帳號:guest(18.118.205.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾明遠
作者(外文):Chung, Ming-Yuan
論文名稱(中文):功能性螢光影像時域空域分析之研究
論文名稱(外文):Spatial and Temporal Analysis of Functional Fluorescence Images
指導教授(中文):吳順吉
指導教授(外文):Wu, Shun-Chi
口試委員(中文):林彥穎
潘明楷
口試委員(外文):Lin, Yen-Yin
Pan, Ming-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011557
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:56
中文關鍵詞:鈣離子成像功能性螢光影像影像序列校準時域分析空域分析
外文關鍵詞:Calcium imagingfunctional fluorescence imagesimage registrationtemporal analysisspatial analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
動物行為與意識的形成機制一直是神經科學研究致力於解譯的問題,過去礙於光學系統與成像技術的限制,無法深入探究生物神經網路的運作情形,隨著螢光顯微術(Fluorescence Microscopy)與鈣離子成像技術(Calcium imaging)的發展,現今已可以透過螢光強度來量化鈣離子濃度,進而觀測特定腦區或神經細胞實時(real time)的訊號變化情形。
本研究旨在建立一套適用於鈣離子功能性螢光影像分析的系統,結合果蠅嗅覺刺激以及小鼠的震動感知等動物行為實驗,針對不同的數據條件與實驗需求進行調適,自動化的標註感興趣區域(Region of Interest, ROI),劃分因外在環境刺激而被激活的神經細胞,並且進一步對其分群,為動物行為實驗提供可參照的數據分析結果。
此系統架構可分成兩個部分,第一部分為數據前處理,針對鈣離子功能性影像拍攝過程中,因活體動物樣本晃動以及顯微術掃描時間差造成的影響進行動態校準與時間校準,並透過頻譜分析及空域平滑進行降維,最後重塑影像序列,以利後續的數據分析。第二部分為數據分析,有時域分析以及空域分析,對影像序列的時域資訊進行主成分分析、奇異值分解以及K-means集群分析;對影像序列的空域資訊則進行獨立成分分析、非負矩陣分解與點偵測法。最後結合時域與空域分析的結果,針對不同動物行為實驗所探討的變因可視化數據分析結果。
The formation mechanism of animal behavior and consciousness has always been a problem that neuroscience research is committed to interpreting. In the past, due to the limitations of optical systems and imaging technology, it was challenging to study the operation of biological neural networks. With the development of fluorescence microscopy and calcium imaging technology, it is possible to quantify calcium concentration through fluorescence intensity. Therefore, we can observe the real-time signal changes of specific brain regions or neurons.
This study presents a system architecture to analyze functional fluorescence images. Providing the data analysis result to animal behavior experiments, the developed system can mark the region of interest (ROI), delineate the area activated by external stimulus, and separate it into different clusters. The thesis can divide into two parts. The first part covers data preprocessing and image registration to eliminate the artifacts during data acquisition. Next, dimensionality reduction is applied to facilitate efficient data analysis. The second part focuses on data analysis, containing temporal and spatial analysis. The results of two different kind of analysis will be combined and visualized basing on animal behavior experiments’ influential factors.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 動物行為實驗 4
1.3.1 果蠅嗅覺刺激實驗 4
1.3.2 小鼠震動感知實驗 6
1.4 論文架構 8
第二章 影像校準與前處理 9
2.1 影像校準 9
2.1.1 時間校準 9
2.1.2 運動校準 10
2.2 影像前處理 11
2.2.1 快速傅立葉變換與功率頻譜分析 11
2.2.2 抗混疊濾波器 12
2.2.3 空域平滑 12
2.2.4 影像序列重塑 13
第三章 數據分析 14
3.1 時域分析 16
3.1.1 主成分分析 16
3.1.2 K-means集群分析 17
3.2 空域分析 18
3.2.1 獨立成分分析 19
3.2.2 非負矩陣分解 20
3.2.3 點偵測法 21
第四章 實驗結果 22
4.1 果蠅鈣離子功能性影像分析結果 22
4.1.1 主成分分析與K-means 集群分析結果 22
4.1.2 獨立成分分析與點偵測法分析結果 26
4.1.3 點偵測法K-means集群分析結果 30
4.2 小鼠鈣離子功能性影像分析結果 37
4.2.1 奇異值分解分析結果 37
4.2.2 非負矩陣分解分析結果 40
第五章 結果與討論 48
參考文獻 50
[1] E. R. Kandel et al., “Principles of neural science,” McGraw-hill New York, 2000.
[2] D. Mareschal et al., “Neuroconstructivism: How the brain constructs cognition,” Oxford University Press, 2007.
[3] J. A. De Carlos and J. Borrell, “A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience,” Brain Res. Rev., vol. 55, no. 1, pp. 8-16, 2007.
[4] N. T. H. U. Brain Research Center, “FlyCircuit 1.2.,” Brain Research Center, National Tsing Hua University, http://www.flycircuit.tw (accessed Dec 22, 2019).
[5] H.-J. Park and K. Friston, “Structural and functional brain networks: from connections to cognition,” Science, vol. 342, no. 6158, p. 1238411, 2013.
[6] L. Kahsai and T. Zars, “Learning and memory in Drosophila: behavior, genetics, and neural systems,” in International review of neurobiology, vol. 99: Elsevier,, pp. 139-167, 2011.
[7] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, “Connectomic reconstruction of the inner plexiform layer in the mouse retina,” Nature, vol. 500, no. 7461, pp. 168-174, 2013.
[8] Z. Zheng et al., “A complete electron microscopy volume of the brain of adult Drosophila melanogaster,” Cell, vol. 174, no. 3, pp. 730-743. e22, 2018.
[9] C.-W. Lin et al., “Automated in situ brain imaging for mapping the Drosophila connectome,” J. Neurogenet., vol. 29, no. 4, pp. 157-168, 2015.
[10] J. Akerboom et al., “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci., vol. 32, no. 40, pp. 13819-13840, 2012.
[11] H. Dana et al., “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat. Methods, vol. 16, no. 7, pp. 649- 657, 2019.
[12] C. Grienberger and A. Konnerth, “Imaging calcium in neurons,” Neuron, vol. 73, no. 5, pp. 862-885, 2012.
[13] H. Lütcke and F. Helmchen, “Two-photon imaging and analysis of neural network dynamics,” Reports on Progress in Physics, vol. 74, no. 8, p. 086602, 2011.
[14] T. C. Fadero et al., “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J Cell Biol, vol. 217, no. 5, pp. 1869-1882, May 7 2018.
[15] Y. Wan, K. McDole, and P. J. Keller, “Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes,” Annu Rev Cell Dev Biol, vol. 35, pp. 655-681, Oct 6 2019.
[16] S. R. Kain, M. Adams, A. Kondepudi, T. T. Yang, W. W. Ward, P. Kitts, “Green fluorescent protein as a reporter of gene expression and protein localization,” Biotechniques, 19(4):650-5, Oct 1995.
[17] T.-W. Chen et al., “Ultra-sensitive fluorescent proteins for imaging neuronal activity,” Nature, vol. 499, pp. 295-300, 2013.
[18] H. Dana et al., “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat Methods, vol. 16, no. 7, pp. 649-657, Jul 2019.
[19] W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science, vol. 248, no. 4951, pp. 73-76, 1990.
[20] S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging.” PNAS, 89 (13): 5675–79, 1992.
[21] S. M. Smith, “Overview of fMRI analysis,” Br J Radiol, vol. 77 Spec No 2, pp. S167-75, 2004.
[22] M. J. McKeown et al., “Spatially independent activity patterns in functional MRI data during the Stroop color-naming task,” Proc. Natl. Acad. Sci. USA, vol. 95, pp. 803-810, 1998.
[23] M. J. McKeown, L. K. Hansen, and T. J. Sejnowski, “Independent component analysis of functional MRI , what is signal and what is noise?” Curr Opin Neurobiol, vol. 13, pp. 620-629, 2003.
[24] C. e. Bordier, M. Dojat, and P. L. d. Micheaux, “emporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package,”Journal of Statistical Software, vol. 44, no. 9, 2011.
[25] D. Kostadinov, M. Beau, M. Blanco-Pozo, and M. Hausser, “redictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells,”Nat Neurosci, vol. 22, no. 6, pp. 950-962, Jun 2019.

[26] E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer, “Automated analysis of cellular signals from large-scale calcium imaging data,”Neuron, vol. 63, no. 6, pp. 747-60, Sep 2009.
[27] R. Maruyama et al., “etecting cells using non-negative matrix factorization on calcium imaging data,”Neural Netw, vol. 55, pp. 11-9, Jul 2014.
[28] A. Mirzal, “MF versus ICA for blind source separation,”Advances in Data Analysis and Classification, vol. 11, no. 1, pp. 25-48, 2014.
[29] D. M. Bjornstad et al., “egonia-A Two-Photon Imaging Analysis Pipeline for Astrocytic Ca(2+) Signals,”Front Cell Neurosci, vol. 15, p. 681066, 2021.
[30] F. Delestro, L. Scheunemann, M. Pedrazzani, P. Tchenio, T. Preat, and A. Genovesio, “n vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata,” Sci Rep, vol. 10, no. 1, p. 7153, Apr 2020.
[31] O. I. Ivashkina, A. M. Gruzdeva, M. A. Roshchina, K. A. Toropova, and K. V. Anokhin, “Imaging of C-fos Activity in Neurons of the Mouse Parietal Association Cortex during Acquisition and Retrieval of Associative Fear Memory,” Int J Mol Sci, vol. 22, no. 15, 2021.
[32] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and C. De Boor, “A practical guide to splines.” springer-verlag New York, 1978.
[33] J. M. Górriz, E. W. Lang, and J. Ramírez, “Recent advances in biomedical signal processing,” Bentham Science Publishers, 2011.
[34] O. Andrei,” 3D affine coordinate transformations,” 2006.
[35] Digital Signal Processing Committee of the IEEE® Acoustics, Speech, and Signal Processing Society, eds.” Programs for Digital Signal Processing, “New York: IEEE Press, 1979.
[36] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos Trans A Math Phys Eng Sci, vol. 374, no. 2065, p. 20150202, Apr 2016.
[37] Michael E. Wall, Andreas Rechtsteiner, Luis M. Rocha,”A Practical Approach to Microarray Data Analysis,” 2003.
[38] J. A. Hartigan, M. Wong, “A. Algorithm AS 136: A k-Means Clustering Algorithm.,” Journal of the Royal Statistical Society, Series C., 28 (1): 100–108, 1979.
[39] Ketchen, D. J., C. L. Shook, “The application of cluster analysis in Strategic Management Research: An analysis and critique”. Strategic Management Journal. 17 (6): 441–458,1996.
[40] T. Lee, A. Lee, L. Luo, “Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast,” Development.,126(18):4065-76., Sep 1999.
[41] D. Arthur, S. Vassilvitskii, “k-means++: the advantages of careful seeding,” ACM-SIAM symposium on Discrete algorithms, 2007.
[42] A. Hyvärinen and E. Oja, “Independent Component Analysis:Algorithms and Applications,” Neural Network, vol. 13, pp. 411-430, 2000.

[43] A. Cichocki, R. Zdunek, and S. Amari, “New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation,” 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 5, pp. V634-V624, 2006.
[44] S.-C. Wu, T.-H. Chan, M.-S. Hsieh, and C. Lin, “Quantum evolutionary algorithm and tabu search in pressurized water reactor loading pattern design,” Annals of Nuclear Energy, vol. 94, pp. 773-782, 2016.
[45] L. A. Chu et al., “Rapid single-wavelength lightsheet localization microscopy for clarified tissue,” Nat Commun, vol. 10, no. 1, p. 4762, Oct 18 2019.
[46] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis,” Human Brain Mapping, vol. 14, pp. 140-150, 2001.
[47] V. D. Calhoun, J. Liu, and T. Adali, “A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data,” Neuroimage, vol. 45, no. 1 Suppl, pp. S163-72, Mar 2009.
[48] R. P. WOODS, “Modeling for Intergroup Comparisons of Imaging,” Neuroimage, vol. 4, pp. S84-S94, 1996.
[49] S. Rachakonda, E. Egolf, N. Correa, and V. Calhoun, “Group ICA of fMRI Toolbox (GIFT) Manual,” 2007.
[50] Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” Neuroimage, vol. 22, no. 1, pp. 394-400, May 2004.
[51] X. Liu, X. H. Zhu, P. Qiu, and W. Chen, “A correlation-matrix-based hierarchical clustering method for functional connectivity analysis,” J Neurosci Methods, vol. 211, no. 1, pp. 94-102, Oct 2012.
[52] J. V. Cramer, B. Gesierich, S. Roth, M. Dichgans, M. During, and A. Liesz, “In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease,” Neuroimage, vol. 199, pp. 570-584, Oct 1 2019.
[53] J. B. Castro, A. Ramanathan, and C. S. Chennubhotla, “Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization,” PLoS One, vol. 8, no. 9, p. e73289, 2013.
[54] Kim, Jingu, Park, and Haesun, “Sparse Nonnegative Matrix Factorization for Clustering,” 2008.
[55] C. Tsung-Han, M. Wing-Kin, C. Chong-Yung, and W. Yue, “A Convex Analysis Framework for Blind Separation of Non-Negative Sources,” IEEE Transactions on Signal Processing, vol. 56, no. 10, pp. 5120-5134, 2008.
[56] D. D. Lee, H. S. Seung, “Algorithms for Non-negative Matrix Factorization,” NIPS.556--562, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *