帳號:guest(18.116.40.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳昌祐
作者(外文):Wu, Chang-Yu
論文名稱(中文):高頻低壓大面積電容式耦合電漿之駐波效應數值模擬研究分析
論文名稱(外文):Numerical Simulation Study of Effect of Standing Wave on Very High Frequency Low Pressure Large Area Capacitive Coupled Plasma
指導教授(中文):柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員(中文):李志浩
張家豪
口試委員(外文):Lee, Chih-Hao
Chang, Chia-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011549
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:191
中文關鍵詞:電容式耦合電漿源氫氣電漿電磁效應駐波效應集膚效應
外文關鍵詞:Capacitively Coupled PlasmaHydrogen PlasmaElectromagnetic EffectsStanding Wave EffectSkin Effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電容式耦合電漿源(Capacitively coupled plasma sources,簡稱CCP)具有大面積、均勻度較佳的優點,然而有著電子密度相對電感式耦合電漿源(Inductively-Coupled Plasma, ICP)來得低的缺點,因此提升操作頻率可以提高電子密度,然而操作頻率的提升,使得入射波長縮短,會造成電漿整體較集中於徑向中心的趨勢,是為駐波效應(Standing wave effect),而操作頻率提升使得中心電子密度提高,使得集膚效應(Skin effect)趨於明顯。本研究探討駐波效應對於電容式耦合電漿源(Capacitively coupled plasma sources,簡稱CCP)的電漿特性影響,由於高頻率造成入射波長縮短,使得腔體中的電磁效應趨於明顯,與過往使用靜電場所運算的結果有所差異。因此使用商業用模擬軟體CFD-ACE+,主要針對大面積電極CCP腔體為模型,模擬在高頻電漿源的情況下的駐波與集膚效應,觀察電子密度、電子溫度、電漿電位以及電磁場等參數的二維分布。
第一部份使用的氣體為電漿最常使用的氣體氬氣(Ar),探討考慮駐波效應的基本特性,電子密度來到1016 m-3,在徑向的電子密度分布上產生雙峰值的現象,電漿內主要能量為電磁場能量,即為典型駐波效應的現象,而由於集膚效應的顯著,使得電磁場分部集中於兩側電極表面上,最後與純靜電場CCP比較,由於純靜電場模型並不考慮腔體內的電磁效應,因此第二電漿區並不明顯,與考慮電磁效應的模型電漿密度徑向分布最大相差約13%。
第二部份使用氫氣(H2),並分別針對不同電極偏壓與不同氣壓做模擬與分析,整體的電磁效應特性與氬氣電漿類似,電極偏壓的上升使得集膚效應更明顯,第二電漿區峰值上升。而氣壓的上升使得電漿更集中於腔體中心,駐波效應趨於明顯,徑向均勻度不佳。與氬氣電漿相比,在相同操作參數下,密度相對僅有五分之一,電磁效應較為不明顯,而將氫氣電漿操作於與氬氣電漿相同級數,電子密度逕向分部皆有雙峰值的現象,電磁場能量皆於第二電漿區有最大值。而氫氣電漿為了與氬氣電漿有相似的密度,電極偏壓來到250 V,加壓電極端鞘層較厚,進入中心電漿區的電磁場較高,因此電磁場相較於氬氣電漿有較多場強度分布於中心電漿區。
Capacitively coupled plasma (CCP) sources have been widely used for material processing. The CCP has the drawback of lower electron density compared to Inductively coupled plasma(ICP), so increasing driving frequency is one of the solution. However, when the frequency increase, the insert wavelength will decrease and leading to standing- wave effects. Also, when the electron density is much higher, the electric field will be unable to penetrate the center plasma, this is due to skin effect. The edge of center plasma which is critical layer that the electric field will propagate through the surface of critical layer, then contributed at the Radial profile area, result in the nonuniformity of plasma.
In first part, the wave effect analysis with argon plasma had been discussed. In 100 MHz operating frequency, the peak of electron density is about 1016 m-3, and the standing wave effect leading the extra peak at the radial periphery of the plasma. Comparing to the model which ignored the electromagnetic effect, the secondary peak has about 13% higher.
The second part using Hydrogen to simulate and analysis the effect of bias and pressure at the electromagnetic effect. When the bias increased, the electron density increased, and also the skin effect, leading to the secondary plasma more significant. Higher pressure leading the plasma more concentrated at the radial center, which caused nonuniform of radial profile. Comparing to the argon plasma at same operating parameters, the electron density is 5 times lower, the electromagnetic effect is not significant. When controlling the electron density at same order, both hydrogen and argon plasma have two peaks of electron density at radial profile, and the largest electromagnetic power located at the secondary plasma. The hydrogen plasma is operated at 250 V in order to have the similar electron density with argon plasma, the sheath at driving frequency is thicker. The electromagnetic field is stronger at the chamber center compared to the argon plasma.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xviii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 高頻低壓電漿發展 4
2.2 大面積電極板的研究與影響 6
2.3 駐波效應與集膚效應的影響 11
2.4 文獻回顧結論 13
第三章 物理模型與研究方法 14
3.1 模擬軟體介紹 14
3.2 流體模型簡介 15
3.2.1 電子 16
3.2.2 離子與中性粒子 19
3.2.3 電磁場 21
3.3 駐波與集膚效應模型 22
3.4 模型幾何結構 24
3.4.1 邊界條件 25
3.4.2 初始條件 27
3.5 反應式資料庫 28
3.5.1 粒子與電子碰撞 28
3.5.2 粒子表面反應式 29
第四章 氬氣電漿模擬研究結果與分析 33
4.1 氬氣電漿駐波效應起始條件與參數設定 33
4.2 氬氣電漿駐波效應電漿模擬結果分析 34
4.2.1 氬氣電漿基本放電特性分析 34
4.2.2 氬氣電漿週期性靜電場特性與分析 41
4.2.3 氬氣電漿駐波與集膚效應分析 45
4.3 駐波與集膚效應對氬氣電漿模擬結果影響與比較 53
第五章 氫氣電漿模擬研究結果與分析 62
5.1 氫氣電漿駐波效應模型基本分析 63
5.1.1 氫氣電漿基本放電特性 64
5.1.2 氫氣電漿駐波與集膚效應分析 69
5.1.3 氫氣電漿活性粒子分析 77
5.2 不同電極偏壓對氫氣電漿影響模擬結果分析 88
5.2.1 不同電極偏壓下氫氣電漿基本放電特性分析 90
5.2.2 不同電極偏壓下氫氣電漿駐波與集膚效應分析與比較 101
5.2.3 不同電極偏壓下氫氣電漿活性例子分析 119
5.3 不同操作氣壓對氫氣電漿影響模擬結果分析 121
5.3.1 不同氣壓下氫氣電漿基本放電特性分析 123
5.3.2 不同氣壓下氫氣電漿駐波與集膚效應分析與比較 135
5.3.3 不同氣壓下氫氣電漿活性例子分析 153
第六章 氬氣與氫氣電漿之分子效應 155
6.1 氬氣電漿與氫氣電漿之電漿特性分布 155
6.2 氬氣電漿與氫氣電漿之分子特性探討 165
6.3 氫氣電漿增加電極偏壓之電漿特性趨勢探討 166
第七章 結論 176
7.1 總結 176
參考文獻 178
附錄A 182
附錄B 184
B.1 離子能量分布函數設定 184
B.2 離子能量分布模擬探討 189
附錄C 190
[1] A. J. Lichtenberg, M. A. Lieberman, Principles of Plasma Discharges and Materials Processing. - 2nd edition. John Wiley & Sons. 2005.
[2] J. P. Booth, M. A. Lieberman, P. Chabert, J. M. Rax, M. M. Turner, "Standing wave and skin effects in large-area, high-frequency capacitive discharges," Plasma Sources Science and Technology, vol. 11, no. 283, pp. 283-293, 2002.
[3] P. Chabert, J. L. Raimbault, P. Levif, J. M. Rax and M. A. Lieberman, "Inductive heating and E to H transitions in high frequency capacitive discharges," Plasma Sources Science and Technology, vol. 15, no. 2, pp. 130-136, 2006. doi:10.1088/0963-0252/15/2/s15
[4] I. Lee, D. B. Graves, M. A. Lieberman, "Modeling electromagnetic effects in capacitive discharges," Plasma Sources Science and Technology, vol. 17, no. 1, 2008. doi:10.1088/0963-0252/17/1/015018
[5] M. N. Yuri, P. Razier, N. A. Yatsenko, Radio Frequency Capacitive Discharges. CRC Press. 1995
[6] N. X. Truyen, A. Ohta, K. Makihara, M. Ikeda, S. Miyazaki, "Effects of remote hydrogen plasma on chemical bonding features and electronic states of 4H-SiC(0001) surface," Japanese Journal of Applied Physics, vol. 56, no. 1S, 2017. doi: 10.7567/jjap.56.01af01
[7] V. Vahedi, C. K. Birdsall, M. A. Lieberman, G. DiPeso, and T. D. Rognlien, "Verification of frequency scaling laws for capacitive radio‐frequency discharges using two‐dimensional simulations," Physics of Fluids B: Plasma Physics, vol. 5, no. 7, pp. 2719-2729, 1993, doi: 10.1063/1.860711.
[8] G. R. Misium, A. J. Lichtenberg, and M. A. Lieberman, "Macroscopic modeling of radio‐frequency plasma discharges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, no. 3, pp. 1007-1013, 1989, doi: 10.1116/1.576220.
[9] M. Meyyappan, D. E. Murnick, M. J. Colgant, "Very high-frequency capacitively coupled argon discharges," Plasma Sources Science and Technology, vol. 3, pp. 181-189, 1994.
[10] M. Meyyappan and M. J. Colgan, "Very high frequency capacitively coupled discharges for large area processing," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 14, no. 5, pp. 2790-2794, 1996, doi: 10.1116/1.580201.
[11] M. Meyyappan and T. R. Govindan, "Radio frequency discharge modeling: Moment equations approach," Journal of Applied Physics, vol. 74, no. 4, pp. 2250-2259, 1993, doi: 10.1063/1.354708.
[12] J. P. M. Schmitt, "Amorphous Silicon Deposition. Industrial And Technical Challenges " Thin Solid Films, vol. 174, pp. 193-202, 1989.
[13] A. Pletzer, L. Sansonnens, D. Magni, A. A. Howling, Ch. Hollenstein, J. P. M. Schmitt, "A voltage uniformity study in large-area reactors for RF plasma deposition," Plasma Sources Sci. Technol., vol. 6, no. 170, pp. 170-178, 1997.
[14] A. Perret, P. Chabert, J. P. Booth, J. Jolly, J. Guillon, and P. Auvray, "Ion flux nonuniformities in large-area high-frequency capacitive discharges," Applied Physics Letters, vol. 83, no. 2, pp. 243-245, 2003, doi: 10.1063/1.1592617.
[15] S. Rauf, K. Bera, and K. Collins, "Self-consistent simulation of very high frequency capacitively coupled plasmas," Plasma Sources Science and Technology, vol. 17, no. 3, 2008, doi: 10.1088/0963-0252/17/3/035003.
[16] E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, "Symmetry breaking in high frequency, symmetric capacitively coupled plasmas," Physics of Plasmas, vol. 25, no. 9, 2018, doi: 10.1063/1.5048947.
[17] E. Kawamura, A. J. Lichtenberg, M. A. Lieberman, and A. M. Marakhtanov, "2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges," Plasma Sources Science and Technology, vol. 25, no. 3, 2016, doi: 10.1088/0963-0252/25/3/035007.
[18] E. Kawamura, M. A. Lieberman, and D. B. Graves, "Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges," Plasma Sources Science and Technology, vol. 23, no. 6, 2014, doi: 10.1088/0963-0252/23/6/064003.
[19] D.-Q. Wen, E. Kawamura, M. A. Lieberman, A. J. Lichtenberg, and Y.-N. Wang, "A nonlinear electromagnetics model of an asymmetrically-driven, low pressure capacitive discharge," Physics of Plasmas, vol. 24, no. 8, 2017, doi: 10.1063/1.4993798.
[20] 連頌恩, "甚高頻電容式耦合矽烷/氫氣電漿模擬研究-電漿物理化學機制與操作參數關聯性之分析探討," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2013
[21] Y.-X. Liu, Y.-R. Zhang, A. Bogaerts, and Y.-N. Wang, "Electromagnetic effects in high-frequency large-area capacitive discharges: A review," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 33, no. 2, 2015, doi: 10.1116/1.4907926.
[22] CFDRC, CFD-ACE+ V2020.0 Manual_Plasma Module. 2020.
[23] "LXCat " https://fr.lxcat.net/home/ (accessed).
[24] A. Bogaerts and R. Gijbels, "Hybrid Monte Carlo - fluid modeling network for an argon/hydrogen direct current glow discharge," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 57, pp. 1071-1099, Jun 2002.
[25] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, Jan 1999.
[26] I. Mendez, F. J. Gordillo-Vazquez, V. J. Herrero, and I. Tanarro, "Atom and ion chemistry in low pressure hydrogen DC plasmas," Journal of Physical Chemistry A, vol. 110, pp. 6060-6066, May 2006
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *