|
[1] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John Wiley & Sons, 2006. [2] J. Jang, H. S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. H. Jeong, B. K. Son, D. W. Kim, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, C. Dewill, H. C. Moon, S. Hwang, J. W. Lee, Y. H. Son, U. Chung and W. S. Lee, “Vertical cell array using TCAT(terabit cell array transistor) technology for ultra high density NAND flash memory,” in VLSI Symp. Tech. Dig. 2009, pp. 192-193. [3] J. Kim, A. J. Hong, M. K. Sung, E. B. Song, J. H. Park, J. Han, S. Choi, D. Jang, J. T. Moon and K. L. Wang, “Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density and cost-effective NAND flash memory devices and SSD (solid state drive),” in VLSI Symp. Tech. Dig. 2009, pp. 186-187. [4] H. T. Lue, T. H. Hsu, Y. H. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S. Y. Wang, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh and C. Y. Lu, “A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND flash using junction-free buried channel BE-SONOS device,” in VLSI Symp. Tech. Dig. 2010, pp. 131-132. [5] I. C. Lee, C. C. Tsai, H. H. Kuo, P. Y. Yang, C. L. Wang and H. C. Cheng, “A novel SONOS memory with recessed-channel poly-Si TFT via excimer laser crystallization,” IEEE Electron Device Lett., vol. 33, pp. 558-560, Apr. 2012. [6] TechInsights memory technology update, https://images.app.goo.gl/PohSKBtixQfMdWNa9 [7] International Roadmap for Devices and Systems (IRDS™) 2020 Edition, https://irds.ieee.org/editions/2020/more-moore [8] I. C. Lee, C. C. Tsai, H. H. Kuo, P. Y. Yang, C. L. Wang and H. C. Cheng, “A novel SONOS memory with recessed-channel poly-Si TFT via excimer laser crystallization,” IEEE Electron Device Lett., vol. 33, pp. 558-560, Apr. 2012. [9] Z. G. Meng, S. Y. Zhao, C. Y. Wu, B. Zhang, M. Wong and H. S. Kwok, “Polycrystalline silicon films and thin-film transistors using solution-based metal-induced crystallization,” J. Disp. Technol., vol. 2, pp. 265-273, Sep. 2006. [10] M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low‐temperature annealing of low‐pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, pp. 2260-2266, Apr. 1988. [11] Y.-S. Li, C.-Y. Wu, C.-Y. Liao, W.-H. Huang, J.-M. Shieh, C.-H. Chou, K.-C. Chuang, J.-D. Luo, W.-S. Li, and H.-C. Cheng, “High-Performance Germanium Thin-Film Transistors With Single-Crystal-Like Channel via Continuous-Wave Laser Crystallization,” IEEE Electron Device Lett., vol. 39, no. 12, pp. 1864-1867, Dec. 2018. [12] Y.-C. Lien, J.-M. Shieh, W.-H. Huang, C.-H. Tu, C. Wang, C.-H. Shen, B.-T. Dai, C.-L. Pan, Chenming Hu, and F.-L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett., vol. 100, no. 14, pp.143501, 2012. [13] B. V. Keshavan and H. C. Lin, "MONOS memory element," in IEDM Tech. Dig. 1968, pp. 140-142. [14] M. H. White, D. A. Adams and Jiankang Bu, "On the go with SONOS," IEEE Circuits Devices Mag., vol. 16, pp. 22-31, Aug. 2000. [15] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, "High-k metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett., vol. 25, pp. 408-410, Jun. 2004. [16] Y. N. Tan, W. K. Chim, J. C. Byung and W. K. Choi, "Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer," IEEE Trans. Electron Devices, vol. 51, pp. 1143-1147, Jul. 2004. [17] J. Robertson, “High dielectric constant oxides,” The European Physical Journal Applied Physics, vol. 28, No. 3, pp. 265-291, Dec. 2004. [18] A. Sinhamahapatra, J.-P Jeon, J. Kang, B. Han, and J.-S. Yu, “Oxygen-Deficient Zirconia (ZrO2−x): A New Material for Solar Light Absorption,” Sci Rep 6, 27218, 2016. [19] J.-X. Chen, J.-P. Xu, L. Liu, and P.-T. Lai, “Performance improvements of metal-oxide-nitride-oxide-silicon nonvolatile memory with ZrO2 charge-trapping layer by using nitrogen incorporation,” Appl. Phys. Exp., vol. 6, pp. 084202, Aug. 2013. [20] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, "MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation," in Non-Volatile Semiconductor Memory Workshop, 2007, pp. 88-89. [21] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, "BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability," in IEDM Tech. Dig. 2005, pp. 547-550. [22] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, "A novel SONOS-type flash device with stacked charge trapping layer," Microelectron. Eng., vol. 86, pp. 1863-1865, Jul. 2009. [23] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, pp. 225-229, Mar. 2010. [24] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, "Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions," Sci. Adv. Mater., vol. 3, pp. 477-482, Jun. 2011. [25] C. J. Su, T. K. Su, T. I. Tsai, H. C. Lin and T. Y. Huang, "A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires," Nanoscale Res. Lett., vol. 7, pp. 1-6, Feb. 2012. [26] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Gnani, G. Baccarani, G. Q. Lo and D. L. Kwong, "Vertical-Si-nanowire-based nonvolatile memory devices with improved performance and reduced process complexity," IEEE Trans. Electron Devices, vol. 58, pp. 1329-1335, May 2011. [27] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A novel buried-channel FinFET BE-SONOS NAND flash with improved memory window and cycling endurance," in VLSI Symp. Tech. Dig. 2009, pp. 224-225. [28] W. K. Yeh, Y. T. Chen, F. S. Huang, C. W. Hsu, C. Y. Chen, Y. K. Fang, K. J. Gan and P. Y. Chen, "The improvement of high-k/metal gate pMOSFET performance and reliability using optimized Si cap/SiGe channel structure," IEEE Trans. Device Mater. Reli ab., vol. 11, pp. 7-12, Nov. 2011. [29] D. L. Kencke, X. Wang, Q. Ouyang, S. Mudanai, A. Tasch Jr. and S. K. Banerjee, "Enhanced secondary electron injection in novel SiGe flash memory devices," in IEDM Tech. Dig. 2000, pp. 105-108. [30] C. C. Wang, K. S. Chang-Liao, C. Y. Lu and T. K. Wang, "Enhanced band-to-band-tunneling-induced hot-electron injection in p-channel flash by band-gap offset modification," IEEE Electron Device Lett., vol. 27, pp. 749-751, Sep. 2006. [31] L. J. Liu, K. S. Chang-Liao, Y. C. Jian, J. W. Cheng, T. K. Wang and M. J. Tsai, "Enhanced programming and erasing speeds in p-channel charge-trapping flash memory device with SiGe buried channel," IEEE Electron Device Lett., vol. 33, pp. 1264-1266, Sep. 2012. [32] D. J. Paul, "Si/SiGe heterostructures: from material and physics to devices and circuits," Semicond. Sci. Technol., vol. 19, pp. R75-R108, Oct. 2004. [33] J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers .2. dislocation pile-ups, threading dislocations, slip lines and cracks," J. Cryst. Growth, vol. 29, pp. 273-280, Jun. 1975. [34] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, "High-mobility Ge pMOSFET with 1-nm EOT gate stack fabricated by plasma post oxidation," IEEE Trans. Electron Devices, vol. 59, pp. 335-341, Feb. 2012. [35] R. Zhang, P. C. Huang, J. C. Lin, N. Taoka, M. Takenaka and S. Takagi, "High-mobility Ge p- and n-MOSFETs with 0.7-nm EOT using gate stacks fabricated by plasma postoxidation," IEEE Trans. Electron Devices, vol. 60, pp. 927-934, Mar. 2013. [36] S. Suthram, P. Majhi, G. Sun, P. Kalra, H. R. Harris, K. J. Choi, D. Heh, J. Oh, D. Kelly, R. Choi, B. J. Cho, M. M. Hussain, C. Smith, S. Banerjee, W. Tsai, S. E. Thompson, H. H. Tseng and R. Jammy, "High performance pMOSFETs using si/Si1-xGex/si quantum wells with high-k/metal gate stacks and additive uniaxial strain for 22 nm technology node," in VLSI Symp. Tech. Dig. 2007, pp. 727-730. [37] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien and G. L. Luo, "High-performance germanium p- and n-MOSFETs with NiGe source/drain," IEEE Trans. Electron Devices, vol. 61, pp. 2656-2661, Aug. 2014. [38] Q. C. Zhang, J. D. Huang, N. Wu, G. X. Chen, M. H. Hong, L. K. Bera and C. X. Zhu, "Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation," IEEE Electron Device Lett., vol. 27, pp. 728-730, Sep. 2006. [39] R. Duffy and M. Shayesteh, "Germanium doping, contacts, and thin-body structures," Graphene, Ge/Iii-V, Nanowires, and Emerging Materials for Post-Cmos Applications 4, vol. 45, pp. 189-201, May. 2012. [40] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa and T. Tezuka, "Superior cut-off characteristics of Lg=40nm Wfin=7nm poly ge junctionless tri-gate FET for stacked 3D circuits integration," in VLSI Symp. Tech. Dig. 2013, pp. 94-95. [41] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2007. [42] S. C. Wolfson and F. D. Ho, "Transient simulation to analyze flash memory erase improvements due to germanium content in the substrate," IEEE Trans. Electron Devices, vol. 57, pp. 2499-2503, Oct. 2010. [43] M. Lenzlinger, and E. H. Snow, “Fowler-Nordheim Tunneling in Thermally Grown SiO2,” in J. Appl. Phys, vol. 40, issue 1, pp.278-283, Sep. 1969. [44] Franck Nallet, “Sentaurus TCAD Introduction,” Synopsys, Paris, France, Sep. 2014. [45] Sentaurus DeviceTM User Guide, Version F-2011.09, Avant Corporation, Sep. 2011. [46] Sanjeev Kumar Gupta, Jitendra Singh, and Jamil Akhtar, “Physics and Technology of Silicon Carbide Devices,” in Tech, chapter 8, Oct. 2012. [47] M. White, D. Adams, and J. Bu, “on the Go with SONOS,” in IEEE Circuits Devices Mag., vol. 16, no. 4, pp. 22-31, Jul. 2000. [48] Joo Hyung You, Hyun Woo Kim, Dong Hun Kim, Tae Whan Kim, and Keun Woo Lee, “Effect of the Trap Density and Distribution of the Silicon Nitride Layer on the Retention Characteristics of Charge Trap Flash Memory Devices,” in IEEE Simulation of Semiconductor Processes and Devices (SISPAD), pp. 199-202, Sep. 2011. [49] H. Park, G. Bersuker, M. Jo, D. Veksler, K. Y. Lim, D. Gilmer, N. Goel, C. Y. Kang, C. Young, M. Chang, H. Hwang, H. H. Tseng, P. D. Kirsch and R. Jammy, "Tunnel oxide degradation in TANOS devices and its origin," in VLSI Technology Systems and Applications, 2010, pp. 50-51. [50] International Roadmap for Devices and Systems (IRDS™) 2020 Edition, https://irds.ieee.org/editions/2020/more-moore [51] D. C. Gilmer, N. Goel, H. Park, C. Park, S. Verma, G. Bersuker, P. Lysaght, H. H. Tseng, P. D. Kirsch, K. C. Saraswat and R. Jammy, "Engineering the complete MANOS-type NVM stack for best in class retention performance," in IEDM Tech. Dig. 2009, pp. 439-442. [52] Z.-H. Ye, K.-S. Chang-Liao, C.-Y. Tsai, T.-T. Tsai, and T.-K. Wang, “Enhanced operation in charge-trapping nonvolatile memory device with Si3N4/Al2O3/HfO2 charge-trapping layer,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1351–1353, Oct. 2012. [53] C.-Y. Chen, K.S. Chang-Liao, K.-T. Wu and T.-K. Wang, “Improved Erasing Speed in Junctionless Flash Memory Device by HfO2/Si3N4 Stacked Trapping Layer,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 993-995, Aug. 2013. [54] C.-Y. Chen, K.-S. Chang-Liao, L.-J. Liu, W.-C. Chen, and T.-K. Wang, “Enhanced operation characteristics in poly-Si nanowire charge-trapping flash memory device with SiGe buried channel,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1025–1027, Oct. 2014. [55] Z.-H. Ye, K.-S. Chang-Liao, L.-J. Liu, J.-W. Cheng, and H.-K. Fang, “Enhanced programming and erasing speeds of charge-trapping flash memory device with Ge channel,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1314–1317, Dec. 2015. [56] W.-H. Huang, J.-M. Shieh, F.-M. Pan, C.-C. Yang, C.-H. Shen, H.-H. Wang, T.-Y. Hsieh, S.-Y. Wu, and M.-C. Wu, “Charge-trap non-volatile memories fabricated by laser-enabled low-thermal budget processes,” Appl. Phys. Lett., vol. 108, no. 24, Jun. 2016, pp. 243502 [57] R. S. Johnson, H. Niimi, and G. Lucovsky, “New approach for the fabrication of device-quality Ge/GeO2/SiO2 interfaces using low temperature remote plasma processing,” J. Vac. Sci. Technol. A, Vac., Surf., Films, vol. 18, no. 4, pp. 1230–1233, Jul. 2000. [58] Y.-H. Tsai, C.-H. Chou, A.-S. Shih, Y.-H. Jau, W.-K. Yeh, Y.-H. Lin, F.-H. Ko, and C.-H. Chien, “Improving thermal stability and interface state density of high-κ stacks by incorporating Hf into an interfacial layer on p-Germanium,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1379–1382, Nov. 2016. [59] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, and K. De Meyer, “VARIOT: A novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices,” IEEE Electron Device Lett., vol. 24, no. 2, pp. 99–101, Feb. 2003. [60] P. Blomme, J. De Vos, A. Akheyar, L. Haspeslagh, J. Van Houdt, and K. De Meyer, “Scalable floating gate flash memory Cell With engineered tunnel dielectric and High-κ (Al2O3) interpoly dielectric,” in Proc. 21st IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, Feb. 2006, pp. 52–53. [61] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate poly-ge junction-less p- and n-MOSFETs fabricated by flash lamp annealing process,” in IEDM Tech. Dig., Dec. 2014, pp. 16.6.1–16.6.4. [62] H. Liu, G. Han, Y. Xu, Y. Liu, T.-J.-K. Liu, and Y. Hao, “High-mobility Ge pMOSFETs with crystalline ZrO2 dielectric,” IEEE Electron Device Lett., vol. 40, no. 3, pp. 371–374, Mar. 2019. [63] D. Lehninger, J. Beyer, and J. Heitmann, “A review on Ge nanocrystals embedded in SiO2 and High-k dielectrics,” Phys. Status Solidi A, vol. 215, no. 7, Apr. 2018, Art. no. 1701028. [64] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, and S.Deleonibus, “In-depth Investigation of Hf-based High-k Dielectrics as Storage Layer of Charge-Trap NVMs,” in IEDM Tech. Dig., pp. 1-4, Dec. 2006. [65] H.-K. Fang, K. S. Chang-Liao, K.-C. Chou, T.-C. Chao, J.-E. Tsai, Y.-L. Li, W.-H. Huang, C.-H. Shen and J.-M. Shieh, “Impacts of Electrical Field in Tunneling Layer on Operation Characteristics of Poly-Ge Charge-Trapping Flash Memory Device, IEEE Electron Device Lett., vol. 41, pp. 1766-1769, Dec. 2020. [66] S.-J. Choi, D.-I. Moon, S. Kim, J.-H. Ahn, J.-S. Lee, J.-Y. Kim, and Y.-K. Choi, “Nonvolatile memory by all-around-gate junctionless transistor composed of silicon nanowire on bulk substrate,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 602–604, May 2011. [67] T. Yamauchi, Y. Yamaguchi, T. Kono, and H. Hidaka, “Embedded flash technology for automotive applications,” in IEDM Tech. Dig., Dec. 2016, p. 28. [68] H. Hidaka, “Evolution of embedded flash memory technology for MCU,” in Proc. IEEE Int. Conf. IC Design Technol., May 2011, pp. 1–4. [69] R. Strenz, “Embedded flash technologies and their applications: Status & outlook,” in IEDM Tech. Dig., Dec. 2011, p. 9. [70] K. Takeuchi, “Data-aware NAND flash memory for intelligent computing with deep neural network,” in IEDM Tech. Dig., Dec. 2017, p. 28. [71] M.-S. Kim, D.-C. Ahn, J.-Y. Park, M. Seo, S.-Y. Kim, W.-K. Kim, D.-H. Yun, and Yang-Kyu Choi, “Electro-thermal erasing at 104-fold faster speeds in charge-trap flash memory,” IEEE Electron Device Lett., vol. 40, no. 2, pp. 196–199, Feb. 2019. [72] N. Choi, H.-J. Kang, J.-H. Bae, B.-G. Park, and J.-H. Lee, “Effect of nitrogen content in tunneling dielectric on cell properties of 3-D NAND flash cells,” IEEE Electron Device Lett., vol. 40, no. 5, pp. 702–705, May 2019. [73] T.-H. Hsu, H.-T. Lue, P.-Y. Du, W.-C. Chen, T.-H. Yeh, R. Lo, H.-S. Chang, K.-C. Wang, and C.-Y. Lu, “Study of self-healing 3D NAND flash with micro heater to improve the performances and lifetime for fast NAND in NVDIMM applications,” in Proc. IEEE 11th Int. Memory Workshop (IMW), May 2019, pp. 1–4. [74] J. Yoo, S. Kim, W. Jeon, A. Park, D. Choi, and B. Choi, “A study on the charge trapping characteristics of high-k laminated traps,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1427–1430, Sep. 2019. [75] T.-H. Hsu, H.-C. You, F.-H. Ko, and T.-F. Leia, “PolySi-SiO2-ZrO2-SiO2-Si flash memory incorporating a sol-gel-derived ZrO2 charge trapping layer,” J. Electrochem. Soc., vol. 153, no. 11, pp. G934–G937, 2006. [76] J. Kim, J. D. Choi, W. C. Shin, D. J. Kim, H. S. Kim, K. M. Mang, S. T. Ahn, and O. H. Kwon, "Scaling down of tunnel oxynitride in NAND flash memory: oxynitride selection and reliabilities," in Reliability Physics Symposium, 1997. 35th Annual Proceedings., IEEE International, 1997, pp. 12-16: IEEE. [77] Y.-H. Wu, L.-L. Chen, Y.-S. Lin, M.-Y. Li, and H.-C. Wu, "Nitrided Tetragonal ZrO2 as the Charge-Trapping Layer for Nonvolatile Memory Application," IEEE Electron Device Lett., vol. 30, no. 12, pp. 1290-1292, 2009. [78] X. D. Huang, R. P. Shi, Johnny K. O. Sin, and P. T. Lai, "Improved Charge-Trapping Characteristics of ZrO2 by Al Doping for Nonvolatile Memory Applications" IEEE Trans. Device Mater. Reliab., vol. 16, no. 1, pp.38-42, Mar. 2016. [79] H. I. Yoo, K. D. Becker, "Effect of hole-trapping on mass/charge transport properties in acceptor-doped BaTiO3," Physical Chemistry Chemical Physics, no. 9, pp. 2069-2073, 2005. [80] W. Lu, C. Y. Wei, K. Jiang, J. Q. Liu, J. X. Lu, P. Han, A. D. Li, Y. D. Xia, B. Xu, J. Yin, and Z. G. Liu, "Comparative study on the charge-trapping properties of TaAlO and ZrAlO high-k composites with designed band alignment," AIP Adv. 5, 087158, 2015. [81] Y. Huang, J.-P. Xu, L. Liu, Z.-X. Cheng, P.-T. Lai, and W.-M. Tang, "Improved interfacial and electrical properties of Ge MOS capacitor with ZrON/TaON multilayer composite gate dielectric by using fluorinated Si passivation layer," Appl. Phys. Lett. 111, 053501, 2017. [82] R. Vaid and R. Gupta, "Fabrication and Characterization of High-k Dielectrics Based Gate Stacks/MOS Capacitors for Advanced CMOS Devices," IEEE 31st International Conference on Microelectronics (MIEL), pp. 75-78, Sep. 2019. [83] H.-K. Fang, K.-S. Chang-Liao, C.-P. Huang, and W.-C. Lee, “Operation characteristics of Poly-Si nanowire charge-trapping flash memory devices with SiGe and Ge buried channels,” Vacuum, vol. 140, pp. 53-57, Jun. 2017. [84] H.-K. Fang, K.-S. Chang-Liao, C.-H. Cheng, Y.-C. Lu, W.-H. Huang, C.-H. Shen, and J.-M. Shieh, “Operation Characteristics of Gate-All-Around Junctionless Flash Memory Devices With Si3N4/ZrO-Based Stacked Trapping Layer,” IEEE Trans. Electron Devices, vol. 67, no. 9, pp. 3626-3631, Sep. 2020. [85] 李偉銍(2016)。應用矽鍺氧化穿隧層對奈米線電荷捕捉式快閃記憶體元件操作特性影響研究。國立清華大學工程與系統科學系碩士論文,新竹市。取自https://hdl.handle.net/11296/udn96v [86] 葉柔辰(2020)。含氮與鋁之氧化鋯堆疊式電荷儲存層多晶矽快閃記憶體元件的輻射效應及特性研究。國立清華大學工程與系統科學系碩士論文,新竹市。取自https://hdl.handle.net/11296/76cjcb
|