帳號:guest(18.220.188.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃國恆
作者(外文):Huang, Guo-Heng
論文名稱(中文):次毫秒雷射退火對於以銅修飾鈀奈米觸媒成長於氧化鈷載體之結構變化
論文名稱(外文):Effects of Sub-millisecond Laser Annealing on Structure Variation of Cu-clusters decoration on Co-oxide Supported Pd Nanocatalyst
指導教授(中文):陳燦耀
指導教授(外文):Chen, tsan-yao
口試委員(中文):林明緯
陳柏均
王冠文
口試委員(外文):Lin, Ming-wei
Chen, Po-Chun
Wang, Kuan-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011545
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:88
中文關鍵詞:奈米觸媒雷射退火
外文關鍵詞:NanocatalystLaser annealing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:399
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究分為兩階段,第一階段研究以濕式化學還原法,使用NaBH4作為還原劑,在活性碳上成長出五種不同銅比例之鈷鈀銅三層式奈米顆粒,樣品中鈷鈀金屬莫爾比為1:1,銅金屬原子則為鈷原子之0.025、0.05、0.1、0.2、0.3,所製作之樣品分別命名為CPC0025、CPC005、CPC01、CPC02及CPC03。由電化學分析推定其表面組成與電性後,使用X光光電子能譜與高解析穿透式電子顯微鏡進一步確認表面組成,再以X光吸收光譜與X光繞射儀分析其局部結構,如:化學態、有序性及周圍環境等,最後使用氣相層析儀進行分析,判斷其作為二氧化碳還原反應奈米觸媒之應用性。
第二階段以1 mJ/pluse及10 mJ/pluse次毫秒雷射退火對CPC0025、CPC01及CPC03進行退火。實驗結果顯示不同能量的雷射使原子能夠移動的距離不同,在1 mJ/pluse雷射退火後表面的銅原子分散幫助鈷與鈀原子的金屬態增加,銅自身的氧化態增加,同時鈀原子的有序性得到提升;10 mJ/pluse雷射退火後表面的銅原子則會產生聚集,鈷與鈀原子會再次氧化,銅自身的金屬態上升,由於得到更大的能量鈀原子排列能夠變得更加整齊。更高比例銅原子使上述效應影響更大,更厚的銅原子則需要更高能量的退火才能將氧化銅還原為金屬。作為二氧化碳還原奈米觸媒的應用,CPC0025在10 mJ/pluse雷射退火後可以提高一氧化碳及甲烷產量,1 mJ/pluse的雷射退火則可使CPC01對於甲烷的選擇性更好。
This research is divided into two parts. In the first part, activated carbon supported CoPdCu ternary nanoparticles were synthesized by a wet chemical reduction method with different molar ratios. The molar ratios were respectively 1:1:0.025, 1:1:0.05, 1:1:0.1, 1:1:0.2, 1:1:0.3 (namely CPC0025 - CPC03). To characterize the CoPdCu nanoparticles, used electrochemical analysis to confirm the chemical compound on the particle’s surface. Then used X-ray absorption spectroscopy and X-ray diffraction to analysis the fine structure, ex: chemical state, ordering and surrounding environment. At last, gas chromatography was used for determining the applicability as the nanocatalysts for CO2 reduction reaction.
In the second part, 1 mJ/pluse and 10 mJ/pluse sub-millisecond laser annealing were used to anneal CPC0025, CPC01 and CPC03. Experimental results show that lasers of different energy let atoms moved different distances. After 1 mJ/pluse laser annealing, the Cu on the surface dispersed, which can increase the metal state of Co and Pd surface. The oxidation state of Cu increased, and the ordering of Pd improved; After 10 mJ/pluse laser annealing, the Cu on the surface gathered and grew together, which can increase the oxidation state of Co and Pd surface. The metal state of Cu increased, and Pd arrangement became more orderly due to greater energy. The higher amount of Cu made the above-mentioned effect greater, and the thicker Cu thickness required higher annealing energy to reduce the Cu oxide to the metal. As the application of nanocatalysts for CO2 reduction, CPC0025 can increase the production of CO and CH4 after 10 mJ/pluse laser annealing, and 1 mJ/pluse laser annealing let CPC01 selectivity for methane better.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 不同金屬間相互擴散係數 2
1.3 熱退火、快速熱退火及雷射退火之比較 3
第二章 文獻回顧 5
2.1 前言 5
2.2 熱退火對奈米顆粒的影響 5
2.3 快速熱退火對奈米顆粒的影響 6
2.4 雷射退火對奈米顆粒的影響 8
2.4.1 連續波雷射與脈衝雷射 8
2.4.2 脈衝時寬 10
2.5 實驗動機 10
2.6 文獻回顧總結 11
第三章 實驗方法 13
3.1 前言 13
3.2 實驗設計 13
3.2.1 實驗研究方向 13
3.2.2 實驗藥品 14
3.2.3 熱退火處理 14
3.2.4 次毫秒雷射退火處理 15
3.3 實驗流程 16
3.4 材料結構分析 17
3.4.1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 17
3.4.2 X光繞射分析(X-ray Diffraction, XRD) 19
3.4.3 X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 22
3.4.4 X光光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 24
3.5 電化學分析 27
3.5.1 循環伏安法(Cyclic Voltammetry, CV) 28
3.5.2 一氧化碳剝離試驗(CO-Stripping) 30
3.6 氣相層析儀(Gas Chromatography) 31
第四章 結果與討論 33
4.1 不同比例銅修飾之氧化鈷負載鈀奈米顆粒結構分析 34
4.1.1 不同比例銅修飾之氧化鈷負載鈀奈米顆粒X光光電子能譜(X-Ray Photoelectron Spectroscopy) 34
4.1.2 不同比例銅修飾之氧化鈷負載鈀奈米顆粒電化學分析(Electrochemical testing) 35
4.1.3 不同比例銅修飾之氧化鈷負載鈀奈米顆粒高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscopy) 39
4.1.4 不同比例銅修飾之氧化鈷負載鈀奈米顆粒X光吸收光譜(X-Ray Absorption Spectroscopy) 40
4.1.5 不同比例銅修飾之氧化鈷負載鈀奈米顆粒X光繞射(X-Ray Diffraction) 48
4.1.6 不同比例銅修飾之氧化鈷負載鈀奈米顆粒氣相層析儀(Gas Chromatography) 53
4.2 次毫秒雷射退火對鈷鈀銅金屬觸媒之影響 55
4.2.1 次毫秒雷射退火之鈷鈀銅金屬觸媒X光光電子能譜(X-Ray Photoelectron Spectroscopy) 55
4.2.2 次毫秒雷射退火之鈷鈀銅金屬觸媒電化學分析(Electrochemical testing) 57
4.2.3 次毫秒雷射退火之鈷鈀銅金屬觸媒高解析穿透式電子顯微鏡(High Resolution Transmission Electron Microscopy) 63
4.2.4 次毫秒雷射退火之鈷鈀銅金屬觸媒X光吸收光譜(X-Ray Absorption Spectroscopy) 66
4.2.5 次毫秒雷射退火之鈷鈀銅金屬觸媒氣相層析儀(Gas Chromatography) 79
第五章 結論 84
第六章 未來工作與建議 86
第七章 參考資料 87

1. Liu, Y., Liang, D., Du, Y., Zhang, L., & Yu, D. (2009). Mobilities and diffusivities in fcc Co–X (X=Ag, Au, Cu, Pd and Pt) alloys. Calphad, 33, 695–703.
2. Chakraborty, J., Welzel, U., & Mittemeijer, E. J. (2010). Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples. Thin Solid Films, 518(8), 2010-2020.
3. Schmidt, B., & Wetzig, K. (2013). Materials Processing. In B. Schmidt & K. Wetzig (Eds.), Ion Beams in Materials Processing and Analysis (pp. 117-251). Springer Vienna.
4. Jin, Z., Nackashi, D., Lu, W., Kittrell, C., & Tour, J. M. (2010). Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets. Chemistry of Materials, 22(20), 5695-5699.
5. Lim, T. H., McCarthy, D., Hendy, S. C., Stevens, K. J., Brown, S. A., & Tilley, R. D. (2009). Real-Time TEM and Kinetic Monte Carlo Studies of the Coalescence of Decahedral Gold Nanoparticles. ACS Nano, 3(11), 3809-3813.
6. Narsinga Rao, G., Yao, Y. D., & Chen, J. W. (2009). Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing. Journal of Applied Physics, 105(9), 093901.
7. Zeng, H., Sun, S., Sandstrom, R. L., & Murray, C. (2003). Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. Journal of Magnetism and Magnetic Materials, 266, 227-232.
8. Ding, Y., Fan, F., Tian, Z., & Wang, Z. L. (2010). Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles. Journal of the American Chemical Society, 132(35), 12480-12486.
9. Chen, X., Chen, Y., Dai, J., Yan, M., Zhao, D., Li, Q., & Qiu, M. (2014). Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing [10.1039/C3NR05745C]. Nanoscale, 6(3), 1756-1762.
10. Hodak, J. H., Henglein, A., Giersig, M., & Hartland, G. V. (2000). Laser-Induced Inter-Diffusion in AuAg Core−Shell Nanoparticles. The Journal of Physical Chemistry B, 104(49), 11708-11718.
11. Myers, H.P. (1990). Introductory Solid State Physics (1st ed.). Taylor & Francis. 1997
12. Koningsberger, D C, & Prins, R. X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988
13. Ong, A. L., Inglis, K. K., Whelligan, D. K., Murphy, S., & Varcoe, J. R. (2015). Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm−3) [10.1039/C4CP04973J]. Physical Chemistry Chemical Physics, 17(18), 12135-12145.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *