|
[1-1] G. E. Moore, “Cramming more components onto integrated circuits”, Proceedings of the IEEE, vol. 86, pp. 82-85, 1965. [1-2] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," 2017 Symposium on VLSI Technology, pp. T230-T231, 2017, doi: 10.23919/VLSIT.2017.7998183. [1-3] 2020 International Roadmap for Devices and Systems, { HYPERLINK https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf }. [1-4] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, no. 2, pp. 405-410, 2008/02/01 2008, doi: 10.1021/nl071804g. [1-5] C.-I. Lin, A. I. Khan, S. Salahuddin, and C. Hu, "Effects of the Variation of Ferroelectric Properties on Negative Capacitance FET Characteristics," IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 2197-2199, 2016, doi: 10.1109/ted.2016.2514783. [1-6] S. Takagi et al., "Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance," IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 21-39, 2008, doi: 10.1109/ted.2007.911034. [1-7] P. S. Goley and M. K. Hudait, "Germanium Based Field-Effect Transistors: Challenges and Opportunities," Materials (Basel), vol. 7, no. 3, pp. 2301-2339, 2014/05/19 2014, doi: 10.3390/ma7032301. [1-8] C. Chung, C. Chen, J. Lin, C. Wu, C. Chien and G. Luo, "First experimental Ge CMOS FinFETs directly on SOI substrate," 2012 International Electron Devices Meeting, 2012, pp. 16.4.1-16.4.4, doi: 10.1109/IEDM.2012.6479054. [1-9] J. Robertson, "High dielectric constant oxides," The European Physical Journal Applied Physics, vol. 28, no. 3, pp. 265-291, 2004, doi: 10.1051/epjap:2004206. [1-10] M. Caymax et al., "Interface control of high-k gate dielectrics on Ge," Applied Surface Science, vol. 254, no. 19, pp. 6094-6099, 2008, doi: 10.1016/j.apsusc.2008.02.134. [1-11] C. J. Su et al., "Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 15.4.1-15.4.4, 2017, doi: 10.1109/IEDM.2017.8268396. [1-12] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka and S. Takagi, "High mobility Ge pMOSFETs with ∼ 1nm thin EOT using Al2O3/GeOx/Ge gate stacks fabricated by plasma post oxidation," 2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011, pp. 56-57. [1-13] U. K. Das and T. K. Bhattacharyya, "Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET," IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2633-2638, 2020, doi: 10.1109/ted.2020.2987139. [1-14] P. Feng et al., "Comparative Analysis of Semiconductor Device Architectures for 5-nm Node and Beyond," IEEE Electron Device Letters, vol. 38, no. 12, pp. 1657-1660, 2017, doi: 10.1109/led.2017.2769058. [1-15] M. S. Yeh et al., "Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment," IEEE Journal of the Electron Devices Society, pp. 1-1, 2018, doi: 10.1109/jeds.2018.2878929. [1-16] M. Kobayashi, "A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor," Applied Physics Express, vol. 11, no. 11, 2018, doi: 10.7567/apex.11.110101. [1-17] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?," 2008 IEEE International Electron Devices Meeting, pp. 1-4, 2008, doi: 10.1109/IEDM.2008.4796789 [1-18] M. H. Park et al., "A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017, doi: 10.1039/c7tc01200d. [1-19] I. Chilibon and J. N. Marat-Mendes, "Ferroelectric ceramics by sol–gel methods and applications: a review," Journal of Sol-Gel Science and Technology, vol. 64, no. 3, pp. 571-611, 2012, doi: 10.1007/s10971-012-2891-7. [1-20] K. -S. Li et al., "Sub-60mV-swing negative-capacitance FinFET without hysteresis," 2015 IEEE International Electron Devices Meeting (IEDM), pp. 22.6.1-22.6.4, 2015, doi: 10.1109/IEDM.2015.7409760. [1-21] M. H. Lee et al., "Ferroelectric Al:HfO2 negative capacitance FETs," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 23.3.1-23.3.4, 2017, doi: 10.1109/IEDM.2017.8268445. [1-22] J. Muller et al., "Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano Lett, vol. 12, no. 8, pp. 4318-23, 2012/08/08 2012, doi: 10.1021/nl302049k. [1-23] Y. -J. Lee et al., "Diamond-shaped Ge and Ge0.9Si0.1 gate-all-around nanowire FETs with four {111} facets by dry etch technology," 2015 IEEE International Electron Devices Meeting (IEDM, pp. 15.1.1-15.1.4), 2015, doi: 10.1109/IEDM.2015.7409701. [1-24] L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, "Kinetic pathway of the ferroelectric phase formation in doped HfO2 films," Journal of Applied Physics, vol. 122, no. 12, 2017, doi: 10.1063/1.5003918. [1-25] B. H. Lee et al., "Vertically Integrated Multiple Nanowire Field Effect Transistor," Nano Lett, vol. 15, no. 12, pp. 8056-61, 2015/10/09 2015, doi: 10.1021/acs.nanolett.5b03460. [1-26] C.-L. Chu et al., "Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1133-1136, 2018, doi: 10.1109/led.2018.2850366. [1-27] Y.-H. Tsai et al., "Demonstration of HfO2-Based Gate Dielectric With Low Interface State Density and Sub-nm EOT on Ge by Incorporating Ti Into Interfacial Layer," IEEE Electron Device Letters, vol. 40, no. 2, pp. 174-176, 2019, doi: 10.1109/led.2018.2887090. [2-1] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, 1930/07 1930. [2-2] J. E. Lilienfeld, "Device for Controlling Electric Current," U.S. Patent 1 900 018, 1933/05 1933. [2-3] Neamen, Donald A. Semiconductor Physics and Devices: Basic Principles, ch. 10, 2012. [2-4] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09, Synopsys, Inc., Mountain View, CA, USA. [2-5] C. Hu, Modern semiconductor devices for integrated circuits: Prentice Hall, ch. 6, 2010. [2-6] M. Kobayashi, "A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor," Applied Physics Express, vol. 11, no. 11, 2018, doi: 10.7567/apex.11.110101. [2-7] Muhammad A. Alam, "A Tutorial Introduction to Negative Capacitor Field Effect Transistors", 2015/10/03 2015, { HYPERLINK https://nanohub.org/resources/23157/about }. [2-8] T. Mikolajick, et al., "Basics and Device Applications of Ferroelectricity in Hafnium Oxides,“ namlab, 2019/08/14 2019. [2-9] Z. Liu, M. A. Bhuiyan and T. P. Ma, "A Critical Examination of ‘Quasi-Static Negative Capacitance’ (QSNC) theory," 2018 IEEE International Electron Devices Meeting (IEDM), pp. 31.2.1-31.2.4, 2018, doi: 10.1109/IEDM.2018.8614614. [2-10] A. I. Khan et al., "Negative capacitance in a ferroelectric capacitor," Nat Mater, vol. 14, no. 2, pp. 182-6, 2015/02 2015, doi: 10.1038/nmat4148. [2-11] C. Jin, T. Saraya, T. Hiramoto, and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs With Steep Subthreshold Swing," IEEE Journal of the Electron Devices Society, vol. 8, pp. 429-434, 2020, doi: 10.1109/jeds.2020.2986345. [2-12] Z. Liu, H. Jiang, B. Ordway, and T. P. Ma, "Unveiling the Apparent “Negative Capacitance” Effects Resulting From Pulse Measurements of Ferroelectric-Dielectric Bilayer Capacitors," IEEE Electron Device Letters, vol. 41, no. 10, pp. 1492-1495, 2020, doi: 10.1109/led.2020.3020857. [2-13] M. N. K. Alam, P. Roussel, M. Heyns, and J. Van Houdt, "Positive non-linear capacitance: the origin of the steep subthreshold-slope in ferroelectric FETs," Sci Rep, vol. 9, no. 1, p. 14957, 2019/10/18 2019, doi: 10.1038/s41598-019-51237-2. [2-14] D.-B. Ruan, K.-S. Chang-Liao, S.-H. Yi, H.-I. Yeh, and G.-T. Liu, "Low Equivalent Oxide Thickness and Leakage Current of pGe MOS Device by Removing Low Oxidation State in GeOx With H2 Plasma Treatment," IEEE Electron Device Letters, vol. 41, no. 4, pp. 529-532, 2020, doi: 10.1109/led.2020.2971635. [2-15] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, "Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference," Thin Solid Films, vol. 369, no. 1, pp. 289-292, 2000/07/03 2000, doi: https://doi.org/10.1016/S0040-6090(00)00881-6. [3-1] M. S. Yeh et al., "Ge FinFET CMOS Inverters with Improved Channel Surface Roughness by Using In-situ ALD Digital O3 Treatment," IEEE Journal of the Electron Devices Society, pp. 1-1, 2018, doi: 10.1109/jeds.2018.2878929. [3-2] C. J. Su et al., "Nano-scaled Ge FinFETs with low temperature ferroelectric HfZrOx on specific interfacial layers exhibiting 65% S.S. reduction and improved ION," 2017 Symposium on VLSI Technology, pp. T152-T153, 2017, doi: 10.23919/VLSIT.2017.7998159. [3-3] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, "Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference," Thin Solid Films, vol. 369, no. 1, pp. 289-292, 2000/07/03 2000, doi: https://doi.org/10.1016/S0040-6090(00)00881-6. [3-4] W.-C. Wen, Y. Nagatomi, H. Akamine, K. Yamamoto, D. Wang, and H. Nakashima, "Interface trap and border trap characterization for Al2O3/GeOx/Ge gate stacks and influence of these traps on mobility of Ge p-MOSFET," AIP Advances, vol. 10, no. 6, 2020, doi: 10.1063/5.0002100. [3-5] P. K. Park and S.-W. Kang, "Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3," Applied Physics Letters, vol. 89, no. 19, 2006, doi: 10.1063/1.2387126. [3-6] D. Shahrjerdi, T. Rotter, G. Balakrishnan, D. Huffaker, E. Tutuc, and S. K. Banerjee, "Fabrication of Self-Aligned Enhancement-Mode In0.53Ga0.47 As MOSFETs With TaN/HfO2/AlN Gate Stack," IEEE Electron Device Letters, vol. 29, no. 6, pp. 557-560, 2008, doi: 10.1109/led.2008.922031. [4-1] Y.-J. Lee et al., "Ge GAA FETs and TMD FinFETs for the Applications Beyond Si—A Review," IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 286-293, 2016, doi: 10.1109/jeds.2016.2590580. [4-2] R. Khosla, E. G. Rolseth, P. Kumar, S. S. Vadakupudhupalayam, S. K. Sharma, and J. Schulze, "Charge Trapping Analysis of Metal/Al2O3/SiO2/Si, Gate Stack for Emerging Embedded Memories," IEEE Transactions on Device and Materials Reliability, vol. 17, no. 1, pp. 80-89, 2017, doi: 10.1109/tdmr.2017.2659760. [4-3] P. Sharma et al., "Impact of total and partial dipole switching on the switching slope of gate-last negative capacitance FETs with ferroelectric hafnium zirconium oxide gate stack," 2017 Symposium on VLSI Technology, pp. T154-T155, 2017, doi: 10.23919/VLSIT.2017.7998160. [4-4] M. Pešić et al., "Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors," Advanced Functional Materials, vol. 26, no. 25, pp. 4601-4612, 2016, doi: 10.1002/adfm.201600590. [4-5] A. Chroneos and H. Bracht, "Diffusion of n-type dopants in germanium," Applied Physics Reviews, vol. 1, no. 1, 2014, doi: 10.1063/1.4838215. [4-6] C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implanted p and n dopants in germanium," Applied Physics Letters, vol. 83, no. 16, pp. 3275-3277, 2003, doi: 10.1063/1.1618382. [5-1] Y. W. Lin et al., "Sub-60 mV/dec Germanium Nanowire Field-Effect Transistors with 2-nm-thick Ferroelectric Hf0.5Zr0.5O2," presented at the 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2021, doi: 10.1109/vlsi-tsa51926.2021.9440120. [5-2] C. -J. Su et al., "Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 15.4.1-15.4.4, 2017, doi: 10.1109/IEDM.2017.8268396. [5-3] W. Chung, M. Si and P. D. Ye, "Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec," 2017 IEEE International Electron Devices Meeting (IEDM), pp. 15.3.1-15.3.4, 2017, doi: 10.1109/IEDM.2017.8268395. |