帳號:guest(18.188.107.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃鈺嫻
作者(外文):Huang, Yu-Hsien
論文名稱(中文):鍺摻雜二氧化鉿之鐵電環繞式閘極鍺堆疊奈米線通道場效電晶體研究
論文名稱(外文):Study of Ge doped HfO2 Ferroelectric Gate-all-around Ge Stacked-Nanowire Field-Effect-Transistor
指導教授(中文):吳永俊
林育賢
指導教授(外文):Wu, Yung-Chun
Lin, Yu-Hsien
口試委員(中文):巫勇賢
侯福居
口試委員(外文):Wu, Yung-Hsien
Hou, Fu-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011538
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:二氧化鉿堆疊奈米線環繞式閘極鐵電電晶體
外文關鍵詞:GermaniumHfO2Stacked-nanowireGate-all-aroundFerroelectricField-Effect-Transistor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:350
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
科技的快速發展與半導體產業密不可分,像是在網絡物理系統平台中,物聯網扮演著不可或缺的角色,為了收集大數據,並且在雲計算中進行存儲和分析,物聯網設備的數量將增長到數萬億甚至更多,因此高性能和低功耗的半導體元件是被需要的,隨著半導體技術節點的微縮,我們期望在集成電路上放置更密集的半導體元件,但隨之而來的卻是製程技術面臨困難以及元件微縮下的物理限制,而如何去解決這些問題至今仍是個備受矚目的議題,因此有不少學術研究團隊正朝向這方面進行研究,並在半導體材料與結構相關領域發表了豐碩的成果,期望能為當今科技的進步做出貢獻。
本篇論文運用了絕緣層覆矽基板以及鍺磊晶技術,在基板上製作出鍺堆疊奈米線,利用鍺的原子排列特性,透過簡化製程將通道蝕刻成菱形奈米線結構,並加入鐵電效應以及環繞式閘極的設計,來提升載子遷移率、提高驅動電流、改善次臨界斜率與增加閘極控制能力,使這些技術能結合到未來的高功率、低功耗元件上。
本篇論文提出一種自發性的摻雜方式來形成Ge:HfO2鐵電層,只需透過Ge材料本身的熱反應,便能使微量的Ge摻雜進HfO2內,能夠降低製程上的時間與成本,並透過電容的材料分析與電性量測來證實鐵電電容的形成,其中針對了界面層形成方式、退火溫度以及氧化層厚度的變化進行討論,接著,我們將鐵電電容結構應用於電晶體上,為了探討自發性摻雜對於High-k/ Ge界面處缺陷的影響,這部分共設計了兩種退火溫度,透過電晶體性能的重要指標來進行分析,最終成功的製作出了N型與P型環繞式閘極鍺堆疊奈米線鐵電電晶體,經由鐵電效應改善了電晶體的次臨界斜率,達到了提升電晶體性能的效果。
The rapid development of technology is inseparable from the semiconductor industry. For example, in the Cyber-Physical System(CPS) platform, the Internet of Things(IoT) plays an indispensable role. In order to collect, store and analyze big data in cloud computing, the number of IoT devices will increase to trillions or more, so high-performance and low-power semiconductor devices are required. With the continuous development of semiconductor technology nodes, we hope to place denser semiconductor devices on integrated circuits. However, with the scaling of devices, process technology faces difficulties and physical limitations. How to solve these problems has always been people's concern. Therefore, many academic research teams are paying attention to this field and have published various results of designing semiconductor materials and device structures, hoping to contribute to the advancement of science and technology.
In this paper, the Silicon on Insulator(SOI) and germanium epitaxy technologies are used to prepare germanium stacked-nanowire on the substrate. Utilizing the atomic arrangement of germanium, we can fabricate the diamond-shaped nanowire structure through a simple process. The addition of ferroelectric materials and Gate-All-Around structure to improve the carrier mobility, drive current, subthreshold swing and gate controllability, so that these technologies can be combined with future high-power and low-power consumption devices.
This paper proposes the self-induced doping method to form the Ge:HfO2 ferroelectric layer. Through the thermal reaction of the Ge material itself, a small amount of Ge can be doped into HfO2, which can reduce the time and cost of the process. Confirm the formation of ferroelectric capacitors through the material analysis and electrical measurement. The changes in interlayer formation, annealing temperature and oxide thickness are also discussed. Finally, the ferroelectric capacitor structure was successfully applied to transistors. To explore the effect of self-induced doping on high-k/ Ge interface defects, two annealing temperatures are designed in this paper. After analysis, N-type and P-type Gate-all-around Ge Stacked-Nanowire Ferroelectric FET were successfully fabricated, and the performance of the devices were improved, especially the steep subthreshold swing was observed through the ferroelectric effect.
中文摘要------------------------------------------i
Abstract-----------------------------------------iii
致謝----------------------------------------------v
目錄----------------------------------------------vi
表目錄--------------------------------------------viii
圖片目錄------------------------------------------ix
第一章--------------------------------------------1
簡介----------------------------------------------1
1-1 摩爾定律的挑戰(Moore’s Law)--------------------1
1-2 高遷移率之通道材料-----------------------------4
1-3 鍺磊晶於SOI晶圓上------------------------------5
1-4 High K材料在鍺場效電晶體之應用------------------7
1-5 奈米線電晶體(NWFET)---------------------------10
1-6 緊密堆疊之奈米線結構---------------------------12
1-7 表面臭氧處理----------------------------------14
1-8 鐵電材料之電晶體應用---------------------------16
1-9 研究動機--------------------------------------20
1-10 論文組織-------------------------------------25
第二章--------------------------------------------27
鐵電電晶體(FE-FET)之機制介紹-----------------------27
2-1 MOSFET之操作原理與重要參數---------------------27
2-2 次臨界斜率(SS)的突破--------------------------30
2-3 鐵電負電容效應--------------------------------32
2-4 鐵電正電容效應--------------------------------34
2-5 自發性摻雜 (Self-induced doping)--------------37
第三章-------------------------------------------40
MIS電容之製程結構與特性分析------------------------40
3-1 不同IL形成方式之電容比較-----------------------40
3-1.1 結構與製成流程------------------------------40
3-1.2 材料分析------------------------------------43
3-1.3 不同IL形成方式之電容特性---------------------45
3-2 不同氧化層厚度之電容比較-----------------------50
3-2.1 結構與製成流程------------------------------50
3-2.2 不同氧化層厚度之電容特性---------------------52
3-2.3 退火溫度對Dit值之影響-----------------------55
第四章-------------------------------------------57
環繞式閘極鍺堆疊奈米線鐵電電晶體(Ge-GAAFET)---------57
4-1 退火溫度對於電晶體特性之影響-------------------57
4-1.1 結構與製程流程------------------------------57
4-1.2 SEM、TEM與EDS之材料分析---------------------61
4-2 N型與P型電晶體特性之比較-----------------------67
4-2.1 結構與製程流程------------------------------67
4-2.2 電特性分析----------------------------------70
第五章-------------------------------------------78
結論---------------------------------------------78
參考文獻------------------------------------------80
[1-1] G. E. Moore, “Cramming more components onto integrated circuits”, Proceedings of the IEEE, vol. 86, pp. 82-85, 1965.
[1-2] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," 2017 Symposium on VLSI Technology, pp. T230-T231, 2017, doi: 10.23919/VLSIT.2017.7998183.
[1-3] 2020 International Roadmap for Devices and Systems, { HYPERLINK https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf }.
[1-4] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, no. 2, pp. 405-410, 2008/02/01 2008, doi: 10.1021/nl071804g.
[1-5] C.-I. Lin, A. I. Khan, S. Salahuddin, and C. Hu, "Effects of the Variation of Ferroelectric Properties on Negative Capacitance FET Characteristics," IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 2197-2199, 2016, doi: 10.1109/ted.2016.2514783.
[1-6] S. Takagi et al., "Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance," IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 21-39, 2008, doi: 10.1109/ted.2007.911034.
[1-7] P. S. Goley and M. K. Hudait, "Germanium Based Field-Effect Transistors: Challenges and Opportunities," Materials (Basel), vol. 7, no. 3, pp. 2301-2339, 2014/05/19 2014, doi: 10.3390/ma7032301.
[1-8] C. Chung, C. Chen, J. Lin, C. Wu, C. Chien and G. Luo, "First experimental Ge CMOS FinFETs directly on SOI substrate," 2012 International Electron Devices Meeting, 2012, pp. 16.4.1-16.4.4, doi: 10.1109/IEDM.2012.6479054.
[1-9] J. Robertson, "High dielectric constant oxides," The European Physical Journal Applied Physics, vol. 28, no. 3, pp. 265-291, 2004, doi: 10.1051/epjap:2004206.
[1-10] M. Caymax et al., "Interface control of high-k gate dielectrics on Ge," Applied Surface Science, vol. 254, no. 19, pp. 6094-6099, 2008, doi: 10.1016/j.apsusc.2008.02.134.
[1-11] C. J. Su et al., "Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 15.4.1-15.4.4, 2017, doi: 10.1109/IEDM.2017.8268396.
[1-12] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, "High mobility Ge pMOSFETs with ∼ 1nm thin EOT using Al2O3/GeOx/Ge gate stacks fabricated by plasma post oxidation," 2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011, pp. 56-57.
[1-13] U. K. Das and T. K. Bhattacharyya, "Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET," IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2633-2638, 2020, doi: 10.1109/ted.2020.2987139.
[1-14] P. Feng et al., "Comparative Analysis of Semiconductor Device Architectures for 5-nm Node and Beyond," IEEE Electron Device Letters, vol. 38, no. 12, pp. 1657-1660, 2017, doi: 10.1109/led.2017.2769058.
[1-15] M. S. Yeh et al., "Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment," IEEE Journal of the Electron Devices Society, pp. 1-1, 2018, doi: 10.1109/jeds.2018.2878929.
[1-16] M. Kobayashi, "A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor," Applied Physics Express, vol. 11, no. 11, 2018, doi: 10.7567/apex.11.110101.
[1-17] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?," 2008 IEEE International Electron Devices Meeting, pp. 1-4, 2008, doi: 10.1109/IEDM.2008.4796789
[1-18] M. H. Park et al., "A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017, doi: 10.1039/c7tc01200d.
[1-19] I. Chilibon and J. N. Marat-Mendes, "Ferroelectric ceramics by sol–gel methods and applications: a review," Journal of Sol-Gel Science and Technology, vol. 64, no. 3, pp. 571-611, 2012, doi: 10.1007/s10971-012-2891-7.
[1-20] K. -S. Li et al., "Sub-60mV-swing negative-capacitance FinFET without hysteresis," 2015 IEEE International Electron Devices Meeting (IEDM), pp. 22.6.1-22.6.4, 2015, doi: 10.1109/IEDM.2015.7409760.
[1-21] M. H. Lee et al., "Ferroelectric Al:HfO2 negative capacitance FETs," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 23.3.1-23.3.4, 2017, doi: 10.1109/IEDM.2017.8268445.
[1-22] J. Muller et al., "Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano Lett, vol. 12, no. 8, pp. 4318-23, 2012/08/08 2012, doi: 10.1021/nl302049k.
[1-23] Y. -J. Lee et al., "Diamond-shaped Ge and Ge0.9Si0.1 gate-all-around nanowire FETs with four {111} facets by dry etch technology," 2015 IEEE International Electron Devices Meeting (IEDM, pp. 15.1.1-15.1.4), 2015, doi: 10.1109/IEDM.2015.7409701.
[1-24] L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, "Kinetic pathway of the ferroelectric phase formation in doped HfO2 films," Journal of Applied Physics, vol. 122, no. 12, 2017, doi: 10.1063/1.5003918.
[1-25] B. H. Lee et al., "Vertically Integrated Multiple Nanowire Field Effect Transistor," Nano Lett, vol. 15, no. 12, pp. 8056-61, 2015/10/09 2015, doi: 10.1021/acs.nanolett.5b03460.
[1-26] C.-L. Chu et al., "Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1133-1136, 2018, doi: 10.1109/led.2018.2850366.
[1-27] Y.-H. Tsai et al., "Demonstration of HfO2-Based Gate Dielectric With Low Interface State Density and Sub-nm EOT on Ge by Incorporating Ti Into Interfacial Layer," IEEE Electron Device Letters, vol. 40, no. 2, pp. 174-176, 2019, doi: 10.1109/led.2018.2887090.
[2-1] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, 1930/07 1930.
[2-2] J. E. Lilienfeld, "Device for Controlling Electric Current," U.S. Patent 1 900 018, 1933/05 1933.
[2-3] Neamen, Donald A. Semiconductor Physics and Devices: Basic Principles, ch. 10, 2012.
[2-4] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09, Synopsys, Inc., Mountain View, CA, USA.
[2-5] C. Hu, Modern semiconductor devices for integrated circuits: Prentice Hall, ch. 6, 2010.
[2-6] M. Kobayashi, "A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor," Applied Physics Express, vol. 11, no. 11, 2018, doi: 10.7567/apex.11.110101.
[2-7] Muhammad A. Alam, "A Tutorial Introduction to Negative Capacitor Field Effect Transistors", 2015/10/03 2015, { HYPERLINK https://nanohub.org/resources/23157/about }.
[2-8] T. Mikolajick, et al., "Basics and Device Applications of Ferroelectricity in Hafnium Oxides,“ namlab, 2019/08/14 2019.
[2-9] Z. Liu, M. A. Bhuiyan and T. P. Ma, "A Critical Examination of ‘Quasi-Static Negative Capacitance’ (QSNC) theory," 2018 IEEE International Electron Devices Meeting (IEDM), pp. 31.2.1-31.2.4, 2018, doi: 10.1109/IEDM.2018.8614614.
[2-10] A. I. Khan et al., "Negative capacitance in a ferroelectric capacitor," Nat Mater, vol. 14, no. 2, pp. 182-6, 2015/02 2015, doi: 10.1038/nmat4148.
[2-11] C. Jin, T. Saraya, T. Hiramoto, and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs With Steep Subthreshold Swing," IEEE Journal of the Electron Devices Society, vol. 8, pp. 429-434, 2020, doi: 10.1109/jeds.2020.2986345.
[2-12] Z. Liu, H. Jiang, B. Ordway, and T. P. Ma, "Unveiling the Apparent “Negative Capacitance” Effects Resulting From Pulse Measurements of Ferroelectric-Dielectric Bilayer Capacitors," IEEE Electron Device Letters, vol. 41, no. 10, pp. 1492-1495, 2020, doi: 10.1109/led.2020.3020857.
[2-13] M. N. K. Alam, P. Roussel, M. Heyns, and J. Van Houdt, "Positive non-linear capacitance: the origin of the steep subthreshold-slope in ferroelectric FETs," Sci Rep, vol. 9, no. 1, p. 14957, 2019/10/18 2019, doi: 10.1038/s41598-019-51237-2.
[2-14] D.-B. Ruan, K.-S. Chang-Liao, S.-H. Yi, H.-I. Yeh, and G.-T. Liu, "Low Equivalent Oxide Thickness and Leakage Current of pGe MOS Device by Removing Low Oxidation State in GeOx With H2 Plasma Treatment," IEEE Electron Device Letters, vol. 41, no. 4, pp. 529-532, 2020, doi: 10.1109/led.2020.2971635.
[2-15] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, "Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference," Thin Solid Films, vol. 369, no. 1, pp. 289-292, 2000/07/03 2000, doi: https://doi.org/10.1016/S0040-6090(00)00881-6.
[3-1] M. S. Yeh et al., "Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment," IEEE Journal of the Electron Devices Society, pp. 1-1, 2018, doi: 10.1109/jeds.2018.2878929.
[3-2] C. J. Su et al., "Nano-scaled Ge FinFETs with low temperature ferroelectric HfZrOx on specific interfacial layers exhibiting 65% S.S. reduction and improved ION," 2017 Symposium on VLSI Technology, pp. T152-T153, 2017, doi: 10.23919/VLSIT.2017.7998159.
[3-3] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, "Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference," Thin Solid Films, vol. 369, no. 1, pp. 289-292, 2000/07/03 2000, doi: https://doi.org/10.1016/S0040-6090(00)00881-6.
[3-4] W.-C. Wen, Y. Nagatomi, H. Akamine, K. Yamamoto, D. Wang, and H. Nakashima, "Interface trap and border trap characterization for Al2O3/GeOx/Ge gate stacks and influence of these traps on mobility of Ge p-MOSFET," AIP Advances, vol. 10, no. 6, 2020, doi: 10.1063/5.0002100.
[3-5] P. K. Park and S.-W. Kang, "Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3," Applied Physics Letters, vol. 89, no. 19, 2006, doi: 10.1063/1.2387126.
[3-6] D. Shahrjerdi, T. Rotter, G. Balakrishnan, D. Huffaker, E. Tutuc, and S. K. Banerjee, "Fabrication of Self-Aligned Enhancement-Mode In0.53Ga0.47 As MOSFETs With TaN/HfO2/AlN Gate Stack," IEEE Electron Device Letters, vol. 29, no. 6, pp. 557-560, 2008, doi: 10.1109/led.2008.922031.
[4-1] Y.-J. Lee et al., "Ge GAA FETs and TMD FinFETs for the Applications Beyond Si—A Review," IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 286-293, 2016, doi: 10.1109/jeds.2016.2590580.
[4-2] R. Khosla, E. G. Rolseth, P. Kumar, S. S. Vadakupudhupalayam, S. K. Sharma, and J. Schulze, "Charge Trapping Analysis of Metal/Al2O3/SiO2/Si, Gate Stack for Emerging Embedded Memories," IEEE Transactions on Device and Materials Reliability, vol. 17, no. 1, pp. 80-89, 2017, doi: 10.1109/tdmr.2017.2659760.
[4-3] P. Sharma et al., "Impact of total and partial dipole switching on the switching slope of gate-last negative capacitance FETs with ferroelectric hafnium zirconium oxide gate stack," 2017 Symposium on VLSI Technology, pp. T154-T155, 2017, doi: 10.23919/VLSIT.2017.7998160.
[4-4] M. Pešić et al., "Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors," Advanced Functional Materials, vol. 26, no. 25, pp. 4601-4612, 2016, doi: 10.1002/adfm.201600590.
[4-5] A. Chroneos and H. Bracht, "Diffusion of n-type dopants in germanium," Applied Physics Reviews, vol. 1, no. 1, 2014, doi: 10.1063/1.4838215.
[4-6] C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implanted p and n dopants in germanium," Applied Physics Letters, vol. 83, no. 16, pp. 3275-3277, 2003, doi: 10.1063/1.1618382.
[5-1] Y. W. Lin et al., "Sub-60 mV/dec Germanium Nanowire Field-Effect Transistors with 2-nm-thick Ferroelectric Hf0.5Zr0.5O2," presented at the 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2021, doi: 10.1109/vlsi-tsa51926.2021.9440120.
[5-2] C. -J. Su et al., "Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 15.4.1-15.4.4, 2017, doi: 10.1109/IEDM.2017.8268396.
[5-3] W. Chung, M. Si and P. D. Ye, "Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 15.3.1-15.3.4, 2017, doi: 10.1109/IEDM.2017.8268395.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *