帳號:guest(18.227.52.176)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫子捷
作者(外文):Sun, Tzu-Chieh
論文名稱(中文):探討腦源性巨噬細胞於星狀膠質瘤成長中所扮演的角色
論文名稱(外文):Roles of Brain Resident Macrophage in the Development of Astrocytoma
指導教授(中文):江啟勳
指導教授(外文):Chiang, Chi-Shiun
口試委員(中文):張建文
陳芳馨
口試委員(外文):Chang, Chiann Wen
Chen, Fang-Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012503
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:79
中文關鍵詞:腦源性巨噬細胞星狀膠質瘤小膠質細胞
外文關鍵詞:brain resident macrophageastrocytomamicroglia
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
星狀膠質瘤是最常見的原發性顱內腫瘤,由於腫瘤微環境的複雜性,使得惡性膠質瘤至今仍是最難治療的腫瘤之一。先前的研究表明骨源性巨噬細胞在幾種腫瘤類型中起到了關鍵性作用。然而,腦源性的巨噬細胞(小膠質細胞)在星狀膠質瘤發展中的作用尚不清楚。在本研究中,我們使用星狀膠質瘤細胞株ALTS1C1與小膠質細胞株BV2在體外進行共培養,當ALTS1C1和BV2的比例為1:1時可以形成腫瘤集落。此外,我們建立了ALTS1C1單種細胞植入模型(A only)、ALTS1C1和BV2的比例為1:1的共植入模型(A+B)與ALTS1C1和BV2的比例為1:0.1的共植入模型(A+0.1B),並透過顱內注射(I.C.)以及肌內注射(I.M.)植入小鼠體內。與A only模型相比,A+B或A+0.1B模型中的小鼠存活時間較長,腫瘤的生長也受到抑制。此外,我們發現抗腫瘤狀態是由免疫系統引起的。 M-MDSC 是一種免疫抑制細胞,在 A+B 或 A+0.1B 模型中,無論是I.C.植入或 I.M.植入,M-MDSC在循環系統中的含量均被下調。 對T細胞的抑制是 M-MDSC 的主要功能,因此我們還觀察了 T 細胞的作用。有趣的是,在 A+B 或 A+0.1B 模型中,在循環系統和腫瘤微環境中觀察到更高豐度的胞毒性 T 細胞或更強的 T 細胞功能指標。因此,這項研究表明小膠質細胞可以引起抗神經膠質瘤的免疫反應。在臨床上,透過分析手術切除的惡性膠質瘤中的小膠質細胞以及小膠質細胞引起的免疫反應,可以製定更好的膠質瘤治療方案。
Malignant glioma is the most common primary intracranial tumor and it is one of the toughest tumors to be treated at the present due to the complexity of the tumor microenvironment. Previous studies have shown the critical role of the peripheral macrophage in several tumor types. However, the role of brain resident macrophage (microglia) has not been clear in the progression of astrocytoma. In this study, when the astrocytoma cell line, ALTS1C1, was co-cultured in a high-density manner with the microglia cell line, BV2, in a 1: 1 ratio in vitro, colonies could be formed. Furthermore, we compared the animal survival of mice receiving the ALTS1C1 single implantation (A only), 1:1 ratio of ALTS1C1 and BV2 co-implantation (A+B), and 1:0.1 ratio of ALTS1C1 and BV2 co-implantation (A+0.1B) via orthotopic intracranial (I.C.) implantation as well as intramuscular (I.M.) implantation. Results show that the surviving time of tumor-bearing mice was increased and the tumor growth was delayed in groups receiving A+B or A+0.1B model. Moreover, we found that the BV-2-associated anti-tumor effect was associated with the immune status. The abundance of M-MDSC (myeloid monocyte-derived suppressor cells) in the circulating system was down-regulated in A+B or A+0.1B model, no matter in I.C. implantation or I.M. implantation. On the other hand, the higher abundance of cytotoxicity T cells or stronger T cells functional factors were observed in the circulating system and tumor microenvironment in A+B or A+0.1B group. In summary, this study demonstrates that microglia could cause anti-glioma immunity, which is associated with the regulation of M-MDSC and T cell numbers. More studies are required to explore how BV2 regulates M-MDSC and T cell numbers during brain tumor progression.
able of content
中文摘要 1
Abstract 2
致謝 3
Table of content 4
Chapter I. Introduction 6
1.1 Glioma 6
1.2 Tumor-associated macrophages (TAMs) 7
1.3 Myeloid-derived suppressor cells (MDSCs) 8
1.4 T lymphocyte 9
1.5 Tumor microenvironment(TME) 10
1.6 Aim 11
Chapter II. Materials and Methods 12
2.1 Animals 12
2.2 Anesthetic 12
2.3 Blood Collection 12
2.4 Cell Culture 13
2.5 Splenocyte preparation 13
2.6 Orthotopic Intracranial and Intramuscular Tumor Implantation 14
2.6.1 Cell Preparation 14
2.6.2 Animal Procedures 15
2.7 Flow Cytometry 16
2.8 Process of embedding brain tumor samples 17
2.9 Immunohistochemical analysis 18
2.10 Immunofluorescence staining 18
2.11 Statistics 19
Chapter III. Results 20
3.1 Establishment of ALTS1C1 and BV2 co-culture model 20
3.1.1 Characteristics of ALTS1C1 and BV2 co-culture in vitro 20
3.1.2 Establishment of ALTS1C1 and BV2 orthotopic intracranial co-implantation model 21
3.2 The abundance and survival of MDSC in the ALTS1C1-BV2 co-implanting I.C. model 22
3.2.1 The abundance of circulating-MDSC in fully immunocompetent C57BL/6 I.C. model 22
3.2.2 The abundance and survival proportion of infiltrating-MDSC in fully immunocompetent C57BL/6 I.C. model 23
3.3 BV2-Mediated MDSCs depletion reverses tumor immune evasion 23
3.3.1 The abundance of circulating-T cells in fully immunocompetent C57BL/6 I.C. model 23
3.3.2 The abundance of infiltrating-T cells in fully immunocompetent C57BL/6 I.C. model 24
3.4 BV2-effect in exotopic-microenvironment 25
3.4.1 BV2 suppresses tumor growth in fully immunocompetent C57BL/6 I.M. model 25
3.4.2 BV2 suppresses the abundance of circulating-M-MDSC in fully immunocompetent C57BL/6 I.M. model 26
3.4.3 The abundance and survival proportion of infiltrating-MDSC in fully immunocompetent C57BL/6 I.M. model 27
3.4.4 The abundance of circulating-T cells in fully immunocompetent C57BL/6 I.M. model 27
3.4.5 The abundance of infiltrating-T cells in fully immunocompetent C57BL/6 I.M. model 28
3.5 BV2-effect in the lymphocyte lacking microenvironment 29
3.5.1 The abundance of circulating-MDSC in immunodeficient C.B17 I.C. model 29
3.5.2 The abundance of infiltrating-MDSC in immunodeficient C.B17 I.C. model 30
3.6 Microglia secreting Apolipoprotein E (ApoE) effect of ALTS1C1 progression 30
Chapter IV. Discussion 32
4.1 BV2 inhibits the growth of ALTS1C1 tumor 32
4.2 M-MDSCs are the main cells affected by BV2 on BV2-mediated ALTS1C1 tumor growth delay 33
4.3 Microglia inducing M-MDSC reduction leading to the higher abundance of CD8 cytotoxicity T cells 34
4.4 Different immune responses caused by the presence or absence of microglia in the tumor environment 35
4.5 Conclusion and future direction 36
Chapter V. Figures 38
Chapter VI. Reference 75

1. Ostrom, Q.T., et al., The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol, 2014. 16(7): p. 896-913.
2. Goodenberger, M.L. and R.B. Jenkins, Genetics of adult glioma. Cancer Genet, 2012. 205(12): p. 613-21.
3. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62.
4. Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol, 2017. 19(suppl_5): p. v1-v88.
5. Raizer, J.J., HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol, 2005. 74(1): p. 77-86.
6. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109.
7. .
8. Wong, E.T., et al., Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol, 1999. 17(8): p. 2572-8.
9. <2002_Article_.pdf>.
10. Guadagno, E., et al., Role of Macrophages in Brain Tumor Growth and Progression. Int J Mol Sci, 2018. 19(4).
11. Muntjewerff, E.M., L.D. Meesters, and G. van den Bogaart, Antigen Cross-Presentation by Macrophages. Front Immunol, 2020. 11: p. 1276.
12. De Palma, M. and C.E. Lewis, Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 2013. 23(3): p. 277-86.
13. Mantovani, A., et al., Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol, 2013. 229(2): p. 176-85.
14. Mantovani, A., et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002. 23(11): p. 549-55.
15. Orecchioni, M., et al., Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol, 2019. 10: p. 1084.
16. Nayak, D., T.L. Roth, and D.B. McGavern, Microglia development and function. Annu Rev Immunol, 2014. 32: p. 367-402.
17. Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci, 2016. 19(1): p. 20-7.
18. Moseman, E.A., et al., T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol, 2020. 5(48).
19. Henn, A., et al., The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex, 2009. 26(2): p. 83-94.
20. Gabrilovich, D.I., Myeloid-Derived Suppressor Cells. Cancer Immunol Res, 2017. 5(1): p. 3-8.
21. Bronte, V., et al., Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol, 1999. 162(10): p. 5728-37.
22. Gabrilovich, D., et al., Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 1998. 92(11): p. 4150-66.
23. Gabrilovich, D.I., S. Ostrand-Rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol, 2012. 12(4): p. 253-68.
24. Corzo, C.A., et al., HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med, 2010. 207(11): p. 2439-53.
25. Kumar, V., et al., CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity, 2016. 44(2): p. 303-15.
26. Bonilla, F.A. and H.C. Oettgen, Adaptive immunity. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S33-40.
27. Luckheeram, R.V., et al., CD4⁺T cells: differentiation and functions. Clin Dev Immunol, 2012. 2012: p. 925135.
28. Murthy, A.K., et al., Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infection and immunity, 2011. 79(7): p. 2928-2935.
29. Domingues, P., et al., Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun, 2016. 53: p. 1-15.
30. Iwahori, K., Cytotoxic CD8(+) Lymphocytes in the Tumor Microenvironment. Adv Exp Med Biol, 2020. 1224: p. 53-62.
31. Seidel, J.A., A. Otsuka, and K. Kabashima, Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol, 2018. 8: p. 86.
32. Ahmad, A., CAR-T Cell Therapy. Int J Mol Sci, 2020. 21(12).
33. Thomas, S. and G.C. Prendergast, Cancer Vaccines: A Brief Overview. Methods Mol Biol, 2016. 1403: p. 755-61.
34. Egeblad, M., E.S. Nakasone, and Z. Werb, Tumors as organs: complex tissues that interface with the entire organism. Dev Cell, 2010. 18(6): p. 884-901.
35. Gascard, P. and T.D. Tlsty, Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev, 2016. 30(9): p. 1002-19.
36. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012. 196(4): p. 395-406.
37. Fitzgerald, G., I. Soro-Arnaiz, and K. De Bock, The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer. Front Cell Dev Biol, 2018. 6: p. 100.
38. Vaupel, P., H. Schmidberger, and A. Mayer, The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol, 2019. 95(7): p. 912-919.
39. Horsman, M.R. and J. Overgaard, The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res, 2016. 57 Suppl 1(Suppl 1): p. i90-i98.
40. Lin, C.M., et al., Distinct Tumor Microenvironment at Tumor Edge as a Result of Astrocyte Activation Is Associated With Therapeutic Resistance for Brain Tumor. Front Oncol, 2019. 9: p. 307.
41. Sung, Y.C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol, 2019. 14(12): p. 1160-1169.
42. Blasi, E., et al., Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol, 1990. 27(2-3): p. 229-37.
43. Waki, K., et al., CD4/CD8 ratio is a prognostic factor in IgG nonresponders among peptide vaccine-treated ovarian cancer patients. Cancer Sci, 2020. 111(4): p. 1124-1131.
44. Han, Y., D. Liu, and L. Li, PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020. 10(3): p. 727-742.
45. Tavazoie, M.F., et al., LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell, 2018. 172(4): p. 825-840.e18.
46. Dubinski, D., et al., CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol, 2016. 18(6): p. 807-18.
47. Groth, C., et al., Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer, 2019. 120(1): p. 16-25.
48. Welters, M.J., et al., Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med, 2016. 8(334): p. 334ra52.
49. Gielen, P.R., et al., Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol, 2015. 74(5): p. 390-400.
50. Yin, Y., et al., The CD4+/CD8+ Ratio in Pulmonary Tuberculosis: Systematic and Meta-Analysis Article. Iran J Public Health, 2015. 44(2): p. 185-93.
51. McBride, J.A. and R. Striker, Imbalance in the game of T cells: What can the CD4/CD8 T-cell ratio tell us about HIV and health? PLoS Pathog, 2017. 13(11): p. e1006624.
52. Cerqueira, M.A., et al., T cells CD4+/CD8+ local immune modulation by prostate cancer hemi-cryoablation. World J Urol, 2020. 38(3): p. 673-680.
53. Roesch, S., et al., When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. Int J Mol Sci, 2018. 19(2).
54. Badie, B., et al., Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol, 2001. 120(1-2): p. 19-24.
55. Ford, A.L., et al., Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med, 1996. 184(5): p. 1737-45.
56. Ebner, F., et al., Microglial activation milieu controls regulatory T cell responses. J Immunol, 2013. 191(11): p. 5594-602.
57. Mabuchi, S., T. Sasano, and N. Komura, Targeting Myeloid-Derived Suppressor Cells in Ovarian Cancer. Cells, 2021. 10(2).
58. Özkan, B., H. Lim, and S.G. Park, Immunomodulatory Function of Myeloid-Derived Suppressor Cells during B Cell-Mediated Immune Responses. Int J Mol Sci, 2018. 19(5).
59. Huang, Z.H., M.L. Fitzgerald, and T. Mazzone, Distinct cellular loci for the ABCA1-dependent and ABCA1-independent lipid efflux mediated by endogenous apolipoprotein E expression. Arterioscler Thromb Vasc Biol, 2006. 26(1): p. 157-62.
60. Serrano-Pozo, A., S. Das, and B.T. Hyman, APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol, 2021. 20(1): p. 68-80.
61. Huang, M., et al., APOE rs405509 polymorphism and Parkinson's disease risk in the Chinese population. Neurosci Lett, 2020. 736: p. 135256.
62. Getz, G.S. and C.A. Reardon, ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res, 2016. 57(5): p. 758-66.
63. Matias, D., et al., Microglia/Astrocytes-Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors. Front Cell Neurosci, 2018. 12: p. 235.


(此全文20260830後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *