帳號:guest(3.144.84.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡榮恩
作者(外文):Tsai, Jung-En
論文名稱(中文):堆疊介電層與通道對電荷捕捉式快閃記憶體元件操作特性之模擬研究
論文名稱(外文):Simulation study of stacked dielectrics and channel on operation characteristics of charge-trapping flash memory devices
指導教授(中文):張廖貴術
指導教授(外文):Chang-Liao, Kuei-Shu
口試委員(中文):趙天生
劉致為
口試委員(外文):Chao, Tien-Sheng
Liu, Chee-Wee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011561
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:電荷陷阱式鍺通道能帶工程快閃記憶體
外文關鍵詞:charge-trappingGe channelbandgap-engineeringflash-memory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著莫爾定律,非揮發性快閃記憶體尺寸逐年微縮,並廣泛應用於許多產品,同時,為了不斷提升快閃記憶體特性,有許多方法被提出,例如無接面式通道、矽化鍺與鍺通道、能帶工程(bandgap engineering)等。本論文使用Synopsys Sentaurus TCAD軟體對三閘極電荷捕捉式快閃記憶體元件進行模擬研究,包含使用矽化鍺與鍺通道,穿隧層之能帶工程應用,高介電質材料堆疊於電荷陷阱層之特性探討。
鍺作為通道材料因具備較小的能隙(~0.66 eV),可以提供更多的載子在快閃記憶體寫入/抹除操作期間,進一步提升電荷陷阱式快閃記憶體的操作速度,因此在第一部分研究中,為模擬能帶工程應用於穿隧層之電荷陷阱式快閃記憶體元件特性,並搭以三閘極無接面式鍺通道之結構,包含使用氧化鍺、氧化鋁、二氧化矽材料作為穿隧層材料,同時探討元件內部物理機制。模擬結果顯示,具有氧化鍺、氧化鋁、二氧化矽堆疊穿隧層元件擁有較快操作速度與較佳電荷保持力特性,分析因其擁有較大的注入電流、較低的穿隧能障、較大的穿隧電場,以及擁有較大的物理厚度與較高的穿隧層能障於電荷保持力測試中。
由於過去文獻尚未討論鍺含量同時對於掩埋式通道與其通道界面氧化層的影響,因此了解鍺同時在掩埋式通道與其通道界面氧化層內的物理機制,對於多晶矽電荷捕捉式快閃記憶體元件的操作特性至關重要,在第二部分研究中,為模擬使用矽化鍺與鍺作為通道材料同時搭以其界面氧化層的元件特性,並探討元件內部物理機制。模擬結果顯示,鍺通道元件擁有較快之操作速度,可歸因於通道與穿隧層界面之二氧化鍺能障較低,且橫跨在通道上的電場較大,將載子大量集中於通道與穿隧層界面處,可靠度方面,因穿隧氧化層之二氧化鍺能障較低,使得元件的電荷保持力特性較差。
對於高性能的多晶矽電荷捕捉式快閃記憶體而言,抹除速度一直是個瓶頸,為了提升電荷捕捉式快閃記憶體元件的抹除速度,文獻提出了許多種方法,像是使用高介電(high-k)材料取代傳統Si3N4作為元件電荷陷阱層,因此在第三部分研究中,為模擬高介電質材料堆疊於電荷陷阱層的元件特性,包含使用二氧化鋯、氮氧化鋯、鋁摻雜氮氧化鋯,堆疊氮化矽作為電荷陷阱層,並探討元件內部物理機制。模擬結果顯示,二氧化鋯元件表現出最快的寫入/抹除速度,歸因於二氧化鋯缺陷能階較淺,但也因此表現出待改善的電荷保持力特性。而藉由使用氮氧化鋯可改善電荷保持力特性,但氮氧化鋯缺陷能階較深,使元件表現出最慢的抹除速度,最後,鋁摻雜氮氧化鋯元件則表現出可接受的抹除速度,以及不錯的電荷保持力特性。
In recent years, the dimension of non-volatile flash memory device is continuously scaling with Moore's law and the devices are widely applied on many products. To continuously enhance operation characteristics of flash memory devices, several efficient methods have been proposed, such as junctionless (JL) channel, SiGe channel, Ge channel, and bandgap engineering. In this dissertation, the tri-gate charge-trapped (CT) flash memory devices were simulated and studied by Synopsys Sentaurus TCAD. The main themes include SiGe and Ge as channels, bandgap-engineering applied in tunneling layers and high-k dielectrics as stacked trapping layers.
Since germanium (Ge) as channel material has a smaller bandgap (~0.66 eV), more carriers are provided during program/erase operations, which can improve the operation speed of CT flash devices. Therefore, in the first part, bandgap-engineering in tunneling layers on operation characteristics of flash memory devices with JL Ge channel and tri-gate structure were studied by using simulation tool, from which the physical mechanisms were also discussed. The devices with GeOx, Al2O3, SiO2 as stacked tunneling layers were investigated. The results show that the device with GeOx/Al2O3/SiO2 (GAS) stacked tunneling layers have faster operation speeds and better retention performance than other samples, because the GAS device has a higher injection current, and a larger electric field across the tunneling layers. Also, the GAS device has a larger physical thickness and a higher tunneling barrier during the retention test.
The effects of Ge content in both buried channel and tunneling oxide on CT flash memory device were rarely seen. Since Ge atoms would generally exist in both buried channel and tunneling oxide of CT flash memory device with Ge-based channel, it is important to understand their effects on operation characteristics of devices. In the second part, effects of Si1-xGex and Ge as the channel material on operation characteristics of CT-flash device and physical mechanisms were studied with simulation. The results indicate that the device with Ge channel has faster operation speeds, due to the lower energy barrier of GeO2 and larger electric field across the buried channel, which accumulate many carriers at the interface of the buried channel and tunneling layer. Due to the lower energy barrier of GeO2, the device with Ge channel has worse retention characteristics during the reliability test.
The erasing speed is the bottleneck for high-performance poly-Si CT flash devices. Several approaches were proposed to increase the erasing speed of CT flash devices, such as using high-k material to replace traditional Si3N4 as a trapping layer. Therefore, in the third part, the high-k dielectrics as a stacked trapping layer on operation characteristics of CT-flash devices and physical mechanisms were studied with simulation. The high-k dielectrics including ZrO2, ZrON, ZrAlON are stacked with Si3N4 as trapping layers in this study. The results indicate that the device with Si3N4/ZrO2 stacked trapping layer has the fastest program/erase speeds, but its retention performance needs improvement, because the trap energy level of ZrO2 is shallow. Besides, retention characteristics of device can be improved by adopting Si3N4/ZrON trapping layer, which however may cause slow erasing speeds, due to the deep trap energy level of ZrON. Finally, the device with Si3N4/ZrAlON stacked trapping layer has acceptable erase speeds and good retention characteristics as well.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第 1 章 序論 1
1.1. 非揮發性記憶體 1
1.2. 多晶矽通道與三維(3D)記憶體 2
1.3. 高介電材料與能帶工程 3
1.3.1 電荷陷阱式快閃記憶體 3
1.3.2 高介電材料 3
1.3.3 能帶工程 4
1.4. 無接面快閃記憶體元件 5
1.5. 矽化鍺與鍺掩埋式通道於快閃記憶體的應用 6
1.6. 鍺薄膜特性 7
1.7. 各章摘要 8
第 2 章 電荷陷阱式快閃記憶體基本特性與模擬軟體 19
2.1. 載子穿隧機制 19
2.1.1 Fowler-Nordheim (FN)穿隧 19
2.1.2 直接穿隧 (Direct tunneling, DT) 20
2.1.3 修正FN穿隧(MFN) 21
2.2. Sentaurus TCAD模擬軟體介紹 21
2.2.1 軟體基本介紹 21
2.2.2 模擬物理模型 23
2.3. 快閃記憶體基本操作原理 24
2.4. 快閃記憶體可靠度特性 25
2.4.1元件耐久力 25
2.4.2 電荷保持力 26
第 3 章 堆疊穿隧層應用於無接面鍺通道電荷陷阱式快閃記憶體之模擬研究 31
3.1. 研究背景與實驗結果介紹 32
3.1.1 研究背景介紹 32
3.1.2 實驗元件特性介紹 33
3.2. 模擬元件參數與物理模型 33
3.3. 模擬結果與討論 34
3.3.1 模擬堆疊穿隧層應用於無接面鍺通道快閃記憶體操作速度特性 34
3.3.2 模擬堆疊穿隧層應用於無接面鍺通道快閃記憶體電荷保持力特性 35
3.4. 本章結論 36
第 4 章 矽化鍺與鍺掩埋式通道電荷陷阱式快閃記憶體元件之模擬研究 46
4.1. 研究背景與實驗結果介紹 47
4.1.1 研究背景介紹 47
4.1.2 實驗元件特性介紹 47
4.2. 模擬元件參數與物理模型 49
4.3. 模擬結果與討論 50
4.3.1 模擬有/無掩埋式通道元件操作速度特性 50
4.3.2 模擬有/無掩埋式通道元件電荷保持力特性 53
4.4. 本章結論 54
第 5 章 將氮與鋁摻入氮化矽/二氧化鋯堆疊電荷陷阱層對無接面多晶矽通道電荷陷阱式快閃記憶體之模擬研究 66
5.1. 研究背景與實驗結果介紹 67
5.1.1 研究背景介紹 67
5.1.2 實驗元件特性介紹 68
5.2. 模擬元件參數與物理模型 69
5.3. 模擬結果與討論 70
5.3.1 模擬堆疊電荷陷阱層無接面多晶矽通道快閃記憶體操作速度特性 70
5.3.2模擬堆疊電荷陷阱層無接面多晶矽通道快閃記憶體電荷保持力特性 72
5.4. 本章結論 72
第 6 章 結論 82
參考文獻 84
[1] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John Wiley & Sons, 2006.
[2] J. Jang, H. S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. H. Jeong, B. K. Son, D. W. Kim, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, C. Dewill, H. C. Moon, S. Hwang, J. W. Lee, Y. H. Son, U. Chung and W. S. Lee, “Vertical cell array using TCAT(terabit cell array transistor) technology for ultra high density NAND flash memory,” in VLSI Symp. Tech. Dig. 2009, pp. 192-193.
[3] J. Kim, A. J. Hong, M. K. Sung, E. B. Song, J. H. Park, J. Han, S. Choi, D. Jang, J. T. Moon and K. L. Wang, “Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density and cost-effective NAND flash memory devices and SSD (solid state drive),” in VLSI Symp. Tech. Dig. 2009, pp. 186-187.
[4] H. T. Lue, T. H. Hsu, Y. H. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S. Y. Wang, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh and C. Y. Lu, “A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND flash using junction-free buried channel BE-SONOS device,” in VLSI Symp. Tech. Dig. 2010, pp. 131-132.
[5] I. C. Lee, C. C. Tsai, H. H. Kuo, P. Y. Yang, C. L. Wang and H. C. Cheng, “A novel SONOS memory with recessed-channel poly-Si TFT via excimer laser crystallization,” IEEE Electron Device Lett., vol. 33, pp. 558-560, Apr. 2012.
[6] TechInsights memory technology update, https://images.app.goo.gl/PohSKBtixQfMdWNa9
[7] International Roadmap for Devices and Systems (IRDS™) 2020 Edition, https://irds.ieee.org/editions/2020/more-moore
[8] I. C. Lee, C. C. Tsai, H. H. Kuo, P. Y. Yang, C. L. Wang and H. C. Cheng, “A novel SONOS memory with recessed-channel poly-Si TFT via excimer laser crystallization,” IEEE Electron Device Lett., vol. 33, pp. 558-560, Apr. 2012.
[9] Z. G. Meng, S. Y. Zhao, C. Y. Wu, B. Zhang, M. Wong and H. S. Kwok, “Polycrystalline silicon films and thin-film transistors using solution-based metal-induced crystallization,” J. Disp. Technol., vol. 2, pp. 265-273, Sep. 2006.
[10] M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low‐temperature annealing of low‐pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, pp. 2260-2266, Apr. 1988.
[11] Y.-S. Li, C.-Y. Wu, C.-Y. Liao, W.-H. Huang, J.-M. Shieh, C.-H. Chou, K.-C. Chuang, J.-D. Luo, W.-S. Li, and H.-C. Cheng, “High-Performance Germanium Thin-Film Transistors With Single-Crystal-Like Channel via Continuous-Wave Laser Crystallization,” IEEE Electron Device Lett., vol. 39, no. 12, pp. 1864-1867, Dec. 2018.
[12] Y.-C. Lien, J.-M. Shieh, W.-H. Huang, C.-H. Tu, C. Wang, C.-H. Shen, B.-T. Dai, C.-L. Pan, Chenming Hu, and F.-L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett., vol. 100, no. 14, pp.143501, 2012.
[13] B. V. Keshavan and H. C. Lin, "MONOS memory element," in IEDM Tech. Dig. 1968, pp. 140-142.
[14] M. H. White, D. A. Adams and Jiankang Bu, "On the go with SONOS," IEEE Circuits Devices Mag., vol. 16, pp. 22-31, Aug. 2000.
[15] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, "High-k metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett., vol. 25, pp. 408-410, Jun. 2004.
[16] Y. N. Tan, W. K. Chim, J. C. Byung and W. K. Choi, "Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer," IEEE Trans. Electron Devices, vol. 51, pp. 1143-1147, Jul. 2004.
[17] J. Robertson, “High dielectric constant oxides,” The European Physical Journal Applied Physics, vol. 28, No. 3, pp. 265-291, Dec. 2004.
[18] A. Sinhamahapatra, J.-P Jeon, J. Kang, B. Han, and J.-S. Yu, “Oxygen-Deficient Zirconia (ZrO2−x): A New Material for Solar Light Absorption,” Sci Rep 6, 27218, 2016.
[19] J.-X. Chen, J.-P. Xu, L. Liu, and P.-T. Lai, “Performance improvements of metal-oxide-nitride-oxide-silicon nonvolatile memory with ZrO2 charge-trapping layer by using nitrogen incorporation,” Appl. Phys. Exp., vol. 6, pp. 084202, Aug. 2013.
[20] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, "MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation," in Non-Volatile Semiconductor Memory Workshop, 2007, pp. 88-89.
[21] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, "BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability," in IEDM Tech. Dig. 2005, pp. 547-550.
[22] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, "A novel SONOS-type flash device with stacked charge trapping layer," Microelectron. Eng., vol. 86, pp. 1863-1865, Jul. 2009.
[23] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, pp. 225-229, Mar. 2010.
[24] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, "Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions," Sci. Adv. Mater., vol. 3, pp. 477-482, Jun. 2011.
[25] C. J. Su, T. K. Su, T. I. Tsai, H. C. Lin and T. Y. Huang, "A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires," Nanoscale Res. Lett., vol. 7, pp. 1-6, Feb. 2012.
[26] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Gnani, G. Baccarani, G. Q. Lo and D. L. Kwong, "Vertical-Si-nanowire-based nonvolatile memory devices with improved performance and reduced process complexity," IEEE Trans. Electron Devices, vol. 58, pp. 1329-1335, May 2011.
[27] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A novel buried-channel FinFET BE-SONOS NAND flash with improved memory window and cycling endurance," in VLSI Symp. Tech. Dig. 2009, pp. 224-225.
[28] W. K. Yeh, Y. T. Chen, F. S. Huang, C. W. Hsu, C. Y. Chen, Y. K. Fang, K. J. Gan and P. Y. Chen, "The improvement of high-k/metal gate pMOSFET performance and reliability using optimized Si cap/SiGe channel structure," IEEE Trans. Device Mater. Reli ab., vol. 11, pp. 7-12, Nov. 2011.
[29] D. L. Kencke, X. Wang, Q. Ouyang, S. Mudanai, A. Tasch Jr. and S. K. Banerjee, "Enhanced secondary electron injection in novel SiGe flash memory devices," in IEDM Tech. Dig. 2000, pp. 105-108.
[30] C. C. Wang, K. S. Chang-Liao, C. Y. Lu and T. K. Wang, "Enhanced band-to-band-tunneling-induced hot-electron injection in p-channel flash by band-gap offset modification," IEEE Electron Device Lett., vol. 27, pp. 749-751, Sep. 2006.
[31] L. J. Liu, K. S. Chang-Liao, Y. C. Jian, J. W. Cheng, T. K. Wang and M. J. Tsai, "Enhanced programming and erasing speeds in p-channel charge-trapping flash memory device with SiGe buried channel," IEEE Electron Device Lett., vol. 33, pp. 1264-1266, Sep. 2012.
[32] D. J. Paul, "Si/SiGe heterostructures: from material and physics to devices and circuits," Semicond. Sci. Technol., vol. 19, pp. R75-R108, Oct. 2004.
[33] J. W. Matthews and A. E. Blakeslee, "Defects in epitaxial multilayers .2. dislocation pile-ups, threading dislocations, slip lines and cracks," J. Cryst. Growth, vol. 29, pp. 273-280, Jun. 1975.
[34] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, "High-mobility Ge pMOSFET with 1-nm EOT gate stack fabricated by plasma post oxidation," IEEE Trans. Electron Devices, vol. 59, pp. 335-341, Feb. 2012.
[35] R. Zhang, P. C. Huang, J. C. Lin, N. Taoka, M. Takenaka and S. Takagi, "High-mobility Ge p- and n-MOSFETs with 0.7-nm EOT using gate stacks fabricated by plasma postoxidation," IEEE Trans. Electron Devices, vol. 60, pp. 927-934, Mar. 2013.
[36] S. Suthram, P. Majhi, G. Sun, P. Kalra, H. R. Harris, K. J. Choi, D. Heh, J. Oh, D. Kelly, R. Choi, B. J. Cho, M. M. Hussain, C. Smith, S. Banerjee, W. Tsai, S. E. Thompson, H. H. Tseng and R. Jammy, "High performance pMOSFETs using si/Si1-xGex/si quantum wells with high-k/metal gate stacks and additive uniaxial strain for 22 nm technology node," in VLSI Symp. Tech. Dig. 2007, pp. 727-730.
[37] C. W. Chen, J. Y. Tzeng, C. T. Chung, H. P. Chien, C. H. Chien and G. L. Luo, "High-performance germanium p- and n-MOSFETs with NiGe source/drain," IEEE Trans. Electron Devices, vol. 61, pp. 2656-2661, Aug. 2014.
[38] Q. C. Zhang, J. D. Huang, N. Wu, G. X. Chen, M. H. Hong, L. K. Bera and C. X. Zhu, "Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation," IEEE Electron Device Lett., vol. 27, pp. 728-730, Sep. 2006.
[39] R. Duffy and M. Shayesteh, "Germanium doping, contacts, and thin-body structures," Graphene, Ge/Iii-V, Nanowires, and Emerging Materials for Post-Cmos Applications 4, vol. 45, pp. 189-201, May. 2012.
[40] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa and T. Tezuka, "Superior cut-off characteristics of Lg=40nm Wfin=7nm poly ge junctionless tri-gate FET for stacked 3D circuits integration," in VLSI Symp. Tech. Dig. 2013, pp. 94-95.
[41] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2007.
[42] S. C. Wolfson and F. D. Ho, "Transient simulation to analyze flash memory erase improvements due to germanium content in the substrate," IEEE Trans. Electron Devices, vol. 57, pp. 2499-2503, Oct. 2010.
[43] M. Lenzlinger, and E. H. Snow, “Fowler-Nordheim Tunneling in Thermally Grown SiO2,” in J. Appl. Phys, vol. 40, issue 1, pp.278-283, Sep. 1969.
[44] Franck Nallet, “Sentaurus TCAD Introduction,” Synopsys, Paris, France, Sep. 2014.
[45] Sentaurus DeviceTM User Guide, Version F-2011.09, Avant Corporation, Sep. 2011.
[46] Sanjeev Kumar Gupta, Jitendra Singh, and Jamil Akhtar, “Physics and Technology of Silicon Carbide Devices,” in Tech, chapter 8, Oct. 2012.
[47] M. White, D. Adams, and J. Bu, “on the Go with SONOS,” in IEEE Circuits Devices Mag., vol. 16, no. 4, pp. 22-31, Jul. 2000.
[48] Joo Hyung You, Hyun Woo Kim, Dong Hun Kim, Tae Whan Kim, and Keun Woo Lee, “Effect of the Trap Density and Distribution of the Silicon Nitride Layer on the Retention Characteristics of Charge Trap Flash Memory Devices,” in IEEE Simulation of Semiconductor Processes and Devices (SISPAD), pp. 199-202, Sep. 2011.
[49] H. Park, G. Bersuker, M. Jo, D. Veksler, K. Y. Lim, D. Gilmer, N. Goel, C. Y. Kang, C. Young, M. Chang, H. Hwang, H. H. Tseng, P. D. Kirsch and R. Jammy, "Tunnel oxide degradation in TANOS devices and its origin," in VLSI Technology Systems and Applications, 2010, pp. 50-51.
[50] International Roadmap for Devices and Systems (IRDS™) 2020 Edition, https://irds.ieee.org/editions/2020/more-moore
[51] D. C. Gilmer, N. Goel, H. Park, C. Park, S. Verma, G. Bersuker, P. Lysaght, H. H. Tseng, P. D. Kirsch, K. C. Saraswat and R. Jammy, "Engineering the complete MANOS-type NVM stack for best in class retention performance," in IEDM Tech. Dig. 2009, pp. 439-442.
[52] Z.-H. Ye, K.-S. Chang-Liao, C.-Y. Tsai, T.-T. Tsai, and T.-K. Wang, “Enhanced operation in charge-trapping nonvolatile memory device with Si3N4/Al2O3/HfO2 charge-trapping layer,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1351–1353, Oct. 2012.
[53] C.-Y. Chen, K.S. Chang-Liao, K.-T. Wu and T.-K. Wang, “Improved Erasing Speed in Junctionless Flash Memory Device by HfO2/Si3N4 Stacked Trapping Layer,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 993-995, Aug. 2013.
[54] C.-Y. Chen, K.-S. Chang-Liao, L.-J. Liu, W.-C. Chen, and T.-K. Wang, “Enhanced operation characteristics in poly-Si nanowire charge-trapping flash memory device with SiGe buried channel,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 1025–1027, Oct. 2014.
[55] Z.-H. Ye, K.-S. Chang-Liao, L.-J. Liu, J.-W. Cheng, and H.-K. Fang, “Enhanced programming and erasing speeds of charge-trapping flash memory device with Ge channel,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1314–1317, Dec. 2015.
[56] W.-H. Huang, J.-M. Shieh, F.-M. Pan, C.-C. Yang, C.-H. Shen, H.-H. Wang, T.-Y. Hsieh, S.-Y. Wu, and M.-C. Wu, “Charge-trap non-volatile memories fabricated by laser-enabled low-thermal budget processes,” Appl. Phys. Lett., vol. 108, no. 24, Jun. 2016, pp. 243502
[57] R. S. Johnson, H. Niimi, and G. Lucovsky, “New approach for the fabrication of device-quality Ge/GeO2/SiO2 interfaces using low temperature remote plasma processing,” J. Vac. Sci. Technol. A, Vac., Surf., Films, vol. 18, no. 4, pp. 1230–1233, Jul. 2000.
[58] Y.-H. Tsai, C.-H. Chou, A.-S. Shih, Y.-H. Jau, W.-K. Yeh, Y.-H. Lin, F.-H. Ko, and C.-H. Chien, “Improving thermal stability and interface state density of high-κ stacks by incorporating Hf into an interfacial layer on p-Germanium,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1379–1382, Nov. 2016.
[59] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, and K. De Meyer, “VARIOT: A novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices,” IEEE Electron Device Lett., vol. 24, no. 2, pp. 99–101, Feb. 2003.
[60] P. Blomme, J. De Vos, A. Akheyar, L. Haspeslagh, J. Van Houdt, and K. De Meyer, “Scalable floating gate flash memory Cell With engineered tunnel dielectric and High-κ (Al2O3) interpoly dielectric,” in Proc. 21st IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, Feb. 2006, pp. 52–53.
[61] K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate poly-ge junction-less p- and n-MOSFETs fabricated by flash lamp annealing process,” in IEDM Tech. Dig., Dec. 2014, pp. 16.6.1–16.6.4.
[62] H. Liu, G. Han, Y. Xu, Y. Liu, T.-J.-K. Liu, and Y. Hao, “High-mobility Ge pMOSFETs with crystalline ZrO2 dielectric,” IEEE Electron Device Lett., vol. 40, no. 3, pp. 371–374, Mar. 2019.
[63] D. Lehninger, J. Beyer, and J. Heitmann, “A review on Ge nanocrystals embedded in SiO2 and High-k dielectrics,” Phys. Status Solidi A, vol. 215, no. 7, Apr. 2018, Art. no. 1701028.
[64] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, and S.Deleonibus, “In-depth Investigation of Hf-based High-k Dielectrics as Storage Layer of Charge-Trap NVMs,” in IEDM Tech. Dig., pp. 1-4, Dec. 2006.
[65] H.-K. Fang, K. S. Chang-Liao, K.-C. Chou, T.-C. Chao, J.-E. Tsai, Y.-L. Li, W.-H. Huang, C.-H. Shen and J.-M. Shieh, “Impacts of Electrical Field in Tunneling Layer on Operation Characteristics of Poly-Ge Charge-Trapping Flash Memory Device, IEEE Electron Device Lett., vol. 41, pp. 1766-1769, Dec. 2020.
[66] S.-J. Choi, D.-I. Moon, S. Kim, J.-H. Ahn, J.-S. Lee, J.-Y. Kim, and Y.-K. Choi, “Nonvolatile memory by all-around-gate junctionless transistor composed of silicon nanowire on bulk substrate,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 602–604, May 2011.
[67] T. Yamauchi, Y. Yamaguchi, T. Kono, and H. Hidaka, “Embedded flash technology for automotive applications,” in IEDM Tech. Dig., Dec. 2016, p. 28.
[68] H. Hidaka, “Evolution of embedded flash memory technology for MCU,” in Proc. IEEE Int. Conf. IC Design Technol., May 2011, pp. 1–4.
[69] R. Strenz, “Embedded flash technologies and their applications: Status & outlook,” in IEDM Tech. Dig., Dec. 2011, p. 9.
[70] K. Takeuchi, “Data-aware NAND flash memory for intelligent computing with deep neural network,” in IEDM Tech. Dig., Dec. 2017, p. 28.
[71] M.-S. Kim, D.-C. Ahn, J.-Y. Park, M. Seo, S.-Y. Kim, W.-K. Kim, D.-H. Yun, and Yang-Kyu Choi, “Electro-thermal erasing at 104-fold faster speeds in charge-trap flash memory,” IEEE Electron Device Lett., vol. 40, no. 2, pp. 196–199, Feb. 2019.
[72] N. Choi, H.-J. Kang, J.-H. Bae, B.-G. Park, and J.-H. Lee, “Effect of nitrogen content in tunneling dielectric on cell properties of 3-D NAND flash cells,” IEEE Electron Device Lett., vol. 40, no. 5, pp. 702–705, May 2019.
[73] T.-H. Hsu, H.-T. Lue, P.-Y. Du, W.-C. Chen, T.-H. Yeh, R. Lo, H.-S. Chang, K.-C. Wang, and C.-Y. Lu, “Study of self-healing 3D NAND flash with micro heater to improve the performances and lifetime for fast NAND in NVDIMM applications,” in Proc. IEEE 11th Int. Memory Workshop (IMW), May 2019, pp. 1–4.
[74] J. Yoo, S. Kim, W. Jeon, A. Park, D. Choi, and B. Choi, “A study on the charge trapping characteristics of high-k laminated traps,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1427–1430, Sep. 2019.
[75] T.-H. Hsu, H.-C. You, F.-H. Ko, and T.-F. Leia, “PolySi-SiO2-ZrO2-SiO2-Si flash memory incorporating a sol-gel-derived ZrO2 charge trapping layer,” J. Electrochem. Soc., vol. 153, no. 11, pp. G934–G937, 2006.
[76] J. Kim, J. D. Choi, W. C. Shin, D. J. Kim, H. S. Kim, K. M. Mang, S. T. Ahn, and O. H. Kwon, "Scaling down of tunnel oxynitride in NAND flash memory: oxynitride selection and reliabilities," in Reliability Physics Symposium, 1997. 35th Annual Proceedings., IEEE International, 1997, pp. 12-16: IEEE.
[77] Y.-H. Wu, L.-L. Chen, Y.-S. Lin, M.-Y. Li, and H.-C. Wu, "Nitrided Tetragonal ZrO2 as the Charge-Trapping Layer for Nonvolatile Memory Application," IEEE Electron Device Lett., vol. 30, no. 12, pp. 1290-1292, 2009.
[78] X. D. Huang, R. P. Shi, Johnny K. O. Sin, and P. T. Lai, "Improved Charge-Trapping Characteristics of ZrO2 by Al Doping for Nonvolatile Memory Applications" IEEE Trans. Device Mater. Reliab., vol. 16, no. 1, pp.38-42, Mar. 2016.
[79] H. I. Yoo, K. D. Becker, "Effect of hole-trapping on mass/charge transport properties in acceptor-doped BaTiO3," Physical Chemistry Chemical Physics, no. 9, pp. 2069-2073, 2005.
[80] W. Lu, C. Y. Wei, K. Jiang, J. Q. Liu, J. X. Lu, P. Han, A. D. Li, Y. D. Xia, B. Xu, J. Yin, and Z. G. Liu, "Comparative study on the charge-trapping properties of TaAlO and ZrAlO high-k composites with designed band alignment," AIP Adv. 5, 087158, 2015.
[81] Y. Huang, J.-P. Xu, L. Liu, Z.-X. Cheng, P.-T. Lai, and W.-M. Tang, "Improved interfacial and electrical properties of Ge MOS capacitor with ZrON/TaON multilayer composite gate dielectric by using fluorinated Si passivation layer," Appl. Phys. Lett. 111, 053501, 2017.
[82] R. Vaid and R. Gupta, "Fabrication and Characterization of High-k Dielectrics Based Gate Stacks/MOS Capacitors for Advanced CMOS Devices," IEEE 31st International Conference on Microelectronics (MIEL), pp. 75-78, Sep. 2019.
[83] H.-K. Fang, K.-S. Chang-Liao, C.-P. Huang, and W.-C. Lee, “Operation characteristics of Poly-Si nanowire charge-trapping flash memory devices with SiGe and Ge buried channels,” Vacuum, vol. 140, pp. 53-57, Jun. 2017.
[84] H.-K. Fang, K.-S. Chang-Liao, C.-H. Cheng, Y.-C. Lu, W.-H. Huang, C.-H. Shen, and J.-M. Shieh, “Operation Characteristics of Gate-All-Around Junctionless Flash Memory Devices With Si3N4/ZrO-Based Stacked Trapping Layer,” IEEE Trans. Electron Devices, vol. 67, no. 9, pp. 3626-3631, Sep. 2020.
[85] 李偉銍(2016)。應用矽鍺氧化穿隧層對奈米線電荷捕捉式快閃記憶體元件操作特性影響研究。國立清華大學工程與系統科學系碩士論文,新竹市。取自https://hdl.handle.net/11296/udn96v
[86] 葉柔辰(2020)。含氮與鋁之氧化鋯堆疊式電荷儲存層多晶矽快閃記憶體元件的輻射效應及特性研究。國立清華大學工程與系統科學系碩士論文,新竹市。取自https://hdl.handle.net/11296/76cjcb
(此全文20260730後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *