|
1. Zhang, C., et al., Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water research, 2018. 128: p. 314-330. 2. Stephanie, H., T.E. Mlsna, and D.O. Wipf, Functionalized biochar electrodes for asymmetrical capacitive deionization. Desalination, 2021. 516: p. 115240. 3. Liang, K., et al., Ultrafine V2O5 Nanowires in 3D Current Collector for High‐Performance Supercapacitor. ChemElectroChem, 2016. 3(5): p. 704-708. 4. Majumdar, D., M. Mandal, and S.K. Bhattacharya, V2O5 and its carbon‐based nanocomposites for supercapacitor applications. ChemElectroChem, 2019. 6(6): p. 1623-1648. 5. Carey, M. and M.W. Barsoum, MXene polymer nanocomposites: a review. Materials Today Advances, 2021. 9. 6. Boretti, A. and L. Rosa, Reassessing the projections of the world water development report. NPJ Clean Water, 2019. 2(1): p. 1-6. 7. He, C., et al., Future global urban water scarcity and potential solutions. Nature Communications, 2021. 12(1): p. 1-11. 8. Ahmed, F.E., R. Hashaikeh, and N. Hilal, Solar powered desalination–Technology, energy and future outlook. Desalination, 2019. 453: p. 54-76. 9. Zhao, J., et al., A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants. Desalination, 2018. 442: p. 75-88. 10. Feria-Díaz, J.J., et al., Commercial thermal technologies for desalination of water from renewable energies: A state of the art review. Processes, 2021. 9(2): p. 262. 11. Esmaeilion, F., Hybrid renewable energy systems for desalination. Applied Water Science, 2020. 10(3): p. 1-47. 12. Ghernaout, D. and Z. Gabes, Desalination in the Context of Water Scarcity Crisis: Dares & Perspectives. Open Access Library Journal, 2020. 7(11): p. 1. 13. Obotey Ezugbe, E. and S. Rathilal, Membrane technologies in wastewater treatment: a review. Membranes, 2020. 10(5): p. 89. 14. Jun, Y.-S., et al., Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019. 52(5): p. 1215-1225. 15. Tang, W., et al., Various cell architectures of capacitive deionization: Recent advances and future trends. Water research, 2019. 150: p. 225-251. 16. Xing, W., et al., Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 2020. 482: p. 114390. 17. Tang, W., et al., Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water research, 2015. 84: p. 342-349. 18. Porada, S., et al., Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 2013. 6(12): p. 3700-3712. 19. Tan, C., et al., Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Water research, 2018. 147: p. 276-286. 20. Huang, Z.-H., et al., Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 2017. 5(2): p. 470-496. 21. Delgado, A., et al., Electrical double layers as ion reservoirs: applications to the deionization of solutions. Current Opinion in Colloid & Interface Science, 2019. 44: p. 72-84. 22. Schmickler, W., Electronic effects in the electric double layer. Chemical reviews, 1996. 96(8): p. 3177-3200. 23. Stojek, Z., The electrical double layer and its structure, in Electroanalytical methods. 2010, Springer. p. 3-9. 24. Zhao, X., et al., Electrode materials for capacitive deionization: A review. Journal of Electroanalytical Chemistry, 2020. 873: p. 114416. 25. Yu, F., et al., Faradaic reactions in capacitive deionization for desalination and ion separation. Journal of Materials Chemistry A, 2019. 7(27): p. 15999-16027. 26. Chen, F., et al., A dual-ion electrochemistry deionization system based on AgCl-Na 0.44 MnO 2 electrodes. Nanoscale, 2017. 9(28): p. 10101-10108. 27. Li, H., et al., Hydrothermally synthesized graphene and Fe 3 O 4 nanocomposites for high performance capacitive deionization. RSC advances, 2016. 6(15): p. 11967-11972. 28. El-Deen, A.G., et al., TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination, 2015. 361: p. 53-64. 29. Lee, J., et al., Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium‐Pentoxide‐Decorated Multiwalled Carbon Nanotubes. ChemSusChem, 2017. 10(18): p. 3611-3623. 30. Liu, B., et al., In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination, 2021. 500: p. 114897. 31. Naguib, M., M.W. Barsoum, and Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2021. 33(39): p. 2103393. 32. Wen, Y., et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano energy, 2017. 38: p. 368-376. 33. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018. 34. Das, R.S. and Y. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vibrational spectroscopy, 2011. 57(2): p. 163-176. 35. Downes, A. and A. Elfick, Raman spectroscopy and related techniques in biomedicine. Sensors, 2010. 10(3): p. 1871-1889. 36. Jones, R.R., et al., Raman techniques: fundamentals and frontiers. Nanoscale research letters, 2019. 14(1): p. 1-34. 37. Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985. 57(4): p. 603-619. 38. Bardestani, R., G.S. Patience, and S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 2019. 97(11): p. 2781-2791. 39. Yaashikaa, P., et al., A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 2020. 28: p. e00570. 40. Zang, Y.-N., et al., A biochar-promoted V 2 O 5/gC 3 N 4 Z-Scheme heterostructure for enhanced simulated solar light-driven photocatalytic activity. RSC advances, 2021. 11(25): p. 15106-15117. 41. Irani, R., S.M. Rozati, and S. Beke, Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique. Applied Physics A, 2018. 124(4): p. 1-8. 42. Lu, T., et al., Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021. 256: p. 117771. 43. Yue, Z., et al., Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@ rGO‖ Na 1.1 V 3 O 7.9@ rGO. Journal of Materials Chemistry A, 2019. 7(28): p. 16892-16901. 44. Bharath, G., et al., Designed assembly of Ni/MAX (Ti3AlC2) and porous graphene-based asymmetric electrodes for capacitive deionization of multivalent ions. Chemosphere, 2021. 266: p. 129048. 45. Bo, Z., et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Materials, 2022. 50: p. 395-406. 46. Anwer, S., et al., 2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination. Chemical Engineering Journal, 2021. 406: p. 126827. 47. Sayed, D.M., M.S. El-Deab, and N.K. Allam, Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Separation and Purification Technology, 2021. 266: p. 118597. 48. Liang, J., et al., 3D interconnected network architectures assembled from W18O49 and Ti3C2 MXene with excellent electrochemical properties and CDI performance. Chemical Engineering Journal, 2022. 435: p. 134922.
|