帳號:guest(3.139.103.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):汪 蕾
作者(外文):Wang, Lei
論文名稱(中文):五氧化二釩@生物炭與二維過渡金屬碳化物材料製備高性能混合電容去離子研究
論文名稱(外文):High-Performance asymmetrical CDI for desalination using V2O5@biochar and MXenes Electrodes
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-an
口試委員(中文):王竹方
王清海
口試委員(外文):Wang, Chu-fang
Wang, Tsing-hai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:108012467
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:61
中文關鍵詞:混合電容去離子生物炭過渡金屬氧化物二維過渡金屬碳化物
外文關鍵詞:asymmetrical capacitive deionizationbiochartransition metal oxidestwo-dimensional transition metal carbides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生物炭(BC)是利用農業、林業、城市的生物質廢棄物材料在低氧環境下高溫燃燒製備而成,因其低成本、資源循環再生、來源豐富且能夠有效減少碳排放等特點,一直以來都得到了大量的關注。BC具有比表面積大、孔隙率高、官能團豐富、化學性能穩定等優點,使其被廣泛的應用於碳基電極材料當中。
五氧化二釩(V2O5)相較其他過渡金屬氧化物成本更低、自然儲備豐富、較多的氧化價態並且擁有較高的理論電容值,是一種很有發展潛力的電極材料。特別是被研究作為超級電容器的電極材料,在電化學電容器碳質材料的替代電極研究中具有較大研究前景。然而V2O5的導電性較差,因此為了克服這一挑戰,本實驗將生物炭與V2O5以四種不同重量比例(10、25、35、50wt% V2O5@BC)組合,合成復合材料作為電容去離子(CDI)系統的正極材料。此外還選用二維過渡金屬碳化物(MXene)作為電容去離子系統的負極材料。利用電化學循環伏安法與阻抗法,分別確定電極材料的比電容和電阻。結果表明,35wt% V2O5 @BC的復合材料在0-1電位窗口和10mV/s 掃速下展現出140F/g的比電容值,相較其他重量比例復合材料以及單一材料的比電容值都有較大的提升。在CDI吸附容量測試中發現,以35wt% V2O5 @ BC復合材料作為正極,MXene作為負極的混合CDI系統對NaCl的去除有較優異的表現。在鹽溶液濃度為5000mg/L的環境下,最高比電吸附容量達到122mg/g。該混合CDI體系在經過100次循環後仍能保持90%的吸附-解吸循環的優異循環性能,證明該電容去離子體系具有優異的耐久性。在與近5年相似材料的研究結果比對發現該體系仍然有較佳的優勢,這些結果表明作為不對稱35% V2O5 @BC // MXene作為混合半鹽水淡化的混合CDI系統的電極,具有較優秀的發展前景。
Biochar (BC) was prepared by burning biomass waste materials from agriculture, forestry, and cities at high temperatures in a low-oxygen condition has been widely used because of its low cost, resource recycling, abundant sources, and ability to reduce carbon emissions effectively. Owning to the advantages in large surface area, high porosity, rich functional groups, and stable chemical properties, BC has been widely used as carbon-based electrode materials.
Compared with other transition metal oxides, vanadium pentoxide (V2O5) possesses a promising electrode material due to lower cost, abundant natural reserves, more oxidation valence states and higher theoretical capacitance value. Especially, the utilization of V2O5 as supercapacitor electrode material is great research prospect for finding the alternative carbonaceous materials in electrochemical capacitors. However, the conductivity of V2O5 is poor, therefore, to overcome this challenge, in this research, the combination of V2O5 and BC were studied in four different weight ratios (10, 25, 35, 50wt% V2O5@BC), which can be used as the positive electrode material for hybrid capacitive deionization (CDI) system. In addition, two-dimensional transition metal carbide (MXene) was selected as the negative electrode material of the CDI system. The electrochemical cyclic voltammetry and impedance were thoroughly conducted to determine the specific capacitance and resistance, respectively, of the electrode materials. As the results, the composite material of 35wt%V2O5 with BC displays a specific capacitance value of 140 F/g at a potential window of 0-1 V and at 10 mV/s. The specific capacitance values of other weight ratio composite materials and single materials have been greatly improved. In the CDI electrosorption capacity test, it was found that the hybrid CDI system with 35wt% V2O5 and BC as the positive electrode and MXene as the negative electrode exhibits excellent performance in the removal of NaCl. In 5000 mg/L, the highest specific adsorption capacity was achieved as 122 mg/g. The hybrid CDI system can still maintain the excellent cycle performance of 90% of the adsorption-desorption cycles after 100 cycles, indicating that the CDI system has excellent durability. Compared with the research results of similar materials in the past 5 years, it is found that this system still has better advantages. These results show that as an electrode of asymmetric V2O5@BC//MXene as a hybrid CDI system for desalination of semi-salt water, there is a better development prospect.
目錄 ⋯⋯⋯⋯⋯⋯⋯⋯v
圖目錄⋯⋯⋯⋯⋯⋯⋯⋯vii
第 1 章 前言⋯⋯⋯⋯⋯⋯⋯⋯1
1.1 前言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1
1.2研究動機⋯⋯⋯⋯⋯⋯⋯⋯1
第 2 章 文獻回顧⋯⋯⋯⋯⋯⋯4
2.1 當前水環境問題及永續發展⋯⋯⋯⋯⋯⋯⋯⋯4
2.2 傳統海水淡化技術的發展與應用⋯⋯⋯⋯⋯⋯5
2.2.1 熱能推動的海水淡化技術⋯⋯⋯⋯⋯⋯⋯⋯6
2.2.2 薄膜海水淡化技術 ⋯⋯⋯⋯⋯⋯⋯⋯9
2.3 電容去離子(Capacitive deionization, CDI)技術 ⋯⋯⋯⋯⋯⋯11
2.3.1 電雙層(Electric double layer, EDL)理論⋯⋯⋯⋯⋯⋯⋯⋯13
2.4 電容去離子系統的電極材料⋯⋯⋯⋯⋯⋯⋯⋯16
2.4.2 生物炭(Biochar,BC)⋯⋯⋯⋯⋯⋯⋯⋯20
2.4.3 二維過渡金屬碳化物(MXenes) ⋯⋯⋯⋯⋯⋯⋯⋯22
第 3 章 研究方法 ⋯⋯⋯⋯⋯⋯⋯⋯24
3.1 化學藥劑 ⋯⋯⋯⋯⋯⋯⋯⋯24
3.2 實驗設備 ⋯⋯⋯⋯⋯⋯⋯⋯24
3.3 實驗流程 ⋯⋯⋯⋯⋯⋯⋯⋯25
3.3.1 五氧化二釩與生物炭的復合材料之合成⋯⋯⋯⋯⋯⋯⋯⋯25
3.3.2 二維過渡金屬碳化物(MXenes)的合成⋯⋯⋯⋯⋯⋯⋯⋯27
3.3.3 混合電容去離子系統的組成⋯⋯⋯⋯⋯⋯⋯⋯28
3.4 材料特性鑑定儀器之分析與原理⋯⋯⋯⋯⋯⋯⋯⋯29
3.4.1 X光繞射儀(X-ray Diffractometer,XRD⋯⋯⋯⋯⋯⋯⋯⋯29
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)⋯⋯⋯⋯⋯⋯⋯⋯30
3.4.3 穿透式電子顯微鏡(Transmission electron microscope,TEM)⋯⋯⋯⋯⋯⋯⋯⋯31
3.4.4 拉曼光譜儀(Raman spectroscopy)⋯⋯⋯⋯⋯⋯⋯⋯33
3.4.5 比表面積與孔隙度分析儀(Specific Surface Area and Porosimetry Analyzer,BET)⋯⋯34
3.4.6 傅立葉變換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)⋯⋯⋯⋯⋯⋯36
第 4 章 結果與討論 ⋯⋯⋯⋯⋯⋯⋯⋯38
4.1五氧化二钒与生物炭复合材料之结构分析⋯⋯⋯⋯⋯⋯⋯⋯38
4.2 五氧化二钒与生物炭复合材料之電化學特性分析⋯⋯⋯⋯⋯⋯⋯⋯46
4.3 二維過渡金屬碳化物(MXene)之結構分析⋯⋯⋯⋯⋯⋯⋯⋯49
4.3 MXene之電化學特性分析⋯⋯⋯⋯⋯⋯⋯⋯51
4.4 電容去離子之效能⋯⋯⋯⋯⋯⋯⋯⋯52
Ag@rGO//Na1.1V3O7.9@rGO⋯⋯⋯⋯⋯⋯⋯⋯54
W18O49/Ti3C2 MXene⋯⋯⋯⋯⋯⋯⋯⋯54
第 5 章 結論⋯⋯⋯⋯⋯⋯⋯⋯55
參考文獻⋯⋯⋯⋯⋯⋯⋯⋯57

圖目錄
圖 1 1 實驗架構圖⋯⋯⋯⋯⋯⋯⋯⋯3
圖 2 1 常見的海水淡化技術⋯⋯⋯⋯⋯⋯⋯⋯6
圖 2 2 多級閃蒸技術操作原理[9]⋯⋯⋯⋯⋯⋯⋯⋯7
圖 2 3 多效蒸餾法操作流程[12]⋯⋯⋯⋯⋯⋯⋯⋯8
圖 2 4 正滲透與逆滲透之原理[11]⋯⋯⋯⋯⋯⋯⋯⋯11
圖 2 5 電容去離子的應用[16] ⋯⋯⋯⋯⋯⋯⋯⋯12
圖 2 6 雙電層模型 ⋯⋯⋯⋯⋯⋯⋯⋯15
圖 2 7 CDI電極的材料應用[24]⋯⋯⋯⋯⋯⋯⋯⋯17
圖 2 8 V2O5材料的應用[24] ⋯⋯⋯⋯⋯⋯⋯⋯20
圖 2 9 MXenes合成進展時間表⋯⋯⋯⋯⋯⋯⋯⋯23
圖 3 1五氧化二釩與生物炭復合材料製備流程⋯⋯⋯⋯⋯⋯⋯⋯27
圖 3 2 合成二維過渡金屬碳化物(MXene)之實驗流程⋯⋯⋯⋯⋯⋯⋯⋯28
圖 3 3 布拉格公式示意圖⋯⋯⋯⋯⋯⋯⋯⋯30
圖 3 4 掃描式電子顯微鏡基本構造及功能[33]⋯⋯⋯⋯⋯⋯⋯⋯31
圖 3 5 TEM系統之基本部件組成⋯⋯⋯⋯⋯⋯⋯⋯32
圖 3 6 拉曼光譜儀示意圖[35]⋯⋯⋯⋯⋯⋯⋯⋯34
圖 3 7 六種氮氣等溫吸附曲線[38] ⋯⋯⋯⋯⋯⋯⋯⋯35
圖 3 8 透過氮物理吸附獲得的四種遲滯環類型[38]⋯⋯⋯⋯⋯⋯⋯⋯36
圖 3 9 FTIR部件及工作原理圖⋯⋯⋯⋯⋯⋯⋯⋯37
圖 4 1純BC(a)、純VO(b)以及分別含有20mg、50mg、70mg以及100mg四種不同VO添加量的復合材料VB1(c)、VB2(d)、VB3(e)、VB4(f)的SEM圖像 ⋯⋯⋯⋯⋯⋯⋯⋯40
圖 4 2 VB3的TEM圖譜 ⋯⋯⋯⋯⋯⋯⋯⋯40
圖 4 3 純生物炭、五氧化二釩以及不同比例復合材料之XRD圖譜⋯⋯⋯⋯⋯⋯⋯⋯42
圖 4 4 純生物炭、五氧化二釩以及不同比例復合材料之Raman圖譜⋯⋯⋯⋯⋯⋯⋯⋯43
圖 4 5 純生物炭、五氧化二釩以及不同比例復合材料之FTIR圖譜⋯⋯⋯⋯⋯⋯⋯⋯44
圖 4 6 純生物炭、五氧化二釩以及不同比例復合材料之氮氣吸附-脫附等溫曲⋯⋯⋯⋯⋯⋯45
圖 4 7 VB2 復合材料的XPS圖譜⋯⋯⋯⋯⋯⋯⋯⋯46
圖 4 8 a,b分別為純VO與BC在0到1純正電位下以不同掃速所測得的CV⋯⋯⋯⋯⋯⋯⋯⋯47
圖 4 9 BC與VO正負電位比電容值比較 ⋯⋯⋯⋯⋯⋯⋯⋯48
圖 4 10 復合材料VB1、VB2、VB3、VB4循環伏安曲線⋯⋯⋯⋯⋯⋯⋯⋯48
圖 4 11 純VO與純BC以及四種不同比例復合材料之比電容值曲線⋯⋯⋯⋯⋯⋯⋯⋯49
圖 4 12 純VO與純BC以及四種不同比例復合材料之阻抗圖譜⋯⋯⋯⋯⋯⋯⋯⋯49
圖 4 13 MXene 的SEM圖像⋯⋯⋯⋯⋯⋯⋯⋯50
圖 4 14 (a)MXene的XRD圖譜;(b)MXene的拉曼圖譜;(c)MXene的氮氣吸附-脫附等溫線;(d)MXene孔徑分佈圖 ⋯⋯⋯⋯⋯⋯⋯⋯51
圖 4 15 (a)MXene在不同掃速下的循環伏安曲線⋯⋯⋯⋯⋯⋯⋯⋯52
圖 4 16(a)不同電極組合的CDI脫鹽效果;(b)不同工作電壓下的脫鹽效果;(c)不同鹽濃度下脫鹽的效果⋯⋯⋯⋯⋯⋯⋯⋯53
圖 4 17 35%V2O5@BC// MXene CDI 系統之100圈循環穩定性測試⋯⋯⋯⋯⋯⋯⋯⋯54

表目錄
表 4 1各類材料之BET檢測數據⋯⋯⋯⋯⋯⋯⋯⋯45
表 4 2 VB2@BC// MXene的 SEC與近幾年類似系統相關研究比對⋯⋯⋯⋯⋯⋯⋯⋯54
1. Zhang, C., et al., Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water research, 2018. 128: p. 314-330.
2. Stephanie, H., T.E. Mlsna, and D.O. Wipf, Functionalized biochar electrodes for asymmetrical capacitive deionization. Desalination, 2021. 516: p. 115240.
3. Liang, K., et al., Ultrafine V2O5 Nanowires in 3D Current Collector for High‐Performance Supercapacitor. ChemElectroChem, 2016. 3(5): p. 704-708.
4. Majumdar, D., M. Mandal, and S.K. Bhattacharya, V2O5 and its carbon‐based nanocomposites for supercapacitor applications. ChemElectroChem, 2019. 6(6): p. 1623-1648.
5. Carey, M. and M.W. Barsoum, MXene polymer nanocomposites: a review. Materials Today Advances, 2021. 9.
6. Boretti, A. and L. Rosa, Reassessing the projections of the world water development report. NPJ Clean Water, 2019. 2(1): p. 1-6.
7. He, C., et al., Future global urban water scarcity and potential solutions. Nature Communications, 2021. 12(1): p. 1-11.
8. Ahmed, F.E., R. Hashaikeh, and N. Hilal, Solar powered desalination–Technology, energy and future outlook. Desalination, 2019. 453: p. 54-76.
9. Zhao, J., et al., A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants. Desalination, 2018. 442: p. 75-88.
10. Feria-Díaz, J.J., et al., Commercial thermal technologies for desalination of water from renewable energies: A state of the art review. Processes, 2021. 9(2): p. 262.
11. Esmaeilion, F., Hybrid renewable energy systems for desalination. Applied Water Science, 2020. 10(3): p. 1-47.
12. Ghernaout, D. and Z. Gabes, Desalination in the Context of Water Scarcity Crisis: Dares & Perspectives. Open Access Library Journal, 2020. 7(11): p. 1.
13. Obotey Ezugbe, E. and S. Rathilal, Membrane technologies in wastewater treatment: a review. Membranes, 2020. 10(5): p. 89.
14. Jun, Y.-S., et al., Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019. 52(5): p. 1215-1225.
15. Tang, W., et al., Various cell architectures of capacitive deionization: Recent advances and future trends. Water research, 2019. 150: p. 225-251.
16. Xing, W., et al., Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 2020. 482: p. 114390.
17. Tang, W., et al., Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water research, 2015. 84: p. 342-349.
18. Porada, S., et al., Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 2013. 6(12): p. 3700-3712.
19. Tan, C., et al., Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Water research, 2018. 147: p. 276-286.
20. Huang, Z.-H., et al., Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 2017. 5(2): p. 470-496.
21. Delgado, A., et al., Electrical double layers as ion reservoirs: applications to the deionization of solutions. Current Opinion in Colloid & Interface Science, 2019. 44: p. 72-84.
22. Schmickler, W., Electronic effects in the electric double layer. Chemical reviews, 1996. 96(8): p. 3177-3200.
23. Stojek, Z., The electrical double layer and its structure, in Electroanalytical methods. 2010, Springer. p. 3-9.
24. Zhao, X., et al., Electrode materials for capacitive deionization: A review. Journal of Electroanalytical Chemistry, 2020. 873: p. 114416.
25. Yu, F., et al., Faradaic reactions in capacitive deionization for desalination and ion separation. Journal of Materials Chemistry A, 2019. 7(27): p. 15999-16027.
26. Chen, F., et al., A dual-ion electrochemistry deionization system based on AgCl-Na 0.44 MnO 2 electrodes. Nanoscale, 2017. 9(28): p. 10101-10108.
27. Li, H., et al., Hydrothermally synthesized graphene and Fe 3 O 4 nanocomposites for high performance capacitive deionization. RSC advances, 2016. 6(15): p. 11967-11972.
28. El-Deen, A.G., et al., TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination, 2015. 361: p. 53-64.
29. Lee, J., et al., Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium‐Pentoxide‐Decorated Multiwalled Carbon Nanotubes. ChemSusChem, 2017. 10(18): p. 3611-3623.
30. Liu, B., et al., In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination, 2021. 500: p. 114897.
31. Naguib, M., M.W. Barsoum, and Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2021. 33(39): p. 2103393.
32. Wen, Y., et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano energy, 2017. 38: p. 368-376.
33. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018.
34. Das, R.S. and Y. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vibrational spectroscopy, 2011. 57(2): p. 163-176.
35. Downes, A. and A. Elfick, Raman spectroscopy and related techniques in biomedicine. Sensors, 2010. 10(3): p. 1871-1889.
36. Jones, R.R., et al., Raman techniques: fundamentals and frontiers. Nanoscale research letters, 2019. 14(1): p. 1-34.
37. Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985. 57(4): p. 603-619.
38. Bardestani, R., G.S. Patience, and S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 2019. 97(11): p. 2781-2791.
39. Yaashikaa, P., et al., A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 2020. 28: p. e00570.
40. Zang, Y.-N., et al., A biochar-promoted V 2 O 5/gC 3 N 4 Z-Scheme heterostructure for enhanced simulated solar light-driven photocatalytic activity. RSC advances, 2021. 11(25): p. 15106-15117.
41. Irani, R., S.M. Rozati, and S. Beke, Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique. Applied Physics A, 2018. 124(4): p. 1-8.
42. Lu, T., et al., Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021. 256: p. 117771.
43. Yue, Z., et al., Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@ rGO‖ Na 1.1 V 3 O 7.9@ rGO. Journal of Materials Chemistry A, 2019. 7(28): p. 16892-16901.
44. Bharath, G., et al., Designed assembly of Ni/MAX (Ti3AlC2) and porous graphene-based asymmetric electrodes for capacitive deionization of multivalent ions. Chemosphere, 2021. 266: p. 129048.
45. Bo, Z., et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Materials, 2022. 50: p. 395-406.
46. Anwer, S., et al., 2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination. Chemical Engineering Journal, 2021. 406: p. 126827.
47. Sayed, D.M., M.S. El-Deab, and N.K. Allam, Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Separation and Purification Technology, 2021. 266: p. 118597.
48. Liang, J., et al., 3D interconnected network architectures assembled from W18O49 and Ti3C2 MXene with excellent electrochemical properties and CDI performance. Chemical Engineering Journal, 2022. 435: p. 134922.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *