帳號:guest(18.119.29.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡昕洋
作者(外文):Tsai, Hsin-Yang.
論文名稱(中文):積體式旋轉曝光數位成型技術的開發
論文名稱(外文):Volumetric Additive Manufacturing with Rotational Digital Lithography
指導教授(中文):蘇育全
指導教授(外文):SU, YU-CHUAN
口試委員(中文):陳紹文
陳宗麟
口試委員(外文):CHEN, SHAO-WEN
CHEN, TSUNG-LIN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011527
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:73
中文關鍵詞:積體製造三維列印旋轉曝光
外文關鍵詞:VolumetricAdditiveManufacturing3DprintingStereolithography
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
三維列印技術被用於各種領域來列印無法通過傳統工藝製造的結構,其應用範圍從用於體外培養組織的生物支架到具有增強新材料特性的微結構等。大多數的三維列印技術有各種形式,根據印刷操作或在印刷步驟中的材料進行分類,而大多數印刷方法都依賴於FDM積點製造或SLA、DLP積層製造。
本論文主要目的是開發一種快速增材製造方案,通過一系列動態演化的圖像圖案對旋轉體積的光聚合物樹脂進行曝光,並提供一種全新的積體式旋轉曝光影像演算法,由電腦斷層技術(CT)、癌症治療的強度調控放射治療(IMRT)等物理現象做為研究依據,設定目標位置的劑量,計算劑量強度,以及該位置的最高劑量容忍度,或者需要避開劑量的區域,來設定禁區,調整各個角度的放射線強度,並與傳統Radon transform的做法來比較。
根據旋轉曝光的方式,得知光源各個像素在小玻璃瓶內光敏材料的累積劑量路徑為圓形,因此可透過圓形來拼湊目標劑量。目標幾何形狀在中心被分割成一個圓和一系列具有不同角度和直徑的環形扇區,固化每個環形扇區所需的曝光量是逐個像素、逐個角度、逐層計算的。因此,將目標、光源射線做極座標轉換,從半徑、角度等變數,做為演算法中的光源權重、目標位置以及光源射線等的重要參數,透過解聯立方程式的方式來組織出我們需要的曝光影像,並使用MATLAB進行模擬,透過軸對稱圖形及非軸對稱圖形,驗證計算出來的曝光影像是否可達到預期的劑量分布。本研究稱之為積體式旋轉曝光數位成型技術,並使用根據實驗需求將光機的光源和鏡頭改造過後的Computed Axial Lithography (CAL)機台進行光固化三維列印。
Conventionally, 3D printing of complex polymeric structures was achieved by repeatedly photo-polymerizing and stacking thin 2D slices layer by layer. Typically, the effective depth of each exposure step was in the range of tens to hundreds of micrometers. Meanwhile, if the liquid resin was highly viscous or its strength after photo-polymerization was low, the adhesive and shear forces induced by vertical stacking could potentially damage the resulting structure. The goal of this thesis is to develop a rapid additive manufacturing scheme that exposes a rotating volume of photo-polymer resin with a series of dynamically evolving image patterns. Since the whole rotating volume would be exposed at the same time, the overall exposure time required to completely solidify the structure could be significantly reduced in the proposed volumetric additive manufacturing scheme. In addition, since there is no relative movement between photo-polymerized structure and liquid resin or vat, the forces applied on the structure would be only gravity and buoyant forces. With highly viscous liquid resin as support, even photo-polymers with low mechanical strength could be 3D printed using the proposed scheme.
A high-resolution DLP (Digital Light Processing) projector based on a 1920×1080 micromirror array, is used to dynamically generate the images for photo-polymerizing of highly viscous liquid resins. A MATLAB program based on our newly developed algorithm is employed to calculate the dynamically evolving image patterns for rotational DLP lithography. Basically, the target geometry is segmented into a circle at the center and a series of annulus sectors with varying angles and diameters. The required exposure to solidify each annulus sector is calculated pixel by pixel, angle by angle, and layer by layer correspondingly. Meanwhile, the algorithm is optimized to resolve potential over-exposure issues, especially for the printing of hollow structures. At the end, all these collected data are assembled together to form the dynamically evolving 2D image patterns projected by the DLP light source. It is demonstrated that miniature 3D elastomer and hydrogel composite structures are fabricated with a typical exposure time of less than 100 seconds. The targeted spatial dose distribution is achieved while common defects caused by over-exposure are largely prevented. Highly viscous liquid resins, even for those with low mechanical strength after photo-polymerization, are 3D printed successfully.
摘要 i
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章、 緒論 1
1.1前言 1
1.2三維列印技術(3D printing) 2
1.2.1光固化三維列印技術─積層製造 3
1.2.2光固化三維列印技術─積體製造 4
1.3光聚合反應(photo-polymerization) 7
1.3.1 自由基型聚合反應(Free radical polymerization) 7
1.3.2 陽離子型聚合反應(Cationic polymerization) 9
1.4 研究動機 9
第二章、文獻回顧 10
2.1積體製造光固化列印 10
2.2 曝光影像之影像重建 16
2.2.1 迭代優化步驟 16
2.2.2 構像療法(Conformation therapy) 18
2.2.3放療劑量分佈(conformal radiotherapy dose distribution) 22
2.3 測量光敏聚合物固化參數 23
2.4自由基光固化反應 24
第三章、實驗原理與設計 26
3.1 CAL曝光影像的計算 26
3.1.1 在原始影像上調權重 26
3.1.2 迭代最佳化流程 27
3.2 從投影重建圖像 28
3.2.1 軸對稱圓形拼圖法 31
3.2.2 非軸對稱圓形拼圖法 33
3.2.3特殊圖形的回饋機制 43
3.3 劑量分布模擬算法 45
3.4 劑量分布評分標準 46
3.5 CAL三維列印 48
3.5.1 CAL機台介紹 48
3.5.2 CAL製造流程 50
第四章、研究結果與分析 52
4.1 迭代最佳化 52
4.2 軸對稱圓形拼圖法透過光固化成型 54
4.3 非軸對稱圓形拼圖法透過光固化成型 59
4.4 非軸對稱圖形引進回饋機制 62
4.5 材料光固化測試 66
第五章、 結論與未來建議 68
5.1 結論 68
5.2 未來建議 70
參考資料 71

1. Xiaoyu Zheng, Joshua Deotte, Matthew P. Alonso, George R. Farquar, Todd R. Weisgraber et al. " Design and optimization of a light-emitting diode projection microstereolithography three-dimensional manufacturing system." Review of Scientific intruments. vol 83, no. 2012, pp.0-6, 2012.
2. Apm Designs, https://images.app.goo.gl/H6w4VkJ6Gi4q9BKX8
3. ResearchGate, https://images.app.goo.gl/i1saniZrU6T4nvrD8
4. Damien Loterie, Paul Delrot, Christophe Moser. "VOLUMETRIC 3D PRINTING OF ELASTOMERS BY TOMOGRAPHIC BACK-PROJECTION." November 8, 2018.
5. Wikipedia contributors. "Radon transform." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 16 Apr. 2020. Web. 22 Jul. 2020.
6. Jakob Sauer Jørgensen. "X-ray Computed Tomography." 02946 Scientific Computing for Computed Tomography", Jan. 2021.
7. 新光吳火獅紀念醫院, https://www.skh.org.tw/skh/c2a8411015.html
8. Laurence E. Court, Peter Balter, and Radhe Mohan. "Principles of IMRT." Springer Japan 2015:16-41.
9. CROW Polymer Science, https://polymerdatabase.com/polymer%20chemistry/Photoinitiators1.html
10. Damien Loterie, Paul Delrot, Christophe Moser. "High-resolution tomographic volumetric additivemanufacturing." Nature Communication 11, 852 (2020).
11. Brett E. Kelly, et al. "Volumetric additive manufacturing via tomographic
reconstruction." Science 363.6431 (2019): 1075-1079.
12. Brett E. Kelly, et al. "Computed Axial Lithography (CAL): Toward Single Step 3D Printing of Arbitrary Geometries." An Additive Manufacturing Conference Reviewed Paper (2017): 938-950.
13. Th Bortfeld et al. "Methods of image reconstruction from projections applied to conformation radiotherapy." Phys. Med. Biol. 35 1423 (1990): 1423-1434.
14. S Webb. " Optimisation of conformal radiotherapy dose distribution by simulated annealing." Phys. Med. Biol. 34 1349(1989): 1349-1370.
15. Joe Bennett. "Measuring UV Curing Parameters of Commercial Photopolymers used in Additive Manufacturing." Addit Manuf. 2017 December 18: 203–212.
16. 劉凡瑄,「高解析度三維藻膠複合結構的快速曝光成型技術」,國立清華大學工程與系統科學系,碩士論文,中華民國109年。
17. Brett E. Kelly, et al. "Supplementary Materials for Volumetric additive manufacturing via tomographic reconstruction." Science 363.6431 (2019): 1075-1079.
18. H.Gong, M.Beauchamp, S. Perry, A. T. Woolley, Gregory P and Nordin. "Optical approach to resin formulation for 3D printed microfluidics." RSC Advances, 2015, 5 ,106621.
19. Harry L. van der Laan, Mark A. Burns, Timothy F. Scott. "Volumetric Photopolymerization Confinement through Dual-Wavelength Photoinitiation and Photoinhibition." ACS Macro Lett. 2019, 8, 899−904.
20. Martin P. de Beer et al. "Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning." Science Advance. 2019.
(此全文20250830後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *