證----24
4.2.7 細胞週期分析----24
4.2.8 統計分析----25
五、結果----26
5.1 ABC DLBCL與DOX治療樣本及SFN治療樣本之差異表現基因(DEGS)與基因模組----27
5.2 ABC DLBCL與DOX治療樣本及SFN治療樣本之基因模塊功能分類----29
5.3 ABC DLBCL與DOX治療樣本及SFN治療樣本之模組基因功能網絡構建----34
5.4 ABC DLBCL與DOX治療樣本及SFN治療樣本之模組基因與基因調控網絡----35
5.5 ABC DLBCL與DOX治療樣本及SFN治療樣本之樞紐基因子網路圖----36
5.6 ABC DLBCL與DOX治療樣本及SFN治療樣本之潛在基因路徑----37
5.7 潛在路徑中預測目標基因準確性之ROC曲線分析----38
5.8 暴露DOX或SFN之細胞存活率----44
5.9.1 ABC DLBCL細胞經DOX和SFN處理後目標基因之表現量----45
5.9.2 ABC DLBCL細胞經DOX和SFN處理後之細胞週期分佈----47
5.9.3 ABC DLBCL細胞經DOX和SFN處理後之細胞凋亡情況----49
5.10細胞轉染ALDH1A1質體----51
5.11.1 SU-DHL-2暴露DOX和SFN之目標基因表現量----51
5.11.2 轉染組別暴露DOX與SFN之細胞週期----54
5.11.3 暴露DOX與SFN之細胞凋亡情況----56
5.13.1 A37處理細胞----58
5.13.2 SU-DHL-2轉染組別經A37處理之目標基因----60
5.13.3 SU-DHL-2轉染組別經A37處理之細胞週期----62
5.13.4 SU-DHL-2轉染組別經A37處理之細胞凋亡情況----65
六、討論----68
6.1 DOX和SFN藉由調控ABC DLBCL細胞週期與程序性死亡功能減緩癌化過程----70
6.2 DOX和SFN透過調控細胞週期與凋亡反應相關之目標基因減緩ABC DLBCL癌化過程----71
6.3 ALDH1A1上調與細胞增生功能相關之目標基因表現量使細胞產生抗藥性----73
6.4 DOX和SFN藉由提昇CDKN1A表現量造成ABC DLBCL細胞週期停滯並導致DNA損傷----74
6.5暴露DOX和SFN提升CASP3表現量並誘導ABC DLBCL細胞程序性死亡----75
七、結論----76

Agudelo D, Bourassa P, Bérubé G and Tajmir-Riahi H A (2014). "Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications." Int J Biol Macromol 66: 144-150.
Al-Hamadani M, Habermann T M, Cerhan J R, Macon W R, Maurer M J and Go R S (2015). "Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: A longitudinal analysis of the National Cancer Data Base from 1998 to 2011." Am J Hematol 90(9): 790-795.
Al-Malky H S, Al Harthi S E and Osman A M (2020). "Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance." J Oncol Pharm Pract 26(2): 434-444.
Alsherbiny M A, Bhuyan D J, Radwan I, Chang D and Li C G (2021). "Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells." Int J Mol Sci 22(15).
Arcidiacono P, Ragonese F, Stabile A, Pistilli A, Kuligina E, Rende M, Bottoni U, Calvieri S, Crisanti A and Spaccapelo R (2018). "Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells." Eur J Nutr 57(7): 2547-2569.
Armitage J O, Gascoyne R D, Lunning M A and Cavalli F (2017). "Non-Hodgkin lymphoma." Lancet 390(10091): 298-310.
Aumeeruddy M Z and Mahomoodally M F (2019). "Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone." Cancer 125(10): 1600-1611.
Baptista Moreno Martin A C, Tomasin R, Luna-Dulcey L, Graminha A E, Araújo Naves M, Teles R H G, da Silva V D, da Silva J A, Vieira P C, Annabi B and Cominetti M R (2020). "[10]-Gingerol improves doxorubicin anticancer activity and decreases its side effects in triple negative breast cancer models." Cell Oncol (Dordr) 43(5): 915-929.
Bauman J E, Zang Y, Sen M, Li C, Wang L, Egner P A, Fahey J W, Normolle D P, Grandis J R, Kensler T W and Johnson D E (2016). "Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane." Cancer Prev Res (Phila) 9(7): 547-557.
Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, García-Sáez A J and Bordignon E (2014). "Structural model of active Bax at the membrane." Mol Cell 56(4): 496-505.
Cai W, Zeng Q, Zhang X and Ruan W (2021). "Trends Analysis of Non-Hodgkin Lymphoma at the National, Regional, and Global Level, 1990-2019: Results From the Global Burden of Disease Study 2019." Front Med (Lausanne) 8: 738693-738693.
Calcabrini C, Maffei F, Turrini E and Fimognari C (2020). "Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Cisplatin and Mitigates Their Toxic Effects." Front. Pharmacol. 11: 567.
Carneiro B A and El-Deiry W S (2020). "Targeting apoptosis in cancer therapy." Nat Rev Clin Oncol 17(7): 395-417.
Castro N P, Rangel M C, Merchant A S, MacKinnon G, Cuttitta F, Salomon D S and Kim Y S (2019). "Sulforaphane Suppresses the Growth of Triple-negative Breast Cancer Stem-like Cells In vitro and In vivo." Cancer Prev Res (Phila) 12(3): 147-158.
Chefetz I, Grimley E, Yang K, Hong L, Vinogradova E V, Suciu R, Kovalenko I, Karnak D, Morgan C A, Chtcherbinine M, Buchman C, Huddle B, Barraza S, Morgan M, Bernstein K A, Yoon E, Lombard D B, Bild A, Mehta G, Romero I, Chiang C-Y, Landen C, Cravatt B, Hurley T D, Larsen S D and Buckanovich R J (2019). "A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells." Cell Rep. 26(11): 3061-3075.e3066.
Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, He G, Tao X and Deng X (2018). "Autophagy and doxorubicin resistance in cancer." Anticancer Drugs 29(1): 1-9.
Chen C T, Hsieh M J, Hsieh Y H, Hsin M C, Chuang Y T, Yang S F, Yang J S and Lin C W (2018). "Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression." Oncotarget 9(25): 17564-17575.
Cheng Y M, Tsai C C and Hsu Y C (2016). "Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association." Int J Mol Sci 17(9).
Chuang S-S, Chen S-W, Chang S-T and Kuo Y-T (2017). "Lymphoma in Taiwan: Review of 1347 neoplasms from a single institution according to the 2016 Revision of the World Health Organization Classification." Journal of the Formosan Medical Association 116(8): 620-625.
Chukiatsiri S, Siriwong S and Thumanu K (2020). "Pupae protein extracts exert anticancer effects by downregulating the expression of IL-6, IL-1β and TNF-α through biomolecular changes in human breast cancer cells." Biomed. Pharmacother. 128: 110278.
Dang X, He B, Ning Q, Liu Y, Guo J, Niu G and Chen M (2020). "Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways." Respir Res 21(1): 95.
Das S, Shapiro B, Vucic E A, Vogt S and Bar-Sagi D (2020). "Tumor Cell-Derived IL1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer." Cancer Res 80(5): 1088-1101.
de Oliveira M R, Brasil F B and Fürstenau C R (2018). "Sulforaphane Attenuated the Pro-Inflammatory State Induced by Hydrogen Peroxide in SH-SY5Y Cells Through the Nrf2/HO-1 Signaling Pathway." Neurotox Res 34(2): 241-249.
Duffy M J, O'Grady S, Tang M and Crown J (2021). "MYC as a target for cancer treatment." Cancer Treat Rev 94: 102154.
Ferreira W A S, Burbano R R, do Ó Pessoa C, Harada M L, do Nascimento Borges B and de Oliveira E H C (2020). "Pisosterol Induces G2/M Cell Cycle Arrest and Apoptosis via the ATM/ATR Signaling Pathway in Human Glioma Cells." Anticancer Agents Med Chem 20(6): 734-750.
García-Gutiérrez L, Delgado M D and León J (2019). "MYC Oncogene Contributions to Release of Cell Cycle Brakes." Genes (Basel) 10(3).
Grimley E, Cole A J, Luong T T, McGonigal S C, Sinno S, Yang D, Bernstein K A and Buckanovich R J (2021). "Aldehyde dehydrogenase inhibitors promote DNA damage in ovarian cancer and synergize with ATM/ATR inhibitors." Theranostics 11(8): 3540-3551.
Hao Q, Wang M, Sun N-X, Zhu C, Lin Y-M, Li C, Liu F and Zhu W-W (2020). "Sulforaphane suppresses carcinogenesis of colorectal cancer through the ERK/Nrf2‑UDP glucuronosyltransferase 1A metabolic axis activation." Oncology reports 43(4): 1067-1080.
Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y and Ma H (2019). "Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine." Biomed. Pharmacother. 112: 108614.
Horvat M, Zadnik V, Južnič Šetina T, Boltežar L, Pahole Goličnik J, Novaković S and Jezeršek Novaković B (2018). "Diffuse large B-cell lymphoma: 10 years' real-world clinical experience with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisolone." Oncol Lett 15(3): 3602-3609.
Huang B, Mu P, Chen X, Tang S, Ye W, Zhu W and Deng Y (2019). "Aflatoxin B(1) induces S phase arrest by upregulating the expression of p21 via MYC, PLK1 and PLD1." Biochem. Pharmacol. 166: 108-119.
Hunter E, McCord R, Ramadass A S, Green J, Westra J W, Mundt K and Akoulitchev A (2020). "Comparative molecular cell-of-origin classification of diffuse large B-cell lymphoma based on liquid and tissue biopsies." Transl. Med. Commun. 5(1): 5.
Jabbarzadeh Kaboli P, Afzalipour Khoshkbejari M, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, Amanollahi S, Yazdi Sani S, Li M, Zhao Y, Wu X, Shen J, Cho C H and Xiao Z (2020). "Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives." Biomed. Pharmacother. 121: 109635.
Jedrzejczyk M, Wisniewska K, Kania K D, Marczak A and Szwed M (2020). "Transferrin-Bound Doxorubicin Enhances Apoptosis and DNA Damage through the Generation of Pro-Inflammatory Responses in Human Leukemia Cells." Int J Mol Sci 21(24).
Jiang X, Liu Y, Ma L, Ji R, Qu Y, Xin Y and Lv G (2018). "Chemopreventive activity of sulforaphane." Drug Des Devel Ther 12: 2905-2913.
Jin X, Wei Y, Liu Y, Lu X, Ding F, Wang J and Yang S (2019). "Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer." Cancer Med 8(3): 1246-1257.
Jin Z, Qing K, Ouyang Y, Liu Z, Wang W, Li X, Xu Z and Li J (2016). "Low dose of lenalidmide and PI3K/mTOR inhibitor trigger synergistic cytoxicity in activated B cell-like subtype of diffuse large B cell lymphoma." J Exp Clin Cancer Res 35: 52.
Kan S-F, Wang J and Sun G-X (2018). "Sulforaphane regulates apoptosis- and proliferation‑related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer." Int J Mol Med 42(5): 2447-2458.
Kim D, Choi B H, Ryoo I G and Kwak M K (2018). "High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling." Cell Death Dis 9(9): 896.
Kim J H, Choi H S and Lee D S (2021). "Primaquine Inhibits the Endosomal Trafficking and Nuclear Localization of EGFR and Induces the Apoptosis of Breast Cancer Cells by Nuclear EGFR/Stat3-Mediated c-Myc Downregulation." Int J Mol Sci 22(23).
Koppaka V, Thompson D C, Chen Y, Ellermann M, Nicolaou K C, Juvonen R O, Petersen D, Deitrich R A, Hurley T D and Vasiliou V (2012). "Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application." Pharmacol Rev 64(3): 520-539.
Kowalczyk T, Sitarek P, Toma M, Picot L, Wielanek M, Skała E and Śliwiński T (2020). "An Extract of Transgenic Senna obtusifolia L. Hairy Roots with Overexpression of PgSS1 Gene in Combination with Chemotherapeutic Agent Induces Apoptosis in the Leukemia Cell Line." Biomolecules 10(4): 510.
Kreis N N, Louwen F and Yuan J (2019). "The Multifaceted p21 (Cip1/Waf1/CDKN1A) in Cell Differentiation, Migration and Cancer Therapy." Cancers (Basel) 11(9).
Kuo C H, Leu Y L, Wang T H, Tseng W C, Feng C H, Wang S H and Chen C C (2019). "A novel DNA repair inhibitor, diallyl disulfide (DADS), impairs DNA resection during DNA double-strand break repair by reducing Sae2 and Exo1 levels." DNA Repair (Amst) 82: 102690.
Kuo H Y, Hsu H T, Chen Y C, Chang Y W, Liu F T and Wu C W (2016). "Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer." Glycobiology 26(2): 155-165.
Lee C H, Syu S H, Liu K J, Chu P Y, Yang W C, Lin P and Shieh W Y (2015). "Interleukin-1 beta transactivates epidermal growth factor receptor via the CXCL1-CXCR2 axis in oral cancer." Oncotarget 6(36): 38866-38880.
Lee J J, Park I H, Rhee W J, Kim H S and Shin J S (2019). "HMGB1 modulates the balance between senescence and apoptosis in response to genotoxic stress." Faseb j 33(10): 10942-10953.
Lewinska A, Adamczyk-Grochala J, Deregowska A and Wnuk M (2017). "Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells." Theranostics 7(14): 3461-3477.
Li S, Young K H and Medeiros L J (2018). "Diffuse large B-cell lymphoma." Pathology 50(1): 74-87.
Li X, Wei Y and Wei X (2020). "Napabucasin, a novel inhibitor of STAT3, inhibits growth and synergises with doxorubicin in diffuse large B-cell lymphoma." Cancer Lett 491: 146-161.
Liu K C, Shih T Y, Kuo C L, Ma Y S, Yang J L, Wu P P, Huang Y P, Lai K C and Chung J G (2016). "Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells." Am J Chin Med 44(6): 1289-1310.
Liu Z, Sun Q and Wang X (2017). "PLK1, A Potential Target for Cancer Therapy." Transl Oncol 10(1): 22-32.
London M and Gallo E (2020). "Epidermal growth factor receptor (EGFR) involvement in epithelial-derived cancers and its current antibody-based immunotherapies." Cell Biol Int 44(6): 1267-1282.
Long H Y, Huang Q X, Yu Y Y, Zhang Z B, Yao Z W, Chen H B and Feng J W (2019). "Dehydrocostus lactone inhibits in vitro gastrinoma cancer cell growth through apoptosis induction, sub-G1 cell cycle arrest, DNA damage and loss of mitochondrial membrane potential." Arch Med Sci 15(3): 765-773.
Mai Y, Yu J J, Bartholdy B, Xu-Monette Z Y, Knapp E E, Yuan F, Chen H, Ding B B, Yao Z, Das B, Zou Y, Young K H, Parekh S and Ye B H (2016). "An oxidative stress-based mechanism of doxorubicin cytotoxicity suggests new therapeutic strategies in ABC-DLBCL." Blood 128(24): 2797-2807.
Makena M R, Ranjan A, Thirumala V and Reddy A P (2020). "Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance." Biochim Biophys Acta Mol Basis Dis 1866(4): 165339.
Meng E, Mitra A, Tripathi K, Finan M A, Scalici J, McClellan S, Madeira da Silva L, Reed E, Shevde L A, Palle K and Rocconi R P (2014). "ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling." PLoS One 9(9): e107142-e107142.
Meredith A M and Dass C R (2016). "Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism." J. Pharm. Pharmacol. 68(6): 729-741.
Miyazaki K (2016). "Treatment of Diffuse Large B-Cell Lymphoma." J Clin Exp Hematop 56(2): 79-88.
Mondello P and Mian M (2019). "Frontline treatment of diffuse large B-cell lymphoma: Beyond R-CHOP." Hematol Oncol 37(4): 333-344.
Nakayama I, Higa-Nakamine S, Uehara A, Sugahara K, Kakinohana M and Yamamoto H (2020). "Regulation of epidermal growth factor receptor expression and morphology of lung epithelial cells by interleukin-1β." J Biochem 168(2): 113-123.
Namkaew J, Jaroonwitchawan T, Rujanapun N, Saelee J and Noisa P (2018). "Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells." In Vitro Cell Dev Biol Anim 54(9): 629-639.
Nowakowski G S, Chiappella A, Witzig T E, Scott D W, Spina M, Gascoyne R D, Zhang L, Russo J, Kang J, Zhang J, Xu Y and Vitolo U (2020). "Variable global distribution of cell-of-origin from the ROBUST phase III study in diffuse large B-cell lymphoma." Haematologica 105(2): e72-e75.
Nowakowski G S and Czuczman M S (2015). "ABC, GCB, and Double-Hit Diffuse Large B-Cell Lymphoma: Does Subtype Make a Difference in Therapy Selection?" Am Soc Clin Oncol Educ Book: e449-457.
Pateliya B, Burade V and Goswami S (2021). "Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo." Eur J Pharmacol 891: 173725.
Pilié P G, Tang C, Mills G B and Yap T A (2019). "State-of-the-art strategies for targeting the DNA damage response in cancer." Nat Rev Clin Oncol 16(2): 81-104.
Pistritto G, Trisciuoglio D, Ceci C, Garufi A and D'Orazi G (2016). "Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies." Aging 8(4): 603-619.
Pradhan A K, Maji S, Bhoopathi P, Talukdar S, Mannangatti P, Guo C, Wang X Y, Cartagena L C, Idowu M, Landry J W, Sarkar D, Emdad L, Cavenee W K, Das S K and Fisher P B (2021). "Pharmacological inhibition of MDA-9/Syntenin blocks breast cancer metastasis through suppression of IL-1β." Proc Natl Acad Sci U S A 118(21).
Pratama N P, Wulandari S, Nugroho A E, Fakhrudin N, Astuti P and Sudarsono (2018). "Tylophorine Abrogates G2/M Arrest Induced by Doxorubicine and Promotes Increased Apoptosis in T47D Breast Cancer Cells." Asian Pac J Cancer Prev 19(11): 3065-3069.
Roschewski M, Phelan J D and Wilson W H (2020). "Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma." Cancer J 26(3): 195-205.
Roychoudhury S, Kumar A, Bhatkar D and Sharma N K (2020). "Molecular avenues in targeted doxorubicin cancer therapy." Future Oncol 16(11): 687-700.
Sarmiento-Castro A, Caamaño-Gutiérrez E, Sims A H, Hull N J, James M I, Santiago-Gómez A, Eyre R, Clark C, Brown M E, Brooks M D, Wicha M S, Howell S J, Clarke R B and Simões B M (2020). "Increased Expression of Interleukin-1 Receptor Characterizes Anti-estrogen-Resistant ALDH(+) Breast Cancer Stem Cells." Stem Cell Rep. 15(2): 307-316.
Scott D W, Mottok A, Ennishi D, Wright G W, Farinha P, Ben-Neriah S, Kridel R, Barry G S, Hother C, Abrisqueta P, Boyle M, Meissner B, Telenius A, Savage K J, Sehn L H, Slack G W, Steidl C, Staudt L M, Connors J M, Rimsza L M and Gascoyne R D (2015). "Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies." J Clin Oncol 33(26): 2848-2856.
Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, Marzouk A, El Habak K, Mostafa R, Ali M A and Ellithy M (2017). "A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer." Biomed. Pharmacother. 95: 1209-1218.
Sita G, Graziosi A, Hrelia P and Morroni F (2021). "Sulforaphane Causes Cell Cycle Arrest and Apoptosis in Human Glioblastoma U87MG and U373MG Cell Lines under Hypoxic Conditions." Int J Mol Sci 22(20).
Song Y-H, Zhong M-Z, Chai Q, Gong K-Y, Tan X-L, Hu J-Y and Wang G-H (2018). "The role of aldehyde dehydrogenase 1A1 in B-cell non-Hodgkin's lymphoma." Oncol Rep 39(3): 1261-1268.
Storck K, Brandstetter M, Keller U and Knopf A (2019). "Clinical presentation and characteristics of lymphoma in the head and neck region." Head Face Med 15(1): 1.
Sudhakaran M, Parra M R, Stoub H, Gallo K A and Doseff A I (2020). "Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters." Biochem. Pharmacol. 182: 114259.
Sun Y, Liu Y, Ma X and Hu H (2021). "The Influence of Cell Cycle Regulation on Chemotherapy." Int J Mol Sci 22(13).
Tun J O, Salvador-Reyes L A, Velarde M C, Saito N, Suwanborirux K and Concepcion G P (2019). "Synergistic Cytotoxicity of Renieramycin M and Doxorubicin in MCF-7 Breast Cancer Cells." Mar Drugs 17(9).
Wang L, Han H, Dong L, Wang Z and Qin Y (2021). "Function of p21 and its therapeutic effects in esophageal cancer (Review)." Oncol Lett 21(2): 136.
Wang Y, Wu H, Dong N, Su X, Duan M, Wei Y, Wei J, Liu G, Peng Q and Zhao Y (2021). "Sulforaphane induces S-phase arrest and apoptosis via p53-dependent manner in gastric cancer cells." Sci Rep 11(1): 2504.
Wei T, Xiaojun X and Peilong C (2020). "Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways." Biomed. Pharmacother. 121: 109139.
Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K and Wu W (2017). "Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells." Oncol Rep 37(5): 2829-2838.
Yasuda S, Horinaka M and Sakai T (2019). "Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFα pathway in human colon cancer cells." Oncol Lett 18(4): 4253-4261.
Yin Y, Sun M, Zhan X, Wu C, Geng P, Sun X, Wu Y, Zhang S, Qin J, Zhuang Z and Liu Y (2019). "EGFR signaling confers resistance to BET inhibition in hepatocellular carcinoma through stabilizing oncogenic MYC." J. Exp. Clin. Cancer Res. 38(1): 83.
Zhang T, He L, Wang Z, Dong W, Sun W, Qin Y, Zhang P and Zhang H (2020). "Calcitriol enhances Doxorubicin-induced apoptosis in papillary thyroid carcinoma cells via regulating VDR/PTPN2/p-STAT3 pathway." J Cell Mol Med 24(10): 5629-5639.
Zhu L, Chen Z, Zang H, Fan S, Gu J, Zhang G, Sun K D, Wang Q, He Y, Owonikoko T K, Ramalingam S S and Sun S Y (2021). "Targeting c-Myc to Overcome Acquired Resistance of EGFR Mutant NSCLC Cells to the Third-Generation EGFR Tyrosine Kinase Inhibitor, Osimertinib." Cancer Res 81(18): 4822-4834.
Zhu M, Yin P, Hu F, Jiang J, Yin L, Li Y and Wang S (2021). "Integrating genome-wide association and transcriptome prediction model identifies novel target genes for osteoporosis." Osteoporos Int 32(12): 2493-2503.
Żuryń A, Litwiniec A, Safiejko-Mroczka B, Klimaszewska-Wiśniewska A, Gagat M, Krajewski A, Gackowska L and Grzanka D (2016). "The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line." Int J Oncol 48(6): 2521-2533.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *