|
[1] E. R. Kandel et al., “Principles of neural science,” McGraw-hill New York, 2000. [2] D. Mareschal et al., “Neuroconstructivism: How the brain constructs cognition,” Oxford University Press, 2007. [3] J. A. De Carlos and J. Borrell, “A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience,” Brain Res. Rev., vol. 55, no. 1, pp. 8-16, 2007. [4] N. T. H. U. Brain Research Center, “FlyCircuit 1.2.,” Brain Research Center, National Tsing Hua University, http://www.flycircuit.tw (accessed Dec 22, 2019). [5] H.-J. Park and K. Friston, “Structural and functional brain networks: from connections to cognition,” Science, vol. 342, no. 6158, p. 1238411, 2013. [6] L. Kahsai and T. Zars, “Learning and memory in Drosophila: behavior, genetics, and neural systems,” in International review of neurobiology, vol. 99: Elsevier,, pp. 139-167, 2011. [7] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, “Connectomic reconstruction of the inner plexiform layer in the mouse retina,” Nature, vol. 500, no. 7461, pp. 168-174, 2013. [8] Z. Zheng et al., “A complete electron microscopy volume of the brain of adult Drosophila melanogaster,” Cell, vol. 174, no. 3, pp. 730-743. e22, 2018. [9] C.-W. Lin et al., “Automated in situ brain imaging for mapping the Drosophila connectome,” J. Neurogenet., vol. 29, no. 4, pp. 157-168, 2015. [10] J. Akerboom et al., “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci., vol. 32, no. 40, pp. 13819-13840, 2012. [11] H. Dana et al., “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat. Methods, vol. 16, no. 7, pp. 649- 657, 2019. [12] C. Grienberger and A. Konnerth, “Imaging calcium in neurons,” Neuron, vol. 73, no. 5, pp. 862-885, 2012. [13] H. Lütcke and F. Helmchen, “Two-photon imaging and analysis of neural network dynamics,” Reports on Progress in Physics, vol. 74, no. 8, p. 086602, 2011. [14] T. C. Fadero et al., “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J Cell Biol, vol. 217, no. 5, pp. 1869-1882, May 7 2018. [15] Y. Wan, K. McDole, and P. J. Keller, “Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes,” Annu Rev Cell Dev Biol, vol. 35, pp. 655-681, Oct 6 2019. [16] S. R. Kain, M. Adams, A. Kondepudi, T. T. Yang, W. W. Ward, P. Kitts, “Green fluorescent protein as a reporter of gene expression and protein localization,” Biotechniques, 19(4):650-5, Oct 1995. [17] T.-W. Chen et al., “Ultra-sensitive fluorescent proteins for imaging neuronal activity,” Nature, vol. 499, pp. 295-300, 2013. [18] H. Dana et al., “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat Methods, vol. 16, no. 7, pp. 649-657, Jul 2019. [19] W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science, vol. 248, no. 4951, pp. 73-76, 1990. [20] S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging.” PNAS, 89 (13): 5675–79, 1992. [21] S. M. Smith, “Overview of fMRI analysis,” Br J Radiol, vol. 77 Spec No 2, pp. S167-75, 2004. [22] M. J. McKeown et al., “Spatially independent activity patterns in functional MRI data during the Stroop color-naming task,” Proc. Natl. Acad. Sci. USA, vol. 95, pp. 803-810, 1998. [23] M. J. McKeown, L. K. Hansen, and T. J. Sejnowski, “Independent component analysis of functional MRI , what is signal and what is noise?” Curr Opin Neurobiol, vol. 13, pp. 620-629, 2003. [24] C. e. Bordier, M. Dojat, and P. L. d. Micheaux, “emporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package,”Journal of Statistical Software, vol. 44, no. 9, 2011. [25] D. Kostadinov, M. Beau, M. Blanco-Pozo, and M. Hausser, “redictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells,”Nat Neurosci, vol. 22, no. 6, pp. 950-962, Jun 2019. [26] E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer, “Automated analysis of cellular signals from large-scale calcium imaging data,”Neuron, vol. 63, no. 6, pp. 747-60, Sep 2009. [27] R. Maruyama et al., “etecting cells using non-negative matrix factorization on calcium imaging data,”Neural Netw, vol. 55, pp. 11-9, Jul 2014. [28] A. Mirzal, “MF versus ICA for blind source separation,”Advances in Data Analysis and Classification, vol. 11, no. 1, pp. 25-48, 2014. [29] D. M. Bjornstad et al., “egonia-A Two-Photon Imaging Analysis Pipeline for Astrocytic Ca(2+) Signals,”Front Cell Neurosci, vol. 15, p. 681066, 2021. [30] F. Delestro, L. Scheunemann, M. Pedrazzani, P. Tchenio, T. Preat, and A. Genovesio, “n vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata,” Sci Rep, vol. 10, no. 1, p. 7153, Apr 2020. [31] O. I. Ivashkina, A. M. Gruzdeva, M. A. Roshchina, K. A. Toropova, and K. V. Anokhin, “Imaging of C-fos Activity in Neurons of the Mouse Parietal Association Cortex during Acquisition and Retrieval of Associative Fear Memory,” Int J Mol Sci, vol. 22, no. 15, 2021. [32] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and C. De Boor, “A practical guide to splines.” springer-verlag New York, 1978. [33] J. M. Górriz, E. W. Lang, and J. Ramírez, “Recent advances in biomedical signal processing,” Bentham Science Publishers, 2011. [34] O. Andrei,” 3D affine coordinate transformations,” 2006. [35] Digital Signal Processing Committee of the IEEE® Acoustics, Speech, and Signal Processing Society, eds.” Programs for Digital Signal Processing, “New York: IEEE Press, 1979. [36] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos Trans A Math Phys Eng Sci, vol. 374, no. 2065, p. 20150202, Apr 2016. [37] Michael E. Wall, Andreas Rechtsteiner, Luis M. Rocha,”A Practical Approach to Microarray Data Analysis,” 2003. [38] J. A. Hartigan, M. Wong, “A. Algorithm AS 136: A k-Means Clustering Algorithm.,” Journal of the Royal Statistical Society, Series C., 28 (1): 100–108, 1979. [39] Ketchen, D. J., C. L. Shook, “The application of cluster analysis in Strategic Management Research: An analysis and critique”. Strategic Management Journal. 17 (6): 441–458,1996. [40] T. Lee, A. Lee, L. Luo, “Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast,” Development.,126(18):4065-76., Sep 1999. [41] D. Arthur, S. Vassilvitskii, “k-means++: the advantages of careful seeding,” ACM-SIAM symposium on Discrete algorithms, 2007. [42] A. Hyvärinen and E. Oja, “Independent Component Analysis:Algorithms and Applications,” Neural Network, vol. 13, pp. 411-430, 2000. [43] A. Cichocki, R. Zdunek, and S. Amari, “New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation,” 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 5, pp. V634-V624, 2006. [44] S.-C. Wu, T.-H. Chan, M.-S. Hsieh, and C. Lin, “Quantum evolutionary algorithm and tabu search in pressurized water reactor loading pattern design,” Annals of Nuclear Energy, vol. 94, pp. 773-782, 2016. [45] L. A. Chu et al., “Rapid single-wavelength lightsheet localization microscopy for clarified tissue,” Nat Commun, vol. 10, no. 1, p. 4762, Oct 18 2019. [46] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis,” Human Brain Mapping, vol. 14, pp. 140-150, 2001. [47] V. D. Calhoun, J. Liu, and T. Adali, “A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data,” Neuroimage, vol. 45, no. 1 Suppl, pp. S163-72, Mar 2009. [48] R. P. WOODS, “Modeling for Intergroup Comparisons of Imaging,” Neuroimage, vol. 4, pp. S84-S94, 1996. [49] S. Rachakonda, E. Egolf, N. Correa, and V. Calhoun, “Group ICA of fMRI Toolbox (GIFT) Manual,” 2007. [50] Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” Neuroimage, vol. 22, no. 1, pp. 394-400, May 2004. [51] X. Liu, X. H. Zhu, P. Qiu, and W. Chen, “A correlation-matrix-based hierarchical clustering method for functional connectivity analysis,” J Neurosci Methods, vol. 211, no. 1, pp. 94-102, Oct 2012. [52] J. V. Cramer, B. Gesierich, S. Roth, M. Dichgans, M. During, and A. Liesz, “In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease,” Neuroimage, vol. 199, pp. 570-584, Oct 1 2019. [53] J. B. Castro, A. Ramanathan, and C. S. Chennubhotla, “Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization,” PLoS One, vol. 8, no. 9, p. e73289, 2013. [54] Kim, Jingu, Park, and Haesun, “Sparse Nonnegative Matrix Factorization for Clustering,” 2008. [55] C. Tsung-Han, M. Wing-Kin, C. Chong-Yung, and W. Yue, “A Convex Analysis Framework for Blind Separation of Non-Negative Sources,” IEEE Transactions on Signal Processing, vol. 56, no. 10, pp. 5120-5134, 2008. [56] D. D. Lee, H. S. Seung, “Algorithms for Non-negative Matrix Factorization,” NIPS.556--562, 2000.
|