|
[1] M. Knoll, E. Ruska, Das elektronenmikroskop, Zeitschrift für physik, 78 (1932) 318-339. [2] G. Binnig, H. Rohrer, Scanning tunneling microscopy—from birth to adolescence, reviews of modern physics, 59 (1987) 615. [3] D. Cressey, E. Callaway, Cryo-electron microscopy wins chemistry Nobel, Nature, 550 (2017). [4] M. Von Ardenne, Das Elektronen-Rastermikroskop: Theoretische Grundlagen, Zeitschrift für Physik, 109 (1938) 553-572. [5] A.V. Crewe, M. Isaacson, D. Johnson, A simple scanning electron microscope, Review of Scientific Instruments, 40 (1969) 241-246. [6] P. Batson, A. Domenicucci, E. Lemoine, Atomic resolution electronic structure in device development, Microscopy and Microanalysis, 3 (1997) 645-646. [7] N. Dellby, L. Krivanek, D. Nellist, E. Batson, R. Lupini, Progress in aberration-corrected scanning transmission electron microscopy, Microscopy, 50 (2001) 177-185. [8] C. Kisielowski, B. Freitag, M. Bischoff, H. Van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit, Microscopy and Microanalysis, 14 (2008) 469-477. [9] P. Roberts, J. Chapman, A. MacLeod, A CCD-based image recording system for the CTEM, Ultramicroscopy, 8 (1982) 385-396. [10] H. Tietz, Design and characterization of 64 megapixel fiber optic coupled CMOS detector for transmission electron microscopy, Microscopy and Microanalysis, 14 (2008) 804-805. [11] M.W. Tate, P. Purohit, D. Chamberlain, K.X. Nguyen, R. Hovden, C.S. Chang, P. Deb, E. Turgut, J.T. Heron, D.G. Schlom, High dynamic range pixel array detector for scanning transmission electron microscopy, Microscopy and Microanalysis, 22 (2016) 237-249. [12] Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M.W. Tate, J. Park, S.M. Gruner, Electron ptychography of 2D materials to deep sub-ångström resolution, Nature, 559 (2018) 343-349. [13] B. Plotkin-Swing, G.J. Corbin, S. De Carlo, N. Dellby, C. Hoermann, M.V. Hoffman, T.C. Lovejoy, C.E. Meyer, A. Mittelberger, R. Pantelic, Hybrid pixel direct detector for electron energy loss spectroscopy, Ultramicroscopy, 217 (2020) 113067. [14] L. Deng, Y. Gong, X. Lu, Y. Lin, Z. Ma, M. Xie, STELA: A real-time scene text detector with learned anchor, IEEE Access, 7 (2019) 153400-153407. [15] A. Pakzad, R. dos Reis, The Performance of Detectors for Diffraction-Based Studies in (S) TEM, Microscopy and Microanalysis, 28 (2022) 3192-3193. [16] A.A. Murthy, P.M. Das, S.M. Ribet, C. Kopas, J. Lee, M.J. Reagor, L. Zhou, M.J. Kramer, M.C. Hersam, M. Checchin, Potential nanoscale sources of decoherence in niobium based transmon qubit architectures, Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2022. [17] M.M. Woolfson, M.M. Woolfson, An introduction to X-ray crystallography, Cambridge University Press1997. [18] M. Smyth, J. Martin, x Ray crystallography, Molecular Pathology, 53 (2000) 8. [19] F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi, K. Suenaga, Development of Cs and Cc correctors for transmission electron microscopy, Microscopy, 62 (2013) 23-41. [20] A. Kak, M. Slaney, Principles of Computerized Tomographic Imaging. O’Malley RE ed, SIAM, IEEE Press, New York, DOI (1988). [21] J. Trampert, J.J. Leveque, Simultaneous iterative reconstruction technique: Physical interpretation based on the generalized least squares solution, Journal of Geophysical Research: Solid Earth, 95 (1990) 12553-12559. [22] S. Singh, M.K. Kalra, J. Hsieh, P.E. Licato, S. Do, H.H. Pien, M.A. Blake, Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques, Radiology, 257 (2010) 373-383. [23] R. Gordon, R. Bender, G.T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, Journal of theoretical Biology, 29 (1970) 471-481. [24] M. Scott, C.-C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B. Regan, J. Miao, Electron tomography at 2.4-ångström resolution, Nature, 483 (2012) 444-447. [25] C.-C. Chen, C. Zhu, E.R. White, C.-Y. Chiu, M. Scott, B. Regan, L.D. Marks, Y. Huang, J. Miao, Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution, Nature, 496 (2013) 74-77. [26] R. Xu, C.-C. Chen, L. Wu, M. Scott, W. Theis, C. Ophus, M. Bartels, Y. Yang, H. Ramezani-Dakhel, M.R. Sawaya, Three-dimensional coordinates of individual atoms in materials revealed by electron tomography, Nature materials, 14 (2015) 1099-1103. [27] Y. Yang, C.-C. Chen, M. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. Zhou, Deciphering chemical order/disorder and material properties at the single-atom level, Nature, 542 (2017) 75-79. [28] 林義銘, 蔣酉旺, 高分子電子顯微影像技術, 化工, 64 (2017) 15-27. [29] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454 (1998) 903-995. [30] J. Miao, F. Förster, O. Levi, Equally sloped tomography with oversampling reconstruction, Physical Review B, 72 (2005) 052103. [31] A. Pryor Jr, Y. Yang, A. Rana, M. Gallagher-Jones, J. Zhou, Y.H. Lo, G. Melinte, W. Chiu, J.A. Rodriguez, J. Miao, GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging, Scientific reports, 7 (2017) 10409. [32] E. Armstrong, C. O'Dwyer, Artificial opal photonic crystals and inverse opal structures–fundamentals and applications from optics to energy storage, Journal of materials chemistry C, 3 (2015) 6109-6143. [33] R.J. Macfarlane, B. Kim, B. Lee, R.A. Weitekamp, C.M. Bates, S.F. Lee, A.B. Chang, K.T. Delaney, G.H. Fredrickson, H.A. Atwater, Improving brush polymer infrared one-dimensional photonic crystals via linear polymer additives, Journal of the American Chemical Society, 136 (2014) 17374-17377. [34] E.-L. Lin, W.-L. Hsu, Y.-W. Chiang, Trapping structural coloration by a bioinspired gyroid microstructure in solid state, ACS nano, 12 (2018) 485-493. [35] M.A. Hayat, Principles and techniques of electron microscopy. Biological applications, Edward Arnold.1981. [36] A.W. Miller, J.F. Robyt, Detection of dextransucrase and levansucrase on polyacrylamide gels by the periodic acid-Schiff stain: staining artifacts and their prevention, Analytical biochemistry, 156 (1986) 357-363. [37] P. Bindhu, R. Krishnapillai, P. Thomas, P. Jayanthi, Facts in artifacts, Journal of oral and maxillofacial pathology: JOMFP, 17 (2013) 397. [38] C.-W. Wang, S.-M. Ka, A. Chen, Robust image registration of biological microscopic images, Scientific reports, 4 (2014) 1-12. [39] D. Sayre, Some implications of a theorem due to Shannon, Acta Crystallographica, 5 (1952) 843-843. [40] D. Sayre, M. Schlenker, Imaging processes and coherence in physics, Springer Lecture Notes in Physics, 112 (1980) 229-235. [41] W.-B. Yun, J. Kirz, D. Sayre, Observation of the soft X-ray diffraction pattern of a single diatom, Acta Crystallographica Section A: Foundations of Crystallography, 43 (1987) 131-133. [42] J. Miao, D. Sayre, H. Chapman, Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects, JOSA A, 15 (1998) 1662-1669. [43] J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens, Nature, 400 (1999) 342-344. [44] R. Hegerl, W. Hoppe, Dynamische theorie der kristallstrukturanalyse durch elektronenbeugung im inhomogenen primärstrahlwellenfeld, Berichte der Bunsengesellschaft für physikalische Chemie, 74 (1970) 1148-1154. [45] J. Rodenburg, R. Bates, The theory of super-resolution electron microscopy via Wigner-distribution deconvolution, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 339 (1992) 521-553. [46] J. Rodenburg, B. McCallum, P. Nellist, Experimental tests on double-resolution coherent imaging via STEM, Ultramicroscopy, 48 (1993) 304-314. [47] J.M. Rodenburg, H.M. Faulkner, A phase retrieval algorithm for shifting illumination, Applied physics letters, 85 (2004) 4795-4797. [48] J.M. Rodenburg, A. Hurst, A.G. Cullis, B.R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, I. Johnson, Hard-x-ray lensless imaging of extended objects, Physical review letters, 98 (2007) 034801. [49] P. Thibault, M. Dierolf, O. Bunk, A. Menzel, F. Pfeiffer, Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy, 109 (2009) 338-343. [50] A. Maiden, M. Humphry, M. Sarahan, B. Kraus, J. Rodenburg, An annealing algorithm to correct positioning errors in ptychography, Ultramicroscopy, 120 (2012) 64-72. [51] P. Thibault, A. Menzel, Reconstructing state mixtures from diffraction measurements, Nature, 494 (2013) 68-71. [52] P. Nellist, B. McCallum, J.M. Rodenburg, Resolution beyond the'information limit'in transmission electron microscopy, nature, 374 (1995) 630-632. [53] J. Rodenburg, A. Hurst, A. Cullis, Transmission microscopy without lenses for objects of unlimited size, Ultramicroscopy, 107 (2007) 227-231. [54] A.M. Maiden, J.M. Rodenburg, An improved ptychographical phase retrieval algorithm for diffractive imaging, Ultramicroscopy, 109 (2009) 1256-1262. [55] J. Spence, J. Zuo, Large dynamic range, parallel detection system for electron diffraction and imaging, Review of Scientific Instruments, 59 (1988) 2102-2105. [56] Z. Chen, Y. Jiang, Y.-T. Shao, M.E. Holtz, M. Odstrčil, M. Guizar-Sicairos, I. Hanke, S. Ganschow, D.G. Schlom, D.A. Muller, Electron ptychography achieves atomic-resolution limits set by lattice vibrations, Science, 372 (2021) 826-831. [57] J. Miao, D. Sayre, On possible extensions of X-ray crystallography through diffraction-pattern oversampling, Acta Crystallographica Section A: Foundations of Crystallography, 56 (2000) 596-605. [58] C.-C. Chen, J. Miao, C. Wang, T. Lee, Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method, Physical Review B, 76 (2007) 064113. [59] K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H.C. Movva, S. Huang, S. Larentis, C.M. Corbet, T. Taniguchi, K. Watanabe, van der Waals heterostructures with high accuracy rotational alignment, Nano letters, 16 (2016) 1989-1995. [60] J. Choi, W.-T. Hsu, L.-S. Lu, L. Sun, H.-Y. Cheng, M.-H. Lee, J. Quan, K. Tran, C.-Y. Wang, M. Staab, Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures, Science advances, 6 (2020) eaba8866. [61] M.J. Peet, R. Henderson, C.J. Russo, The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules, Ultramicroscopy, 203 (2019) 125-131. [62] Q. Chen, C. Dwyer, G. Sheng, C. Zhu, X. Li, C. Zheng, Y. Zhu, Imaging beam‐sensitive materials by electron microscopy, Advanced Materials, 32 (2020) 1907619. [63] M. Ilett, M. S'ari, H. Freeman, Z. Aslam, N. Koniuch, M. Afzali, J. Cattle, R. Hooley, T. Roncal-Herrero, S.M. Collins, Analysis of complex, beam-sensitive materials by transmission electron microscopy and associated techniques, Philosophical Transactions of the Royal Society A, 378 (2020) 20190601. [64] H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS 2: Evolution of atomic structure under electron irradiation, Physical Review B, 88 (2013) 035301. [65] K.L. Tai, C.W. Huang, R.F. Cai, G.M. Huang, Y.T. Tseng, J. Chen, W.W. Wu, Atomic‐scale fabrication of in‐plane heterojunctions of few‐layer MoS2 via in situ scanning transmission electron microscopy, Small, 16 (2020) 1905516.
|