|
Reference 1. Turner, J. A. Sustainable Hydrogen Production. Science 305, 972–974 (2004). 2. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). 3. Potočnik, J. Renewable Energy Sources and the Realities of Setting an Energy Agenda. Science 315, 810–811 (2007). 4. Mueller-Langer, F., Tzimas, E., Kaltschmitt, M. & Peteves, S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrog. Energy 32, 3797–3810 (2007). 5. Bockris, J. O. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. Int. J. Hydrog. Energy 27, 731–740 (2002). 6. Jiao, Y., Zheng, Y., Jaroniec, M. & Zhang Qiao, S. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). 7. Li, J. & Zheng, G. One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts. Adv. Sci. 4, 1600380 (2017). 8. Licht, S. et al. Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int. J. Hydrog. Energy 26, 653–659 (2001). 9. Wang, B., Li, Y. & Ren, N. Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time. Int. J. Hydrog. Energy 38, 4361–4367 (2013). 10. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, (2017). 11. Xu, Y., Kraft, M. & Xu, R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem. Soc. Rev. 45, 3039–3052 (2016). 12. Duan, J., Chen, S. & Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 8, 15341 (2017). 13. Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). 14. Holladay, J. D., Hu, J., King, D. L. & Wang, Y. An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009). 15. Safizadeh, F., Ghali, E. & Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review. Int. J. Hydrog. Energy 40, 256–274 (2015). 16. Santos, D. M. F., Sequeira, C. A. C. & Figueiredo, J. L. Hydrogen production by alkaline water electrolysis. Quím. Nova 36, 1176–1193 (2013). 17. Winter, M. & Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 104, 4245–4270 (2004). 18. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). 19. Ahmed, S. & Krumpelt, M. Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrog. Energy 26, 291–301 (2001). 20. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011). 21. Joon, K. Fuel cells – a 21st century power system. J. Power Sources 71, 12–18 (1998). 22. Fuel Cell Industry Review 2019 - The Year of the Gigawatt. E4tech https://www.e4tech.com/news/2018-fuel-cell-industry-review-2019-the-year-of-the-gigawatt.php (2020). 23. Grimes, P. Historical pathways for fuel cells. The new electric century. in Fifteenth Annual Battery Conference on Applications and Advances (Cat. No.00TH8490) 41–45 (2000). doi:10.1109/BCAA.2000.838369. 24. Appleby, A. J. From Sir William Grove to today: fuel cells and the future. J. Power Sources 29, 3–11 (1990). 25. Andújar, J. M. & Segura, F. Fuel cells: History and updating. A walk along two centuries. Renew. Sustain. Energy Rev. 13, 2309–2322 (2009). 26. Bidault, F., Brett, D. J. L., Middleton, P. H. & Brandon, N. P. Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 187, 39–48 (2009). 27. Baur, E. & Preis, H. Über Brennstoff-Ketten mit Festleitern. Z. Für Elektrochem. Angew. Phys. Chem. 43, 727–732 (1937). 28. Stone, C. & Morrison, A. E. From curiosity to “power to change the world®”. Solid State Ion. 152–153, 1–13 (2002). 29. Lin, B. Y. S., Kirk, D. W. & Thorpe, S. J. Performance of alkaline fuel cells: A possible future energy system? J. Power Sources 161, 474–483 (2006). 30. Sharaf, O. Z. & Orhan, M. F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014). 31. Baldauf, M. & Preidel, W. Status of the development of a direct methanol fuel cell. J. Power Sources 84, 161–166 (1999). 32. M., S. N., Tremblay, O. & Dessaint, L.-A. A generic fuel cell model for the simulation of fuel cell vehicles. in 2009 IEEE Vehicle Power and Propulsion Conference 1722–1729 (2009). doi:10.1109/VPPC.2009.5289692. 33. Ramani, V., Kunz, H. R. & Fenton, J. M. The Polymer Electrolyte Fuel Cell. Electrochem. Soc. Interface 4 (2004). 34. Das, V. et al. Recent advances and challenges of fuel cell based power system architectures and control – A review. Renew. Sustain. Energy Rev. 73, 10–18 (2017). 35. Nørskov, J. K. et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 17886–17892 (2004). 36. Larminie, J. & Dicks, A. Fuel Cell Systems Analysed. in Fuel Cell Systems Explained 369–389 (John Wiley & Sons, Ltd, 2013). doi:10.1002/9781118878330.ch11. 37. Efficiency and Open-Circuit Voltage. in Fuel Cell Systems Explained 27–41 (John Wiley & Sons, Ltd, 2018). doi:10.1002/9781118706992.ch2. 38. Gasteiger, H. A. & Marković, N. M. Just a Dream—or Future Reality? Science 324, 48–49 (2009). 39. Ruqia, B. & Choi, S.-I. Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem 11, 2643–2653 (2018). 40. Nørskov, J. K. et al. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 152, J23 (2005). 41. Ge, X. et al. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 5, 4643–4667 (2015). 42. Anastasijević, N. A., Vesović, V. & Adžić, R. R. Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory. J. Electroanal. Chem. Interfacial Electrochem. 229, 305–316 (1987). 43. Xu, Y., Ruban, A. V. & Mavrikakis, M. Adsorption and Dissociation of O2 on Pt−Co and Pt−Fe Alloys. J. Am. Chem. Soc. 126, 4717–4725 (2004). 44. Metals close to the border between metals and nonmetals. Wikipedia (2021). 45. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005). 46. Ruban, A., Hammer, B., Stoltze, P., Skriver, H. L. & Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. J. Mol. Catal. Chem. 115, 421–429 (1997). 47. Wang, Y. & Balbuena, P. B. Design of Oxygen Reduction Bimetallic Catalysts: Ab-Initio-Derived Thermodynamic Guidelines. J. Phys. Chem. B 109, 18902–18906 (2005). 48. Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995). 49. Greeley, J., Nørskov, J. K. & Mavrikakis, M. Electronic Structure and Catalysis on Metal Surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002). 50. Chen, A. & Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chem. Rev. 110, 3767–3804 (2010). 51. Abbas, M. A. & Bang, J. H. Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chem. Mater. 27, 7218–7235 (2015). 52. Zhang, S. et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194, 588–600 (2009). 53. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3 d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012). 54. Wang, W., Wang, Z., Wang, J., Zhong, C.-J. & Liu, C.-J. Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction. Adv. Sci. 4, 1600486 (2017). 55. Shao, M., Liu, P., Zhang, J. & Adzic, R. Origin of Enhanced Activity in Palladium Alloy Electrocatalysts for Oxygen Reduction Reaction. J. Phys. Chem. B 111, 6772–6775 (2007). 56. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010). 57. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004). 58. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 4, 3957–3971 (2014). 59. Cong, P. et al. High-Throughput Synthesis and Screening of Combinatorial Heterogeneous Catalyst Libraries. Angew. Chem. Int. Ed. 38, 483–488 (1999). 60. Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting - Wang - 2016 - Advanced Materials - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201502696. 61. Gewirth, A. A., Varnell, J. A. & DiAscro, A. M. Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems. Chem. Rev. 118, 2313–2339 (2018). 62. Wang, L., Holewinski, A. & Wang, C. Prospects of Platinum-Based Nanostructures for the Electrocatalytic Reduction of Oxygen. ACS Catal. 8, 9388–9398 (2018). 63. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). 64. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004). 65. Li, J. et al. Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. J. Mater. Chem. A 3, 11261–11268 (2015). 66. Jana, R., Bhim, A., Bothra, P., Pati, S. K. & Peter, S. C. Electrochemical Dealloying of PdCu3 Nanoparticles to Achieve Pt-like Activity for the Hydrogen Evolution Reaction. ChemSusChem 9, 2922–2927 (2016). 67. Zhao, Z. et al. Pt-Based Nanocrystal for Electrocatalytic Oxygen Reduction. Adv. Mater. 31, 1808115 (2019). 68. Yang, H. Platinum-Based Electrocatalysts with Core–Shell Nanostructures. Angew. Chem. Int. Ed. 50, 2674–2676 (2011). 69. Esparza, R. et al. Study of PtPd Bimetallic Nanoparticles for Fuel Cell Applications. Mater. Res. 20, 1193–1200 (2017). 70. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). 71. Ruban, A., Hammer, B., Stoltze, P., Skriver, H. L. & Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. 9 (1997). 72. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of Strain on the Reactivity of Metal Surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998). 73. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis—calculations and concepts. in Advances in Catalysis vol. 45 71–129 (Elsevier, 2000). 74. Li, H., Shin, K. & Henkelman, G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J. Chem. Phys. 149, 174705 (2018). 75. Takehiro, N., Liu, P., Bergbreiter, A., K. Nørskov, J. & Jürgen Behm, R. Hydrogen adsorption on bimetallic PdAu(111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Phys. Chem. Chem. Phys. 16, 23930–23943 (2014). 76. Tsai, H.-C. et al. DFT Study of Oxygen Reduction Reaction on Os/Pt Core–Shell Catalysts Validated by Electrochemical Experiment. ACS Catal. 5, 1568–1580 (2015). 77. Chen, T.-Y. et al. Self-aligned synthesis of a NiPt-alloycore@Ptshell nanocrystal with contrivable heterojunction structure and oxygen reduction activity. CrystEngComm 18, 5860–5868 (2016). 78. Chen, H.-Y. T. et al. Heterogeneous Cu–Pd binary interface boosts stability and mass activity of atomic Pt clusters in the oxygen reduction reaction. Nanoscale 9, 7207–7216 (2017). 79. Zhuang, Y. et al. Atomic scale Pt decoration promises oxygen reduction properties of Co@Pd nanocatalysts in alkaline electrolytes for 310k redox cycles. Sustain. Energy Fuels 2, 946–957 (2018). 80. Xiong, L. & Manthiram, A. Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M = Fe , Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs. J. Electrochem. Soc. 152, A697–A703 (2005). 81. Xiang, T. et al. Thickness-tunable core–shell Co@Pt nanoparticles encapsulated in sandwich-like carbon sheets as an enhanced electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 6, 21396–21403 (2018). 82. Lile, J. R. D., Lee, S. Y., Kim, H.-J., Pak, C. & Lee, S. G. First-principles study of the effect of compressive strain on oxygen adsorption in Pd/Ni/Cu-alloy-core@Pd/Ir-alloy-shell catalysts. New J. Chem. 43, 8195–8203 (2019). 83. Shao, M., Peles, A. & Shoemaker, K. Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett. 11, 3714–3719 (2011). 84. Liu, Y., Zhang, L., Willis, B. G. & Mustain, W. E. Importance of Particle Size and Distribution in Achieving High-Activity, High-Stability Oxygen Reduction Catalysts. ACS Catal. 5, 1560–1567 (2015). 85. Tripković, V., Cerri, I., Bligaard, T. & Rossmeisl, J. The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study. Catal. Lett. 144, 380–388 (2014). 86. Zhang, R., Xue, M., Wang, B., Ling, L. & Fan, M. C2H2 Selective Hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and Pd) Core–Shell Nanocluster Catalysts: The Effects of Composition and Nanocluster Size on Catalytic Activity and Selectivity. J. Phys. Chem. C 123, 16107–16117 (2019). 87. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). 88. Yang, X.-F. et al. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). 89. Fei, H. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). 90. Fernández, J. L., Walsh, D. A. & Bard, A. J. Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning Electrochemical Microscopy. M−Co (M: Pd, Ag, Au). J. Am. Chem. Soc. 127, 357–365 (2005). 91. Dai, S. et al. Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 10, 1–10 (2019). 92. Liu, L. & Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 118, 4981–5079 (2018). 93. Rh single atoms on TiO 2 dynamically respond to reaction conditions by adapting their site | Nature Communications. https://www.nature.com/articles/s41467-019-12461-6. 94. Lu, Y. & Chen, W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012). 95. Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). 96. Schmid, G. et al. Current and future applications of nanoclusters. Chem. Soc. Rev. 28, 179–185 (1999). 97. Yang, H. et al. Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci. China Mater. 60, 1121–1128 (2017). 98. Bratlie, K. M., Lee, H., Komvopoulos, K., Yang, P. & Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7, 3097–3101 (2007). 99. Zhuang, Y. et al. Pt3 clusters-decorated Co@Pd and Ni@Pd model core–shell catalyst design for the oxygen reduction reaction: a DFT study. J. Mater. Chem. A 6, 23326–23335 (2018). 100. García-Muelas, R. & López, N. Statistical learning goes beyond the d -band model providing the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 1–7 (2019). 101. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964). 102. Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133–A1138 (1965). 103. Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989). 104. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). 105. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). 106. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). 107. Perdew, J. P, Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). 108. Chadi, D. J. & Cohen, M. L. Special Points in the Brillouin Zone. Phys. Rev. B 8, 5747–5753 (1973). 109. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). 110. Hamann, D. R., Schlüter, M. & Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979). 111. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). 112. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). 113. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). 114. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). 115. Liu, M., Zhao, Z., Duan, X. & Huang, Y. Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. Adv. Mater. 31, 1802234 (2019). 116. Shao, M., Chang, Q., Dodelet, J.-P. & Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 116, 3594–3657 (2016). 117. Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015). 118. Enhancing Oxygen Reduction Activity of Pt‐based Electrocatalysts: from Theoretical Mechanisms to Practical Methods - Ma - - Angewandte Chemie International Edition - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202003654. 119. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces: The Journal of Chemical Physics: Vol 149, No 17. https://aip.scitation.org/doi/full/10.1063/1.5053894. 120. Nilekar, A. U. & Mavrikakis, M. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf. Sci. 602, L89–L94 (2008). 121. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). 122. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). 123. Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539 (1996). 124. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). 125. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). 126. Sharma, M. et al. Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction. Energy Environ. Sci. 12, 2200–2211 (2019). 127. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006). 128. Bader, R. F. W. Atoms in Molecules: A Quantum Theory. (Oxford University Press, 1994). 129. Demirdöven, N. & Deutch, J. Hybrid Cars Now, Fuel Cell Cars Later. Science 305, 974–976 (2004). 130. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). 131. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004). 132. Pan, Y., Zhang, C., Liu, Z., Chen, C. & Li, Y. Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter 2, 78–110 (2020). 133. Chen, T.-Y. et al. Gold atomic clusters extracting the valence electrons to shield the carbon monoxide passivation on near-monolayer core–shell nanocatalysts in methanol oxidation reactions. Phys. Chem. Chem. Phys. 17, 15131–15139 (2015). 134. Li, H. et al. Collaboration between a Pt-dimer and neighboring Co–Pd atoms triggers efficient pathways for oxygen reduction reaction. Phys. Chem. Chem. Phys. 23, 1822–1834 (2021). 135. Rossmeisl, J., S. Karlberg, G., Jaramillo, T. & K. Nørskov, J. Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 140, 337–346 (2009). 136. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005). 137. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. 108, 937–943 (2011). 138. Feng, Z. et al. Theoretical computation of the electrocatalytic performance of CO2 reduction and hydrogen evolution reactions on graphdiyne monolayer supported precise number of copper atoms. Int. J. Hydrog. Energy 46, 5378–5389 (2021). 139. Wang, M. et al. Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS2 Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. ACS Catal. 9, 1489–1502 (2019). 140. Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014). 141. Qi, K. et al. Decoration of the inert basal plane of defect-rich MoS 2 with Pd atoms for achieving Pt-similar HER activity. J. Mater. Chem. A 4, 4025–4031 (2016). 142. Valenti, G. et al. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nat. Commun. 7, 13549 (2016). 143. Bakhmutsky, K. et al. A Versatile Route to Core–Shell Catalysts: Synthesis of Dispersible M@Oxide (M=Pd, Pt; Oxide=TiO2, ZrO2) Nanostructures by Self-Assembly. ChemSusChem 5, 140–148 (2012). 144. Ibupoto, Z. H. et al. MoSx@NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Adv. Funct. Mater. 29, 1807562 (2019). 145. Carrasco, J. et al. In Situ and Theoretical Studies for the Dissociation of Water on an Active Ni/CeO2 Catalyst: Importance of Strong Metal–Support Interactions for the Cleavage of O–H Bonds. Angew. Chem. Int. Ed. 54, 3917–3921 (2015). 146. Bhalothia, D., Chen, P.-C., Yan, C., Wang, K.-W. & Chen, T.-Y. Heterogeneous NiO2-to-Pd Epitaxial Structure Performs Outstanding Oxygen Reduction Reaction Activity. J. Phys. Chem. C 124, 2295–2306 (2020). 147. Bhalothia, D. et al. A highly mismatched NiO2-to-Pd hetero-structure as an efficient nanocatalyst for the hydrogen evolution reaction. Sustain. Energy Fuels 4, 2541–2550 (2020). 148. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006). 149. Liao, T., Kou, L., Du, A., Gu, Y. & Sun, Z. Simplest MOF Units for Effective Photodriven Hydrogen Evolution Reaction. J. Am. Chem. Soc. 140, 9159–9166 (2018). 150. Yan, C. et al. Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO2 thermal methanation. J. Mater. Chem. A 8, 12744–12756 (2020). 151. Rankin, R. B. & Waldt, C. T. Computational Screening for Developing Optimal Intermetallic Transition Metal Pt-Based ORR Catalysts at the Predictive Volcano Peak. J. Phys. Chem. C 123, 13236–13245 (2019). 152. Liu, J. et al. NiO as a Bifunctional Promoter for RuO2 toward Superior Overall Water Splitting. Small 14, 1704073 (2018). 153. Bhalothia, D. et al. Sub-nanometer Pt cluster decoration enhances the oxygen reduction reaction performances of NiO x supported Pd nano-islands. Sustain. Energy Fuels 4, 809–823 (2020). 154. Hammer, B. & Nørskov, J. K. Theoretical Surface Science and Catalysis — Calculations and Concepts. Adv. Catal. 45, 71–129 (2000). 155. Stacy, J., Regmi, Y. N., Leonard, B. & Fan, M. The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sustain. Energy Rev. 69, 401–414 (2017). 156. Huang, L. et al. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Acc. Chem. Res. 54, 311–322 (2021). 157. Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 324, 71–74 (2009). 158. Gewirth, A. A., Varnell, J. A. & DiAscro, A. M. Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems. Chem. Rev. 118, 2313–2339 (2018). 159. Yi, S. et al. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J. Electroanal. Chem. 848, 113279 (2019). 160. Yuan, Y. et al. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater. 19, 282–286 (2020). 161. Trens, P. et al. Poisoning of Pt/C catalysts by CO and its consequences over the kinetics of hydrogen chemisorption. Appl. Catal. B Environ. 92, 280–284 (2009). 162. Vogel, W., Lundquist, L., Ross, P. & Stonehart, P. Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochimica Acta 20, 79–93 (1975). 163. Lai, J. & Guo, S. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. Small 13, 1702156 (2017). 164. Zhang, J., Yang, H., Fang, J. & Zou, S. Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra. Nano Lett. 10, 638–644 (2010). 165. Bhalothia, D., Lin, C.-Y., Yan, C., Yang, Y.-T. & Chen, T.-Y. Effects of Pt metal loading on the atomic restructure and oxygen reduction reaction performance of Pt-cluster decorated Cu@Pd electrocatalysts. Sustain. Energy Fuels 3, 1668–1681 (2019). 166. Sharma, S., Zeng, C. & Peterson, A. A. Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study. J. Chem. Phys. 150, 041704 (2018). 167. Yılmaz, M. S., Kaplan, B. Y., Gürsel, S. A. & Metin, Ö. Binary CuPt alloy nanoparticles assembled on reduced graphene oxide-carbon black hybrid as efficient and cost-effective electrocatalyst for PEMFC. Int. J. Hydrog. Energy 44, 14184–14192 (2019). 168. Liu, Q. et al. Structurally Ordered Fe3Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. Adv. Energy Mater. 9, 1803040 (2019). 169. Liu, T., Li, C. & Yuan, Q. Facile Synthesis of PtCu Alloy/Graphene Oxide Hybrids as Improved Electrocatalysts for Alkaline Fuel Cells. ACS Omega 3, 8724–8732 (2018). 170. Kaito, T. et al. In Situ X-ray Absorption Fine Structure Analysis of PtCo, PtCu, and PtNi Alloy Electrocatalysts: The Correlation of Enhanced Oxygen Reduction Reaction Activity and Structure. J. Phys. Chem. C 120, 11519–11527 (2016). 171. Zhao, Q. et al. H2-induced thermal treatment significantly influences the development of a high performance low-platinum core-shell PtNi/C alloyed oxygen reduction catalyst. Int. J. Energy Res. 44, 4773–4783 (2020). 172. Leteba, G. M. et al. High-Index Core–Shell Ni–Pt Nanoparticles as Oxygen Reduction Electrocatalysts. ACS Appl. Nano Mater. 3, 5718–5731 (2020). 173. Strickler, A. L., Jackson, A. & Jaramillo, T. F. Active and Stable Ir@Pt Core–Shell Catalysts for Electrochemical Oxygen Reduction. ACS Energy Lett. 2, 244–249 (2017). 174. Yang, H. Platinum-Based Electrocatalysts with Core–Shell Nanostructures. Angew. Chem. Int. Ed. 50, 2674–2676 (2011). 175. Nair, A. S. & Pathak, B. Computational Screening for ORR Activity of 3d Transition Metal Based M@Pt Core–Shell Clusters. J. Phys. Chem. C 123, 3634–3644 (2019). 176. Yoo, T. Y. et al. Direct Synthesis of Intermetallic Platinum–Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. J. Am. Chem. Soc. 142, 14190–14200 (2020). 177. Cao, S., Tao, F. (Feng), Tang, Y., Li, Y. & Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016). 178. Yano, H. et al. Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study. Phys. Chem. Chem. Phys. 8, 4932–4939 (1385). 179. Nesselberger, M. et al. The Particle Size Effect on the Oxygen Reduction Reaction Activity of Pt Catalysts: Influence of Electrolyte and Relation to Single Crystal Models. J. Am. Chem. Soc. 133, 17428–17433 (2011). 180. Wang, W. et al. Shape inducer-free polygonal angle platinum nanoparticles in graphene oxide as oxygen reduction catalyst derived from gamma irradiation. J. Colloid Interface Sci. 575, 1–15 (2020). 181. Sandbeck, D. J. S. et al. Particle Size Effect on Platinum Dissolution: Considerations for Accelerated Stability Testing of Fuel Cell Catalysts. ACS Catal. 10, 6281–6290 (2020). 182. Fruehwald, H. M., Ebralidze, I. I., Melino, P. D., Zenkina, O. V. & Easton, E. B. Probing the Influence of the Carbon Support on the Activity of Fe-N3/C Model Active Sites for the Oxygen Reduction Reaction. J. Electrochem. Soc. 167, 084520 (2020). 183. Xiong, Y. et al. Pt-Decorated, Nanocarbon-Intercalated, and N-Doped Graphene with Enhanced Activity and Stability for Oxygen Reduction Reaction. ACS Appl. Energy Mater. 3, 2490–2495 (2020). 184. Uchida, M. PEFC catalyst layers: Effect of support microstructure on both distributions of Pt and ionomer and cell performance and durability. Curr. Opin. Electrochem. 21, 209–218 (2020). 185. Zhong, L. & Li, S. Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catal. 10, 4313–4318 (2020). 186. Zhang, J. et al. Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. J. Am. Chem. Soc. 141, 20118–20126 (2019). 187. Xiao, M. et al. A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angew. Chem. 131, 9742–9747 (2019). 188. Kan, D. et al. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J. Mater. Chem. A 8, 17065–17077 (2020). 189. Peng, L., Shang, L., Zhang, T. & Waterhouse, G. I. N. Recent Advances in the Development of Single-Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Adv. Energy Mater. 10, 2003018 (2020). 190. Bhalothia, D. et al. Programming ORR Activity of Ni/NiOx@Pd Electrocatalysts via Controlling Depth of Surface-Decorated Atomic Pt Clusters. ACS Omega 3, 8733–8744 (2018). 191. Dai, S. et al. Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 10, 440 (2019). 192. Bhalothia, D. et al. Conformational Effects of Pt-Shells on Nanostructures and Corresponding Oxygen Reduction Reaction Activity of Au-Cluster-Decorated NiOx@Pt Nanocatalysts. Nanomaterials 9, 1003 (2019). 193. Bhalothia, D. et al. Ir-oxide mediated surface restructure and corresponding impacts on durability of bimetallic NiOx@Pd nanocatalysts in oxygen reduction reaction. J. Alloys Compd. 844, 156160 (2020). 194. Wang, C.-H., Hsu, H.-C. & Wang, K.-C. Iridium-decorated Palladium–Platinum core–shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell. J. Colloid Interface Sci. 427, 91–97 (2014). 195. Luo, L.-M. et al. Ternary CoAuPd and binary AuPd electrocatalysts for methanol oxidation and oxygen reduction reaction: Enhanced catalytic performance by surface reconstruction. J. Power Sources 412, 142–152 (2019). 196. Feng, Y. et al. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 4, eaap8817 (2018). 197. Jiang, J. et al. Ni–Pd core–shell nanoparticles with Pt-like oxygen reduction electrocatalytic performance in both acidic and alkaline electrolytes. J. Mater. Chem. A 5, 9233–9240 (2017). 198. Wu, Y., Wang, C., Zou, L., Huang, Q. & Yang, H. Incorporation of cobalt into Pd2Sn intermetallic nanoparticles as durable oxygen reduction electrocatalyst. J. Electroanal. Chem. 789, 167–173 (2017). 199. Cui, Z., Chen, H., Zhao, M. & DiSalvo, F. J. High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction. Nano Lett. 16, 2560–2566 (2016). 200. Holade, Y. et al. Facile synthesis of highly active and durable PdM/C (M = Fe, Mn) nanocatalysts for the oxygen reduction reaction in an alkaline medium. J. Mater. Chem. A 4, 8337–8349 (2016). 201. Kuttiyiel, K. A. et al. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 5, 5185 (2014). 202. Lu, Y., Jiang, Y., Gao, X., Wang, X. & Chen, W. Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 136, 11687–11697 (2014).
|