|
1. http://igeogers.weebly.com/the-energy-gap-and-energy-efficiency.html. 2. https://www.grandviewresearch.com/industry-analysis/fuel-cell-market. 3. Houchins, C., Kleen, G. J., Spendelow, J. S., Kopasz, J., Peterson, D., Garland, N. L., Ho, D. L., Marcinkoski, J., Martin, K. E., Tyler, R., & Papageorgopoulos, D. C. Membranes 2012, 2, 855-878. 4. Camci, Muhammet. University of Liecester 2015. 5. https://zh.wikipedia.org/wiki/%E5%82%AC%E5%8C%96%E5%89%82. 6. https://www.fuelcellstore.com/blog-section/polarization-curves. 7. B. Pollet, S. Kocha, I. Staffell. Current Opinion in Electrochemistry 2019, 16:90–95. 8. C. Sequeira, D. Santos, Walmar Baptista. Journal of the Brazilian Chemical Society 2016, Vol. 17, No. 5, 910-914. 9. Si F., Zhang Y., Yan L., Zhu J., Xiao M., Liu C., Xing W., Zhang J. Elsevier B.V. 2014 , pp. 133-170. 10. Tianlei Wang, A. Chutia, D. Brett, P. Shearing, Guanjie He, Guoliang Chai, I. Parkin. Energy Environ. Sci., 2021,14, 2639-2669. 11. J. Nørskov, J. Rossmeisl, and A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, H. Jónsson. J. Phys. Chem. B 2004, 108, 17886-17892. 12. Z. Seh, J. Kibsgaard, Colin F. Dickens, I. Chorkendorff, J. Nørskov, T. Jaramillo. Science 2017 355, eaad4998. 13. H. Wang, J. Lu. Chin. J. Chem. 2020, 38, 1422—1444. 14. A Taketoshi, M. Haruta. Chem. Lett. 2014, 43, 380–387. 15. W. Zhou, M. Li, O.L. Ding, S.H. Chan, L. Zhang, Y. Xue. Int. J. Hydrog. Energy, 2014, 39, pp. 6433-6442. 16. M. A. Molina-García and N. V. Rees. RSC Adv., 2016, 6 , 94669 —94681. 17. https://www.cabotcorp.com/. 18. Hilah C. Honig, C. B. Krishnamurthy, Ignacio Borge-Durán, Mariusz Tasior, D. Gryko, I. Grinberg, L. Elbaz. J. Phys. Chem. C 2019, 123, 26351−26357. 19. F.Jinchang, Q.Kun, Hong Chen, Z.Weitao, Xiaoqiang CuiJournal of Colloid and Interface Science 2017 490 190–196. 20. Hammer B, JK Norskov. Nature , 1995 376: 238-240. 21. https://sites.google.com/site/orrcatalysiswithptbasedcsnps/home/d-band-theory. 22. Kun Jiang, H.X. Zhang, S. Zou, W. Cai. Phys.Chem.Chem.Phys.,2014, 16, 20360. 23. J. R. De Lile , S. Y. Lee , H. J. Kim , C. Pak and S. G. Lee , New J. Chem., 2019, 43 , 8195 —8203. 24. S. Back, Yousung Jung. ChemCatChem 2017, 9, 3173 – 3179. 25. José L Fernández, D. Walsh, A. Bard. J. AM. CHEM. SOC. 2005, 127, 357-365. 26. Wei, Y.-C., Liu, C.-W., Lee, H.-W., Chung, S.-R., Lee, S.-L., Chan, T.-S., Lee, J.-F., Wang, K.-W.. International Journal of Hydrogen Energy, 2011 36 (6) , pp. 3789-3802. 27. Shao, Q., Wang, P., Huang. Adv. Funct. Mater. 2019, 29, 1806419. 28. H. Li , C. Chen , D. Yan , Y. Wang , R. Chen , Y. Zou and S. Wang , J. Mater. Chem. A, 2019, 7 , 23432 —23450. 29. Kim, M., Lee, C., Ko, S.M., Nam, J.-M. Journal of Solid State Chemistry, 2019 270, pp. 295-303. 30. G. Bampos, L. Sygellou, S. Bebelis. Catal. Today, 2020, 355 pp. 685-697. 31. Y. Zhuang , J.-P. Chou , P.-Y. Liu , T.-Y. Chen , J. Kai , A. Hu and H.-Y. T. Chen , J. Mater. Chem. A, 2018, 6 , 23326 —23335. 32. Li, X.; Li, X.; Liu, C.; Huang, H.; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.; Yang, J.; Zeng, J. Nano Lett. 2020, 20, 1403– 1409. 33. Bhalothia, D.; Krishnia, L.; Yang, S.-S.; Yan, C.; Hsiung, W.-H.; Wang, K.-W.; Chen, T.-Y. Appl. Sci. 2020, 10, 7708. 34. Y. Zhuang , J.-P. Chou , H.-Y. Tiffany Chen , Y.-Y. Hsu , C.-W. Hu , A. Hu and T.-Y. Chen , Sustainable Energy Fuels, 2018, 2 , 946 —957. 35. S. Dai, J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan and. T.-Y. Chen. Nat. Commun., 2019, 10, 440. 36. Liu Y, Xu C. ChemSusChem. 2013 Jan;6(1):78-84. 37. J. Li , H. Zhou , H. Zhuo , Z. Wei , G. Zhuang , X. Zhong , S. Deng , X. Li and J. Wang. J. Mater. Chem. A, 2018, 6 , 2264 —2272. 38. Yu, J., Liu, Z., Zhai, L., Huang, T., Han, J. International Journal of Hydrogen Energy, 2016 41 (5), pp. 3436-3445. 39. http://www.nscric.nthu.edu.tw/p/404-1186-122226.php?Lang=zh-tw. 40. https://zi.media/@yidianzixun/post/Rf3awp. 41. https://www.narlabs.org.tw/tw/xcscience/contxsmsid=0I148638629329404252&sid=0K107352975420455604. 42. http://47.95.49.117/newsitem/278489750. 43. https://www.nsrrc.org.tw/chinese/index.aspxaspxerrorpath=/Chinese/experiment.aspx#3. 44. https://zhuanlan.zhihu.com/p/78090546. 45. https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0028. 46. https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy. 47. https://www.wikiwand.com/en/X-ray_absorption_near_edge_structure. 48. https://www.gushiciku.cn/dc_tw/105943467. 49. https://www.nsrrc.org.tw/chinese/index.aspxaspxerrorpath=/Chinese/experiment.aspx#3. 50. http://www.aandb.com.tw/. 51. http://nscric.site.nthu.edu.tw/p/404-1186-122439.php?Lang=zh-tw. 52. https://en.wikipedia.org/wiki/Cyclic_voltammetry. 53. Prass, S., St-Pierre, J., Klingele, M., Friedrich, K. A., & Zamel, N. Electrocatalysis, 2021 12(1), 45-55. 54. Mais, Laura. 2015. Electrodeposition of Nb, Ta, Zr and Cu from Ionic Liquid for Nanocomposites Preparation.. 55. D. Bhalothia , C.-Y. Lin , C. Yan , Y.-T. Yang and T.-Y. Chen . Sustainable Energy Fuels, 2019, 3 , 1668 —1681. 56. K. Shinozaki, J. Zack, R. Richards, B. Pivovar, S. Kocha. JECS, 2015, 162, pp. 1144-1158. 57. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. F. Duan, T. Mueller, Y. Huang. Science, 2015, 348, 1230–1234. 58. D. Bhalothia , D.-L. Tsai , S.-P. Wang , C. Yan , T.-S. Chan , K.-W. Wang , T.-Y. Chen and P.-C. Chen . J. Alloys Compd., 2020, 844 , 156160. 59. H. Zhang , B. Chen and J. F. Banfield. Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78 , 214106. 60. I. L. Chen , Y. C. Wei , K. T. Lu , T. Y. Chen , C. C. Hu and J. M. Chen . Nanoscale, 2015, 7 , 15450 —15461. 61. Chen, L. X.; Rajh, T.; Wang, Z.; Thurnauer, M. C. J. Phys. Chem. B 1997, 101, 10688– 10697. 62. Z.Y. Wu, J. Zhang, K. Ibrahim, D.C. Xian, G. Li, Y. Tao, T.D. Hu, S. Bellucci, A. Marcelli, Q.H. Zhang, L. Gao, Z.Z. Chen. Appl. Phys. Lett., 2002 , 80 , pp. 2973-2975. 63. otestein, J. M.; Andrini, L. R.; Kalchenko, V. I.; Requejo, F. G.; Katz, A.; Iglesia, E. J. Am. Chem. Soc. 2007, 129, 1122– 1131. 64. Wu, Q.; Zheng, Q.; van de Krol, R. J.Phys. Chem. C, 2012, 116, 7219– 7226. 65. Hanley, T.L., Luca, V., Pickering, I., Howe, R.F. Journal of Physical Chemistry B, 2002, 106, 6, pp. 1153-1160. 66. Waychunas, Glenn A. American Mineralogist, 1987, 72.1-2 : 89-101. 67. Rossi, T.C.; Grolimund, D.; Nachtegaal, M.; Cannelli, O.; Mancini, G.F.; Bacellar, C.; Kinsche, D.; Rouxel, J.R.; Ohannessian, N.; Pergolesi, D.; et al. Phys. Rev. B Condens. Matter Mater. Phys. 2019, 100, 245207. 68. Oliveira, M. M.; Schnitzler, D. C.; Zarbin, A. J. G. Chem. Mater. 2003, 15, 1903– 1909 69. Kuo H.-W., Lin C.-J., Do H.-Y., Wu R.-Y., Tseng C.-M., Kumar K., Dong C.-L., Chen C.-L. Applied Surface Science, 2020. 502 , art. no. 144297. 70. Benjamin B Rich, Yael Etinger-Geller, G. Ciatto, A. Katsman, B. Pokroy. Physical Chemistry Chemical Physics, 2021, 23, 11, 6600-6612. 71. M. Biesinger, L. Lau, A. Gerson, R. S. C. Smart. Applied Surface Science,2010, 257, 3 , pp. 887-898. 72. Santiago, R. S., Silva, L. C. D., Origo, F. D., Stegemann, C., Graff, I. L., Delatorre, R. G., & Duarte, D. A. Thin Solid Films, 2020, 700: 137917. 73. Henderson, M. A. Langmuir, 1996, 12, 5093– 5098. 74. Y. Wang, X. Wang, C.M. Li. Appl. Catal. B Environ., 2010, 99 pp. 229-234. 75. Y. Zhao, G. Wang, L. Xiao, J. Lu, L. Zhuang. ChemistrySelect ,2020, 5, 7803. 76. D Bhalothia, C. Y. Lin, C. Yan, Y.T. Yang, T.Y. Chen. ACS Omega, 2019, 4, 971−982. 77. Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Nat. Catal. 2018, 1, 711– 719. 78. Z.X. Liu, Z.P. Li, H.Y. Qin, B.H. Liu. J. Power Sources, 2011, 196, pp. 4972-4979.
|