|
1. Fielding, L.A., et al., Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chemical Communications, 2015. 51(95): p. 16886-16899. 2. Lu, T.-F., Fabrication and Characterization of Polyaniline Composite Capable of Instant Dual Chromism-Conductivity Transduction by Proton Radiation. 清華大學工程與系統科學碩士論文. 3. Huang, W.-S., B.D. Humphrey, and A.G. MacDiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986. 82(8): p. 2385-2400. 4. Wang, P.-C., et al., Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media. Reactive and Functional Polymers, 2009. 69(4): p. 217-223. 5. Inzelt, G., Conducting polymers: a new era in electrochemistry. 2012: Springer Science & Business Media. 6. Mohilner, D.M., R.N. Adams, and W.J. Argersinger, Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. Journal of the American Chemical Society, 1962. 84(19): p. 3618-3622. 7. Watanabe, A., et al., Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules, 1987. 20(8): p. 1793-1796. 8. Bhattacharya, S., et al., Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of microelectromechanical systems, 2005. 14(3): p. 590-597. 9. Wang, P.-C., et al., Transparent electrodes based on conducting polymers for display applications. Displays, 2013. 34(4): p. 301-314. 10. Wada, T., et al., Ion beam modification of conducting polymers. Synthetic Metals, 1987. 18(1-3): p. 585-590. 11. Wolszczak, M., J. Kroh, and M. Abdel-Hamid, Some aspects of the radiation processing of conducting polymers. Radiation Physics and Chemistry, 1995. 45(1): p. 71-78. 12. Yao, Q., L. Liu, and C. Li, High energy proton beam bombardment of polyaniline. Radiation Physics and Chemistry, 1993. 41(6): p. 791-795. 13. Yao, Q., L. Liu, and C. Li, Low energy proton implanted polyaniline. Radiation Physics and Chemistry, 1994. 44(4): p. 381-384. 14. tech, P.p.t., THE BRAGG PEAK. 2018. 15. Stejskal, J., P. Kratochvil, and N. Radhakrishnan, Polyaniline dispersions 2. UV—Vis absorption spectra. Synthetic Metals, 1993. 61(3): p. 225-231. 16. Du, X.-S., C.-F. Zhou, and Y.-W. Mai, Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. The Journal of Physical Chemistry C, 2008. 112(50): p. 19836-19840. 17. Guo, B., et al., Research on the preparation technology of polyaniline nanofiber based on high gravity chemical oxidative polymerization. Chemical Engineering and Processing: Process Intensification, 2013. 70: p. 1-8. 18. Mahat, M.M., et al., Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. Journal of Materials Chemistry C, 2015. 3(27): p. 7180-7186. 19. Wang, X., et al., Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. Journal of Materials Chemistry A, 2014. 2(31): p. 12323-12329. 20. Zhang, X., W.J. Goux, and S.K. Manohar, Synthesis of polyaniline nanofibers by “nanofiber seeding”. Journal of the American Chemical Society, 2004. 126(14): p. 4502-4503. 21. Bandgar, D., et al., Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films. Applied Nanoscience, 2014. 4(1): p. 27-36. 22. Wang, J. and D. Zhang, One‐Dimensional Nanostructured Polyaniline: Syntheses, Morphology Controlling, Formation Mechanisms, New Features, and Applications. Advances in Polymer Technology, 2013. 32(S1): p. E323-E368
|