帳號:guest(3.17.81.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏宏宇
作者(外文):Yan, Hong-Yu
論文名稱(中文):雙波長光聚合成型技術的開發及三維剛柔複合結構的製造
論文名稱(外文):Development of dual-wavelength DLP stereolithography and its application in 3D printing of tough and elastic composite structures
指導教授(中文):蘇育全
指導教授(外文):Su, Yu-Chuan
口試委員(中文):陳紹文
陳宗麟
口試委員(外文):Chen, Shao-Wen
Chen, Tsung-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011546
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:79
中文關鍵詞:光刻技術3D列印雙波長DLP多材料
外文關鍵詞:DLP stereolithography3D printingdual-wavelength DLPcomposite structures
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
複合材料是由兩種或兩種以上的材料,經過整合製程產生的多相材料,各種材料在特性上截長補短,並依空間配置產生協同效應,使複合後的綜合性能優於單一組成材料,滿足工程上的各種不同需求。本研究開發的雙波長光聚合成型技術,所使用的液態原料中同時包含自由基型與陽離子型兩種高分子聚合反應的光起始劑、單體、預聚物和添加劑,能以藍光選擇性啟動自由基型丙烯酸系彈性樹脂的聚合與固化,並有紫外光能同時啟動丙烯酸系彈性樹脂與陽離子型環氧樹脂的聚合與固化,兩種反應獨立進行不會互相干擾。其中固化後的丙烯酸系彈性樹脂具有良好的延展性,環氧樹脂具有高強度與韌性。使用動態影像曝光固化沉積的方式,精確定義兩相材料的空間配置,透過堆疊快速成型剛柔並具,能產生大變形量並有足夠韌性的非等向性複合結構。
使用本研究開發的雙波長光聚合成型技術,以紫外光成型的複合材料其彈性係數比以藍光成型的單一丙烯酸系彈性樹脂高了400倍以上,陽離子型環氧樹脂在結構中可發揮類似骨架的效果,程式化複合結構的變形特性。據此我們設計並製作了二維拉伸的薄板複合結構、三維受壓鼓起的薄膜複合結構、以及三維密閉受壓變形的中空複合結構。其中薄板複合結構的彈性係數和韌性可依環氧樹脂骨架的體積比例和幾何形狀進行調整,這些特性在拉伸過程中還可透過骨架的交互作用逐步提升。三維受壓鼓起的薄膜複合結構在提高環氧樹脂骨架的體積比例,並搭配幾何形狀設計後,能提高其韌性並加強非等向性的變形反應。三維密閉受壓變形的中空複合結構在整合環氧樹脂骨架後,能依設計產生伸長、彎曲、與扭轉等各種制動效果。本研究的成果可望滿足自動化與穿戴裝置等應用的多項需求,對軟性機械的發展產生具體的貢獻。
A composite material is a multiphase material produced from two or more constituent materials through an integration process. These constituent materials have notably dissimilar properties and are merged to create a composite material with overall properties tailored by the spatial configuration. We have developed a dual-wavelength DLP stereolithography technique that produces composite structures from a hybrid resin containing both free-radical and cationic types of photoinitiators, monomers, oligomers, and various additives. Both polymerization processes can be initiated independently using UV light to form rigid composite, while free-radical polymerization is selectively initiated using blue light to form elastic polyurethane. As such, dynamic and dual-wavelength image exposure can be utilized to precisely define the geometry of elastic polyurethane structures and the spatial distribution of rigid composite embedded inside the structures.

We have successfully demonstrated (1) a novel additive manufacturing scheme that can fabricate multi-material 3D structures, (2) a composite resin of soft polyurethane and hard epoxy that can be photo-cured with free radical and cationic polymerization independently, and (3) the 3D printing of anisotropic composite structures with large deformation and sufficient toughness. The elastic modulus of the rigid composite formed by UV exposure is measured to be more than 400 times higher than that of the elastic polyurethane formed by blue light exposure. As such, the rigid composite structures can function like skeletons in the printed structures. Based on this, we have designed and fabricated composite structures of 2D stretchable sheets, 2D expandable diaphragms, and 3D deformable hollow structures. The elastic modulus and toughness of these composite structures can be tailored using the volume ratios and geometric shapes of the rigid skeletons, and these properties can be gradually improved through the interaction of the skeletons during the deforming processes. By integrating rigid composite skeletons, the 3D hollow structures can produce various deformation such as elongation, bending, and torsion according to the design. As such, skeletons embedded pneumatic actuators with sophisticated control functions could potentially be realized.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
第一章、緒論 1
1.1 前言 1
1.2 光固化三維列印 2
1.3 光聚合反應 3
1.3.1 自由基型聚合反應(Free radical polymerization) 3
1.3.2 陽離子型聚合反應(Cationic polymerization) 3
1.3.3 陽離子溫度的影響 4
1.3.4 陽離子開環聚合反應 4
1.4 研究動機與目的 5
第二章、文獻回顧 6
2.1 高分子聚合物 6
2.2 複合材料 3D 列印 7
2.2.1 複合材料的製造與準備 7
2.2.2 自由基和陽離子雙重固化 9
2.2.3 複合材料結構的特性拉伸 11
2.2.4 複合材料結構設計 12
2.3 獨立式雙波長的3D列印 13
2.3.1 生成內部剛度梯度 13
2.3.2 剛度的控制 14
2.4 密閉式柱狀結構 16
2.4.1 3D結構設計測試 16
2.4.2 柱狀結構彎曲力的量測 17
2.5 軟性機器人 19
2.5.1 軟性機器人製造技術 19
2.5.2 軟性機器人的纖維結構 20
2.5.3 軟性機器人運動行為 20
2.6 多材料光固化的空間控制 21
2.6.1 多材料選擇 21
2.6.2 3D壓縮測試 23
2.6.3 4D列印 25
第三章、實驗原理與設計 27
3.1 實驗機台介紹 27
3.1.1 雙波長光機 29
3.1.2 DLP製造流程 30
3.1.3 拉伸試驗機台介紹 32
3.1.4 其他實驗設備與儀器 33
3.2 實驗材料介紹 33
3.2.1 自由基型材料成分 33
3.2.2 陽離子型材料成分 36
3.2.3 R1成份 39
3.3 自由基型/陽離子型材料製程 40
3.3.1 自由基型材料製程 40
3.3.2 陽離子型材料製程 41
3.3.3 複合材料(自由基/陽離子型)製程 42
第四章、研究結果與分析 46
4.1 複合材料光固化成型 46
4.2 二維結構拉伸測試 48
4.2.1 不同時間下的拉伸測試 48
4.2.2 二維幾何結構的拉伸實驗 51
4.2.3 二維幾何結構的設計 53
4.3 三維結構薄膜加壓 56
4.3.1 彈性體的薄膜加壓 57
4.3.2 骨架0 58
4.3.3 骨架1 60
4.3.4 骨架2 62
4.3.5 骨架3 64
4.3.6 三維薄膜加壓討論 66
4.4 三維結構膨脹應用 67
4.4.1 純彈性體的加壓膨脹 68
4.4.2 加入兩個半圓環(無脊椎)骨架的圓柱體 69
4.4.3 加入兩個半圓環(有脊椎)骨架的圓柱體 70
第五章、結論 72
5.1 複合材料 72
5.2 二維結構的拓展 72
5.3 三維結構的應用 73
第六章、未來建議 75
6.1 複合配方的改良 75
6.2 三維應用的擴展 76
參考資料 77
1. Liu, F.-H.: ‘High-Resolution Rapid DLP StereoLithography of Tough Alginate Composite Hydrogels’, 2020, pp. 5
2. Kottisch, V., Michaudel, Q., and Fors, B.P.: ‘Photocontrolled Interconversion of Cationic and Radical Polymerizations’, Journal of the American Chemical Society, 2017, 139, (31), pp. 10665-10668
3. Zhang, Z., Corrigan, N., and Boyer, C.: ‘A Photoinduced Dual-Wavelength Approach for 3D Printing and Self-Healing of Thermosetting Materials’, Angewandte Chemie International Edition, 2022, 61, (11), pp. e202114111
4. 维基百科编者: ‘陽離子聚合反應’, in Editor (Ed.)^(Eds.): ‘Book 陽離子聚合反應’ (edn.), pp.
5. Schmidleithner, C., Zhang, R., Taebnia, N., Larsen, E.K.U., Almdal, K., and Larsen, N.B.: ‘High Resolution Dual Material Stereolithography for Monolithic Microdevices’, Advanced Materials Technologies, 2022, 7, (6), pp. 2101180
6. Ren, N., Ge, M., Tong, G., and Zhu, X.: ‘Advancing from unimechanism polymerization to multimechanism polymerization: binary polymerization’, Science China Chemistry, 2022, 65, (3), pp. 602-610
7. Choi, J.-W., Kim, H.-C., and Wicker, R.: ‘Multi-material stereolithography’, Journal of Materials Processing Technology, 2011, 211, (3), pp. 318-328
8. Choi, J.-W., MacDonald, E., and Wicker, R.: ‘Multi-material microstereolithography’, The International Journal of Advanced Manufacturing Technology, 2010, 49, (5), pp. 543-551
9. Schaffner, M., Faber, J.A., Pianegonda, L., Rühs, P.A., Coulter, F., and Studart, A.R.: ‘3D printing of robotic soft actuators with programmable bioinspired architectures’, Nature Communications, 2018, 9, (1), pp. 878
10. Zhou, L., Ren, L., Chen, Y., Niu, S., Han, Z., and Ren, L.: ‘Bio-Inspired Soft Grippers Based on Impactive Gripping’, Advanced Science, 2021, 8, (9), pp. 2002017
11. Wang, B., Engay, E., Stubbe, P.R., Moghaddam, S.Z., Thormann, E., Almdal, K., Islam, A., and Yang, Y.: ‘Stiffness control in dual color tomographic volumetric 3D printing’, Nature Communications, 2022, 13, (1), pp. 367
12. Larsen, E.K.U., Larsen, N.B., Almdal, K., Larsen, E.K.U., Larsen, N.B., and Almdal, K.: ‘Multimaterial hydrogel with widely tunable elasticity by selective photopolymerization of PEG diacrylate and epoxy monomers’, Journal of Polymer Science Part B: Polymer Physics, 2016, 54, (13), pp. 1195-1201
13. Dolinski, N.D., Page, Z.A., Callaway, E.B., Eisenreich, F., Garcia, R.V., Chavez, R., Bothman, D.P., Hecht, S., Zok, F.W., and Hawker, C.J.: ‘Solution Mask Liquid Lithography (SMaLL) for One-Step, Multimaterial 3D Printing’, Advanced Materials, 2018, 30, (31), pp. 1800364
14. Hoekstra, D.C., Lubbe, B.P.A.C., Bus, T., Yang, L., Grossiord, N., Debije, M.G., and Schenning, A.P.H.J.: ‘Wavelength‐Selective Photopolymerization of Hybrid Acrylate‐Oxetane Liquid Crystals’, Angewandte Chemie, 2021, 133, (19), pp. 11030-11036
15. Peele, B., Wallin, T., Zhao, H., and Shepherd, R.: ‘3D printing antagonistic systems of artificial muscle using projection stereolithography’, Bioinspiration & biomimetics, 2015, 10, pp. 055003
16. Mangan, R., and Destrade, M.: ‘Gent models for the inflation of spherical balloons’, International Journal of Non-Linear Mechanics, 2015, 68, pp. 52-58
17. Martinez, R.V., Branch, J.L., Fish, C.R., Jin, L., Shepherd, R.F., Nunes, R.M.D., Suo, Z., and Whitesides, G.M.: ‘Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers’, Advanced Materials, 2013, 25, (2), pp. 205-212
18. Schwartz, J.J., and Boydston, A.J.: ‘Multimaterial actinic spatial control 3D and 4D printing’, Nature Communications, 2019, 10, (1), pp. 791
19. Zhang, J., Wang, S., Lalevée, J., Morlet-Savary, F., Lam, E.S.-H., Graff, B., Liu, J., Xing, F., and Xiao, P.: ‘1,2-Diketones as photoinitiators of both cationic and free-radical photopolymerization under UV (392 nm) or Blue (455 nm) LEDs’, Journal of Polymer Science, 2020, 58, (6), pp. 792-802
20. You, J., Du, Y., Xue, T., Bao, B., Hu, T., Ye, Y., and Wang, T.: ‘The three-component photoinitiating systems based on flavonol sulfonate and application in 3D printing’, Dyes and Pigments, 2022, 197, pp. 109899
21. Lee, H.M., Lee, K.K., and Yoon, G.H.: ‘Topography and size optimization of composite structure to control buckling temperature and thermal buckling mode shape’, Thin-Walled Structures, 2022, 171, pp. 108686
22. Park, S., Shou, W., Makatura, L., Matusik, W., and Fu, K.: ‘3D printing of polymer composites: Materials, processes, and applications’, Matter, 2022, 5, (1), pp. 43-76
23. Chan, V., Jeong, J.H., Bajaj, P., Collens, M., Saif, T., Kong, H., and Bashir, R.: ‘Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography’, Lab Chip, 2012, 12, (1), pp. 88-98
24. Wu, J., Zhao, Z., Kuang, X., Hamel, C.M., Fang, D., and Qi, H.J.: ‘Reversible shape change structures by grayscale pattern 4D printing’, Multifunctional Materials, 2018, 1, (1), pp. 015002
25. Liu, Y., Sun, A., Sridhar, S., Li, Z., Qin, Z., Liu, J., Chen, X., Lu, H., Tang, B.Z., and Xu, B.B.: ‘Spatially and Reversibly Actuating Soft Gel Structure by Harnessing Multimode Elastic Instabilities’, ACS Applied Materials & Interfaces, 2021, 13, (30), pp. 36361-36369
26. Peng, X., Kuang, X., Roach, D.J., Wang, Y., Hamel, C.M., Lu, C., and Qi, H.J.: ‘Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices’, Additive Manufacturing, 2021, 40
27. Huntley, H.E., Wineman, A.S., and Rajagopal, K.R.: ‘Load maximum behavior in the inflation of hollow spheres of incompressible material with strain-dependent damage’, Quarterly of Applied Mathematics, 2001, 59, (2), pp. 193-223
28. Zhao, H., Li, Y., Elsamadisi, A., and Shepherd, R.: ‘Scalable manufacturing of high force wearable soft actuators’, Extreme Mechanics Letters, 2015, 3, pp. 89-104
29. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., and Walsh, C.J.: ‘Towards a soft pneumatic glove for hand rehabilitation’, in Editor (Ed.)^(Eds.): ‘Book Towards a soft pneumatic glove for hand rehabilitation’ (2013, edn.), pp. 1512-1517

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *