|
[1] M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, “Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis”, Catalysts, vol. 9, 2019, pp. 275. [2] A. Galadima, O. Muraza, “Catalytic thermal conversion of CO2 into fuels: Perspective and challenges”, Renewable and Sustainable Energy Reviews, vol. 115, 2019, pp. 109-133. [3] S. Das, J. Pe´rez-Ramı´rez, J. Gong, N. Dewangan, K. Hidajat, B.C. Gates, S. Kawi, “Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2”, Chemical Society Reviews, vol. 49, 2020, pp. 2937-3004. [4] W. Wang, S. Wang, X. Ma, J. Gong, “Recent advances in catalytic hydrogenation of carbon dioxide”, Chemical Society Reviews, vol. 40, 2011, pp. 3703–3727. [5] G. Centi, S. Perathoner, “Opportunities and prospects in the chemical recycling of carbon dioxide to fuels”, Catalysis Today,vol. 148, 2009, pp. 191–205. [6] W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, “A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts”, RSC Advances, vol. 8, 2018, pp. 7651-7669. [7] R. W. Dorner, D. R. Hardy, F. W. Williams, H. D. Willauer, “ Heterogeneous catalytic CO2 conversion to value-added hydrocarbons”, Energy & Environmental Science, vol. 3, 2010, pp. 884-890. [8] S. Samanta, R. Srivastava, “Catalytic conversion of CO2 to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride”, Materials Advances, vol. 1, 2020, pp. 1506-1545. [9] H. S. Whang, J. Lim, M. S. Choi, J. Lee, H. Lee, “Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals”, BMC Chemical Engineering, vol. 1, 2019, pp. 2-19. [10] D.N. Kamkeng , M. Wang , J. Hu, W. Du, F. Qian, “Transformation technologies for CO2 utilisation: Current status, challenges Available and future prospects”, Chemical Engineering Journal, vol. 409, 2021, pp. 128-138. [11] N. Podrojková, V. Sans, A. Oriňak, R. Oriňaková, “Recent Developments in the Modelling of Heterogeneous Catalysts for CO2 Conversion to Chemicals”, ChemCatChem, vol. 12, 2020, pp. 1802–1825. [12] J. Wu, Y. Huang, W. Ye, Y. Li, “CO2 Reduction: From the Electrochemical to Photochemical Approach”, Advanced Science, vol. 4, 2017, pp. 170-194. [13] P.J.D. Janssen, M.D. Lambreva, N. Plumer´e, C. Bartolucci, A. Antonacci, K. Buonasera, R.N. Frese, V. Scognamiglio, G. Rea, “Photosynthesis at the forefront of a sustainable life”, Frontiers in Chemistry, vol. 2, 2014, pp. 1–22. [14] M. Mikkelsen, M. Jørgensen, F.C. Krebs, “The teraton challenge. A review of fixation and transformation of carbon dioxide”, Energy & Environmental Science, vol. 3, 2010, pp. 43–81. [15] K. Malik, S. Singh, S. Basu, A. Verma, “Electrochemical reduction of CO2 for synthesis of green fuel : Electrochemical reduction of CO2 for synthesis of green fuel”, WIRES Energy and Enviroment, vol. 6, 2017, pp. 244. [16] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, “Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueousmedia”, Electrochimica Acta, vol. 39, 1994, pp. 1833–1839. [17] R. P. Ye, J. Ding, W. Gong, M. D. Argyle, Q. Zhong, Y. Wang, C. K. Russell, Z. Xu, A. G. Russell, Q. Li, M. Fan, Y. G. Yao, “CO2 hydrogenation to high-value products via heterogeneous catalysis”, Nature Communications, vol. 10, 2019, pp. 5698- 5705. [18] L.i. Wang, Y. Yi, H. Guo, X. Tu, “Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2”, ACS Catalysis, vol. 8, 2018, pp. 90–100. [19] J. Ashok, L. Falbo, S. Das, N. Dewangan, C.G. Visconti, S. Kawi, “Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products”, In: M. Aresta, I.Karimi, S. Kawi, An Economy Based on Carbon Dioxide and Water, Springer, Cham., 2019. [20] J. Kopyscinski, T. J. Schildhauer, S. M. A. Biollaz, “Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009”, Fuel, vol. 89, 2010, pp. 1763–1783. [21] A. Mazza, E. Bompard, G. Chicco, “Applications of power to gas technologies in emerging electrical systems”, Renew Sustain Energy Reviews, vol. 92, 2018, pp. 794–806. [22] F. D. Meylan, V. Moreau, S. Erkman, “Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation”, Energy Policy, vol. 94, 2016, pp. 366–376. [23] Z. Bian, Y. M. Chan, Y. Yu, S. Kawi, “Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study”, Catalysis Today, vol. 347, 2020, pp. 31-38. [24] R. Mutschler, E. Moioli, W. Luo, N. Gallandat, A. Züttel, “CO2 hydrogenation reaction over pristine Fe Co, Ni, Cu and Al2O3 supported Ru: comparison and determination of the activation energies”, Journal of Catalysis, vol. 366, 2018, pp. 139–149. [25] P. Panagiotopoulou, “Hydrogenation of CO2 over supported noble metal catalysts”, Applied Catalysis A, vol. 542, 2017, pp. 63–70. [26] C. G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, L. Lietti, “CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts”, Catalysis Today, vol. 277, 2016, pp. 161–170. [27] W. Wei, G. Jinlong, “Methanation of carbon dioxide: an overview”, Frontiers of Chemical Science and Engineering, vol. 5, 2011, pp. 2–10. [28] X. Wang, H. Shi, J. Szanyi, “Controlling selectivities in CO2 reduction through mechanistic understanding”, Nature Communications, vol, 8, 2017, pp. 513. [29] M. Aziz, A. Jalil, S. Triwahyono, A. Ahmad, “CO2 methanation over heterogeneous catalysts: recent progress and future prospects”, Green Chemistry, vol, 17, 2015, pp. 2647–2663. [30] J. H. Kwak, L. Kovarik, J. N. Szanyi, “Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts”, ACS Catalysis, vol. 3, 2013, pp. 2094–2100. [31] J. Xu, Q. Lin, X. Su, H. Duan, H. Geng, Y. Huang, “CO2 methanation over TiO2–Al2O3 binary oxides supported Ru catalysts”, Chinese Journal of Chemical Engineering, vol. 24, 2016, pp. 140–145. [32] P. Panagiotopoulou, X. E. Verykios, “Mechanistic study of the selective methanation of CO over Ru/TiO2 catalysts: effect of metal crystallite size on the nature of active surface species and reaction pathways” The Journal of Physical Chemistry C, vol. 121, 2017, pp. 5058–5068. [33] B. Miao, S. S. K. Ma, X. Wang, H. Su, S. H. Chan, “Catalysis mechanisms of CO2 and CO methanation”, Catalysis Science & Technology, vol. 6, 2016, pp. 4048–4058. [34] F. Solymosi, A. Erdőhelyi, “Hydrogenation of CO2 to CH4 over alumina-supported noble metals”, Journal of Molecular Catalysis, vol. 8, 1980, pp. 471–474. [35] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, “Review on methanation—from fundamentals to current projects”, Fuel, vol. 166, 2016, pp. 276–296. [36] R. M. Bowman, C. H. Bartholomew, “Deactivation by carbon of Ru/Al2O3 during CO hydrogenation”, Applied Catalysis, vol. 7, 1983, pp. 179–187. [37] B. R. Dalla, A. Piken, M. Shelef, “Heterogeneous methanation: steady-state rate of CO hydrogenation on supported ruthenium, nickel and rhenium”, Journal of Catalysis, vol. 40, 1975, pp. 173–183. [38] C. H. Bartholomew, “Mechanisms of catalyst deactivation”, Applied Catalysis A, vol. 212, 2001, pp. 17–60. [39] J. G. Ekerdt, A. T. Bell, “Synthesis of hydrocarbons from CO and H2 over silica-supported Ru: reaction rate measurements and infrared spectra of adsorbed species”, Journal of Catalysis, vol. 58, 1979, pp. 170–187. [40] S. Mukkavilli, C. Wittmann, L. L. Tavlarides, “Carbon deactivation of Fischer-Tropsch ruthenium catalyst”, Industrial & Engineering Chemistry Process Design and Development, vol. 25, 1986, pp. 487–494. [41] E. L. Thomas, J. N. Millican, E. K. Okudzeto, J. Y. Chan, “Crystal Growth and the Search for Highly Correlated Ternary Intermetallic Antimonides and Stannides”, Comments on Inorganic Chemistry, vol. 27, 2006, pp. 11-14. [42] F. A. Stevie, C. L. Donley, “Introduction to x-ray photoelectron spectroscopy”, Journal of Vacuum Science & Technology A, vol. 38, 2020, pp. 1-20. [43] J. D. Grunwaldt, A. Baikera, “In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure”, Physical Chemistry Chemical Physics, vol. 7, 2005, pp. 3526-3539. [44] J. E. Penner-Hahn, X-ray Absorption Spectroscopy, Wiley Online Library, Michigan, 2005. [45] A. L. Ong, K. K. Inglis, D. K. Whelligan, S. Murphy, J. R. Varcoe, “Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm-3)”, Physical Chemistry Chemical Physics, vol. 17, 2015, pp. 12135-12145. [46] F. Saidani, D. Rochefort, M. Mohamedi, “CarbonMonoxide Oxidation on Nanostructured Pt Thin Films Synthesized by Pulsed Laser Deposition: Insights into the Morphology Effects”, Laser Chemistry, vol. 2010, 2010, pp. 1-7.
|