|
[1] A. J. Lichtenberg, M. A. Lieberman, Principles of Plasma Discharges and Materials Processing. - 2nd edition. John Wiley & Sons. 2005. [2] J. P. Booth, M. A. Lieberman, P. Chabert, J. M. Rax, M. M. Turner, "Standing wave and skin effects in large-area, high-frequency capacitive discharges," Plasma Sources Science and Technology, vol. 11, no. 283, pp. 283-293, 2002. [3] P. Chabert, J. L. Raimbault, P. Levif, J. M. Rax and M. A. Lieberman, "Inductive heating and E to H transitions in high frequency capacitive discharges," Plasma Sources Science and Technology, vol. 15, no. 2, pp. 130-136, 2006. doi:10.1088/0963-0252/15/2/s15 [4] I. Lee, D. B. Graves, M. A. Lieberman, "Modeling electromagnetic effects in capacitive discharges," Plasma Sources Science and Technology, vol. 17, no. 1, 2008. doi:10.1088/0963-0252/17/1/015018 [5] M. N. Yuri, P. Razier, N. A. Yatsenko, Radio Frequency Capacitive Discharges. CRC Press. 1995 [6] N. X. Truyen, A. Ohta, K. Makihara, M. Ikeda, S. Miyazaki, "Effects of remote hydrogen plasma on chemical bonding features and electronic states of 4H-SiC(0001) surface," Japanese Journal of Applied Physics, vol. 56, no. 1S, 2017. doi: 10.7567/jjap.56.01af01 [7] V. Vahedi, C. K. Birdsall, M. A. Lieberman, G. DiPeso, and T. D. Rognlien, "Verification of frequency scaling laws for capacitive radio‐frequency discharges using two‐dimensional simulations," Physics of Fluids B: Plasma Physics, vol. 5, no. 7, pp. 2719-2729, 1993, doi: 10.1063/1.860711. [8] G. R. Misium, A. J. Lichtenberg, and M. A. Lieberman, "Macroscopic modeling of radio‐frequency plasma discharges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, no. 3, pp. 1007-1013, 1989, doi: 10.1116/1.576220. [9] M. Meyyappan, D. E. Murnick, M. J. Colgant, "Very high-frequency capacitively coupled argon discharges," Plasma Sources Science and Technology, vol. 3, pp. 181-189, 1994. [10] M. Meyyappan and M. J. Colgan, "Very high frequency capacitively coupled discharges for large area processing," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, no. 5, pp. 2790-2794, 1996, doi: 10.1116/1.580201. [11] M. Meyyappan and T. R. Govindan, "Radio frequency discharge modeling: Moment equations approach," Journal of Applied Physics, vol. 74, no. 4, pp. 2250-2259, 1993, doi: 10.1063/1.354708. [12] J. P. M. Schmitt, "Amorphous Silicon Deposition. Industrial And Technical Challenges " Thin Solid Films, vol. 174, pp. 193-202, 1989. [13] A. Pletzer, L. Sansonnens, D. Magni, A. A. Howling, Ch. Hollenstein, J. P. M. Schmitt, "A voltage uniformity study in large-area reactors for RF plasma deposition," Plasma Sources Sci. Technol., vol. 6, no. 170, pp. 170-178, 1997. [14] A. Perret, P. Chabert, J. P. Booth, J. Jolly, J. Guillon, and P. Auvray, "Ion flux nonuniformities in large-area high-frequency capacitive discharges," Applied Physics Letters, vol. 83, no. 2, pp. 243-245, 2003, doi: 10.1063/1.1592617. [15] S. Rauf, K. Bera, and K. Collins, "Self-consistent simulation of very high frequency capacitively coupled plasmas," Plasma Sources Science and Technology, vol. 17, no. 3, 2008, doi: 10.1088/0963-0252/17/3/035003. [16] E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, "Symmetry breaking in high frequency, symmetric capacitively coupled plasmas," Physics of Plasmas, vol. 25, no. 9, 2018, doi: 10.1063/1.5048947. [17] E. Kawamura, A. J. Lichtenberg, M. A. Lieberman, and A. M. Marakhtanov, "2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges," Plasma Sources Science and Technology, vol. 25, no. 3, 2016, doi: 10.1088/0963-0252/25/3/035007. [18] E. Kawamura, M. A. Lieberman, and D. B. Graves, "Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges," Plasma Sources Science and Technology, vol. 23, no. 6, 2014, doi: 10.1088/0963-0252/23/6/064003. [19] D.-Q. Wen, E. Kawamura, M. A. Lieberman, A. J. Lichtenberg, and Y.-N. Wang, "A nonlinear electromagnetics model of an asymmetrically-driven, low pressure capacitive discharge," Physics of Plasmas, vol. 24, no. 8, 2017, doi: 10.1063/1.4993798. [20] 連頌恩, "甚高頻電容式耦合矽烷/氫氣電漿模擬研究-電漿物理化學機制與操作參數關聯性之分析探討," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2013 [21] Y.-X. Liu, Y.-R. Zhang, A. Bogaerts, and Y.-N. Wang, "Electromagnetic effects in high-frequency large-area capacitive discharges: A review," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 33, no. 2, 2015, doi: 10.1116/1.4907926. [22] CFDRC, CFD-ACE+ V2020.0 Manual_Plasma Module. 2020. [23] "LXCat " https://fr.lxcat.net/home/ (accessed). [24] A. Bogaerts and R. Gijbels, "Hybrid Monte Carlo - fluid modeling network for an argon/hydrogen direct current glow discharge," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 57, pp. 1071-1099, Jun 2002. [25] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, Jan 1999. [26] I. Mendez, F. J. Gordillo-Vazquez, V. J. Herrero, and I. Tanarro, "Atom and ion chemistry in low pressure hydrogen DC plasmas," Journal of Physical Chemistry A, vol. 110, pp. 6060-6066, May 2006
|