|
1. K. H. R. Rouwenhorst, P. M. Krzywda, N. E. Benes, G. Mul and L. Lefferts, Chapter 4 – Ammonia Production Technologies, Techno-Economic Challenges of Green Ammonia as an Energy Vector, 2021, 41—83 2. Jan Willem Erisman, Mark A. Sutton, James Galloway, Zbigniew Klimont and Wilfried Winiwarter, How a century of ammonia synthesis changed the world, Nature Geoscience, 2008, 1, 636—639 3. Timur Kandemir,Manfred E. Schuster, Anatoliy Senyshyn, Malte Behrens, and Robert Schlcgl, The Haber-Bosch Process Revisited: On the Real Structure and Stability of “Ammonia Iron” under working Conditions, Angewandte Chemie International Edition, 2013, 52, 12723—12726 4. Ken-Ichi Aika, Humio Hori, Atsumu Ozaki, Activation of Nitrogen by Alkali Metal Promoted Transition Metal I. Ammonia Synthesis over Ruthenium Promoted by Alkali Metal, Journal of Catalysis, 1972, 27, 3, 424—431 5. Kayato Ooya, Jiang Li, Keiga Fukui, Soshi Iimura, Takuya Nakao, Kiya Ogasawara, Masato Sasase, Hitoshi Abe, Yasuhiro Niwa, Masaaki Kitano, and Hideo Hosono, Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride-Ion Mobility for Low-Temperature Ammonia Synthesis, Advanced Energy Material, 2021, 11, 2003723 6. Michel Che, Nobel Prize in Chemistry 1912 to Sabatier: Organic Chemistry or Catalysis?, Catalysis Today, 2013, 218-219, 162—171 7. Andrew J. Medford, Aleksandra Vojvodic, Jens S. Hummelshøj, Johannes Voss, Frank Abild-Pedersen, Felix Studt, Thomas Bligaard, Anders Nilsson and Jens K. Nørskov, From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis, Journal of Catalysis, 2015, 328, 36—42 8. Ken-Ichi Tanaka and Kenzi Tamaru, A General Rule in Chemisorption of Gases on Metals, Journal of Catalysis, 1963, 2, 5, 366—370 9. Aika Ken-Ichi, Yamaguchi Jutaro, and Ozaki Atsumu, Ammonia Synthesis over Rhodium, Iridium and Platinum Promoted by Potassium, Chemistry Letters, 1973, 2, No.2 10. R. P. Eischens and J. Jacknow, “Infrared Study of Nitrogen Chemisorbed on Nickel“, Proc. 3rd Intern. Congress on Catalysis, North-Holland, Amsterdam, 1965, 627-643 11. Wang, H. P., and John T. Yates Jr. "Infrared spectroscopic study of molecular nitrogen chemisorption on rhodium surfaces.“ The Journal of Physical Chemistry,1984, 88, 5, 852-856 12. S. Wagener. Adsorption Measurements at Very Low Pressures. II. J. Phys. Chem., 1957, 61, 267 13. T.W. Hickmott, G. Ehrlich. Struture -Sensitive Chemisorption: The Mechanism of Desorption from Tungsten. J. Phys. Chem. Solids, 5, 1958, 47 14. R. Van Hardeveld and A. Van Montfoort. "The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum: An infrared and electron-microscopic study." Surface Science 4.4 ,1965, 396-430 15. Tom W. van Deelen, Carlos Hernandez Mejia, and Krijn P. de Jong. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2019, 2, 955-970 16. Simson Wu, Kai-Yu Tseng, Ryuichi Kato, Tai-Sing Wu, Alexander Large, Yung-Kang Peng, Weikai Xiang, Huihuang Fang, Jiaying Mo, Ian Wilkinson, Yun-Liang Soo, Georg Held, Kazu Suenaga, Tong Li, Hsin-Yi Tiffany Chen,* and Shik Chi Edman Tsang. Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface. Journal of American Chemical Society, 2021, 143, 24, 9105-9112 17. S. J. Tauster, S. C. Fung, and R. L. Garten, Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2, Journal of the American Chemical Society, 1978, 100, 1, 18. Eiji Nakamachi, Yasutomo Uetsuji, Hiroyuki Kuramae, Kazuyoshi Tsuchiya, Hwisim Hwang. Process Crystallographic Simulation for Biocompatible Piezoelectric Material Design and Generation. Archives of Computational Methods in Engineering, 2013, 20, 155-183 19. Matthias Ernzerhof and Gustavo E. Scuseria. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. Journal of Chemical Physiscs, 1999, 110, No. 11 20. D. l. Chadi and Marvin L. Cohen. Special Points in the Brillouin Zone. Physical Review B, 1973, 8, No. 12 21. Hendrik J. Monkhorst and James D. Pack. Special points for Brillonin-zone integrations. Physical Review B, 1976, 13, No. 12 22. C. S. Barret and T. B. Massalski, Structure of Metals, McGraw-Hill, New York, 1996 23. C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1971 24. J. Donohue, The Structures of the Elements, Wiley, New York, 1974. pp. 191–199. 25. Ali H. Reshak and Morteza Jamal. Calculation of the lattice constant of hexagonal compounds with two dimensional search of equation of state and with semilocal functionals a new package (2D-optimize). Journal of Alloys and Compounds, 2013, 555, 362-366 26. M. Pozzo and D. Alfe. Hydrogen dissociation and diffusion on transition metal ([Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. International Journal of Hydrogen Energy, 2009, 34, 1922-1930 27. Michael J. Mehl and Dimitrios A. Papaconstantopoulos. Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Physical Review B, 1996, 54, 7, 4519–4530 28. Yingwei Fei Effects of temperature and composition on the bulk modulus of (Mg,Fe) O. American Miner, 1999, 84, 272–276 29. Sergio Speziale, Chang-Sheng Zha, Thomas S. Duffy, Russell J. Hemley, Ho-kwang Mao. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. Journal of Geophysical Research: Solid Earth, 2001, 106, B1, 515–528 30. Jian-Zhou Zhao, Lai-Yu Lu, Xiang-Rong Chen, Yu-Lin Bai.. First-principles calculations for elastic properties of the rock salt structure MgO. Physica B: Condensed Matter, 2007, 387, 1-2, 245–249 31. H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar, B. Bouhafs.. Full potential calculation of structural, electronic and elastic properties of alkaline earth oxides MgO , CaO and SrO. Physica B: Condensed Matter, 2004, 344, 1-4, 334–342. 32. T. Tsuchiya and K. Kawamura, Systematics of elasticity: Ab initio study in B1B1-type alkaline earth oxides, Journal of Chemical Physics, 114, 22, 10086-10093 33. B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland and J. Crain. Structure and elasticity of MgO at high pressure. American Mineralogist, 1997, 82, 51–60 34. Graeme Henkelman, Blas P. Uberuaga, Hannes Jo´nsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113, No. 22, 9901-9904 35. K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen and J. K. Nørskov, Ammonia Synthesis from First-Principles Calculations, Science, 2005, 307, 555—558 36. Á. Logadóttir, J.K. Nørskov, Ammonia synthesis over a Ru(0001) surface studied by density functional calculations, J. Catal., 2003, 220, 2, 273—279 37. S. Dahl, A. Logadottir, R. C. Egeberg, J. H. Larsen, I. Chorkendorff, E. Tornqvist and J. K. Nørskov, Role of Steps in N2 Activation on Ru(0001), Phys. Rev. Lett., 1999, 83 , 1814—1817 38. J. J. Mortensen, Y. Morikawa, B. Hammer, and J. K. Nørskov, Density Functional Calculations of N2 Adsorption and Discussion on a Ru(0001) Surface, J. Catal., 1997, 169, 85—92 39. B. W. Zhang, W. Y. Hu, X. L. Shu, Theory of Embedded Atom Method and its Application to Materials Science: Atomic Materials Design Theory, Hunan University Press, Changsha, 2003, 1 (in Chinese) 40. David S. Sholl and Janice A. Steckel, Density Dunctional Theory: A Practical Introduction, John Wiley and Sons, Inc., New Jersey, 2009 41. Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler. Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol, 2014. 5, 846-854 42. Appl M. In: Appl M, editor. Ammonia: principles and industrial practice. 1st ed. Weinheim (Germany): Wiley VCH Verlag GmbH, 1999. 43. Burris RH, Roberts GP. Biological nitrogen fixation. Annu Rev Nutr, 1993, 13, 317-335 44. McPherson IJ, Sudmeier T, Fellowes J, Tsang SCE. Materials for electrochemical ammonia synthesis. Dalton Trans, 2019, 48, 5, 1562-8 45. Hardenburger TL, Ennis M. Nitrogen. Kirk-Othmer Encycl Chem Technol. 2005:1-23. 46. Bocker N, Grahl M. Nitrogen. Ullmann’s Encycl Ind Chem. 2013, 1-27. encyclopedia article 47. Ernst FA. Industrial chemical monographs: fixation of atmospheric nitrogen. London (UK): Chapman & Hall, Ltd., 1928 48. Travis AS. Nitrogen capture: the growth of an international industry (1900-1940). Springer International Publishing, 2018 49. Smil V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge (MA), 2004 50. Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber e Bosch process. Nature Catalyst, 2019, 2(May), 377-80 51. U.S. Department of energy. Sustainable ammonia synthesis. Dulles (VA), 2016 52. Martin AJ, Shinagawa T, Perez-Ramirez J. Electrocatalytic reduction of nitrogen: from Haber-Bosch to ammonia artificial leaf. Inside Chem, 2019, 5, 2,263-83 53. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, et al. Greening ammonia toward the solar ammonia refinery. Joule, 2018, 1-20 54. Ye L, Nayak-Luke R, Bañares-Alcántara R, Tsang E. Reaction: “green” ammonia production. Inside Chem, 2017, 3, 5, 712-4 55. Aika, K. I.; Ozaki, A. Kinetics and Isotope Effect of Ammonia Synthesis over Ruthenium. J. Catal. 1970, 16, 97−101 56. Aika, K.; Ozaki, A.; Hori, H. Activation of Nitrogen by AlkaliMetal Promoted Transition-Metal 1. Ammonia Synthesis over Ruthenium Promoted by Alkali-Metal. J. Catal. 1972, 27, 424−431. 57. Bielawa, H.; Hinrichsen, O.; Birkner, A.; Muhler, M. The Ammonia-Synthesis Catalyst of the Next Generation: Barium Promoted Oxide-Supported Ruthenium. Angew. Chem., Int. Ed. 2001, 40, 1061−1063
|