帳號:guest(3.144.89.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張弘偉
作者(外文):Chang, Hong-Wei
論文名稱(中文):以鈷氧化物為基材成長鈀奈米島之鈷鈀系統修補鈦氧化物團簇具高效氧氣還原之效率
論文名稱(外文):Nanoscale TiOx Clusters Anchored on CoOx Supported Pd- Nano islands Facilitate High-Rate Oxygen Reduction Reaction Performance
指導教授(中文):陳燦耀
指導教授(外文):Chen, Tsan-Yao
口試委員(中文):王冠文
林明緯
陳柏鈞
口試委員(外文):Wang, Kuan-Wen
Lin, Ming-Wei
Chen, Po-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011519
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:142
中文關鍵詞:氧氣還原反應質量活性點綴效應氧空缺
外文關鍵詞:Oxygen reduction reactionMass activityDecoration effectOxygen vacancy.
相關次數:
  • 推薦推薦:0
  • 點閱點閱:127
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用濕式化學還原法,利用硼氫化納(NaBH4)當作還原劑依序將鈷、鈀、鈦金屬離子還原至活性碳上,形成以鈷氧化物為基底上面成長鈀奈米島最後修飾鈦氧化物奈米團簇之層狀堆疊的三元金屬奈米觸媒,且透過加入不同比例之鈦(1~3wt%)修飾觸媒表面,探討在表面上修飾不同比例之鈦對氧還原反應性之影響。實驗結果證明加入1.0 wt%的鈦修補鈷鈀奈米觸媒的表面可使其在氧還原反應位於0.85V vs RHE的電位下質量活性(M.A.)為商用鉑觸媒(J.M. Pt/C)之145倍。而透過電化學循環伏安法與一氧化碳剝除法來分析觸媒表面組成,再利用XRD(X光繞射光譜)、XAS(X光吸收光譜)和TEM(穿透式電子顯微鏡)分析觸媒結構,可證明將鈀成長在高度無序之鈷氧化物會限縮鈀粒徑大小(XRD結果約4 nm)並使鈀表面具高密度缺陷,而在鈷鈀基底上成長少量的鈦團簇能修補鈷鈀結構之缺陷使Pd有序化,並藉由配體效應改變表面Pd的電子結構搭配界面效應使鈷鈀鈦三元奈米觸媒之活性(M.A.)與動力學電流值(Jk)有效增加。本研究中所設計之鈷鈀鈦三元奈米觸媒(NCs),藉由調整鈦的比例,了解不同比例之鈦長在鈷鈀表面上對氧氣還原反應之影響,且因為非鉑基觸媒,能有效降低觸媒製造成本,而此種利用少量過渡金屬來修飾觸媒表面來發展高效率之氧還原觸媒將增加鹼性燃料電池的發展潛力。
In this study, to enhance and optimize nanocatalysts (NCs) performance for ORR, a series of ternary metallic NCs consisting of Ti atomic clusters decorated Pd nano-islands over CoOx support underneath (denoted by CPTi) in different molar ratios of Co/Pd from 0.05 to 0.3, are synthesized by using robust wet chemical reduction method with processes control.
The as-developed CPTi005 NC exhibits unprecedented high mass activity (MA) of 9724 mAmg-1 at 0.85 V vs RHE in 0.1 M KOH electrolyte towards ORR, which outperforms the commercial J.M.-Pt/C catalyst (67 mAmg- 1), more importantly, the CPTi005 NC exhibits remarkable durability when operated up to 16k accelerated durability test (ADT) cycles and retains its 100% performance as that of initial condition.
The surface composition of the catalyst is analyzed by electrochemical cyclic voltammetry(CV) and Co stripping method, and the structure of the catalyst is analyzed by XRD (X-ray diffraction spectroscopy), XAS (X-ray absorption spectroscopy) and TEM (transmission electron microscope) It can be proved that growing palladium on highly disordered cobalt oxide will limit the particle size of palladium (XRD results are about 4 nm) and make the surface of palladium have high-density defects, while growing a small amount of titanium clusters on CoPd substrates Repair the defects of the CoPd structure, and change the electronic structure of the surface Pd by the ligand effect, the activity (MA) and kinetic current value (Jk) of the CPTi ternary nanocatalyst Effectively increase. The CPTi ternary nanocatalysts (NCs) designed in this study are adjusted to the ratio of Titanium to understand the influence of different proportions of Titanium on the surface of Cobalt and Palladium on the oxygen reduction reaction. The catalyst can effectively reduce the manufacturing cost of the catalyst, and the use of a small amount of transition metal to modify the surface of the catalyst to develop a high-efficiency oxygen reduction catalyst will increase the development potential of alkaline fuel cells.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 燃料電池的發展及簡介 2
1.3 燃料電池產業與發展 3
1.4 燃料電池種類與特性 4
1.4.1 質子交換膜燃料電池(proton exchange membrane fuel cell, PEMFC) 5
1.4.2 直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC) 5
1.4.3 磷酸燃料電池(phosphoric Acid Fuel Cell, PAFC) 5
1.4.4 熔融碳酸鹽燃料電池(molten carbonate fuel cell, MCFC) 6
1.4.5 固態氧化物燃料電池(solid oxide fuel cell, SOFC) 6
1.4.6 鹼性燃料電池(Alkaline Fuel Cell, AFC) 6
1.5 鹼性燃料電池之工作原理 7
1.6 鹼性燃料電池發展瓶頸 11
1.7 氧氣還原反應途徑與機制 15
1.8 良好的觸媒需具備的性質 18
1.9 研究動機 19
第二章 文獻回顧 20
2.1 觸媒發展方向 20
2.2 觸媒發展方向-增加觸媒活性位點 22
2.21 觸媒尺寸 22
2.22 觸媒載體 25
2.23 觸媒形貌 27
2.3 提升觸媒本質活性 29
2.4 奈米觸媒結構對氧氣還原反應之影響 36
2.5 鈦基觸媒在氧氣還原反應上的應用 41
2.6 文獻回顧總結 45
第三章 實驗方法 47
3.1 實驗設計 47
3.2 實驗藥品 49
3.3 實驗步驟 50
3.4 材料結構分析 53
3.4.1. 高解析度穿透式電子顯微鏡 (HRTEM) 53
3.4.2. X光繞射分析儀 (X-ray diffraction, XRD) 54
3.4.3. X光光電子圖譜 (X-ray photoelectron spectroscopy, XPS) 58
3.4.4. X光吸收光譜 (X-ray absorption spectroscopy, XAS) 60
3.4.5. 感應耦合電漿分析 (Inductively Coupled Plasma, ICP) 65
3.5 電化學分析 67
3.5.1 循環伏安法 (Cyclic Voltammetry, CV) 67
3.5.2 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 70
3.5.3 一氧化碳剝除 (CO-stripping) 73
3.5.4 加速劣化測試 (Accelerated Degradation Test, ADT) 74
3.6 臨場X光吸收光譜分析(Insitu X-ray absoption spectroscopy) 75
第四章 結果與討論 77
4.1. 實驗項目說明 77
4.2. 對照組樣品二元奈米觸媒結構分析 78
4.2.1. 對照組樣品二元奈米觸媒之高解析穿透式電子顯微鏡 (HRTEM) 78
4.2.2. 對照組樣品二元奈米觸媒之X光繞射分析 (X-ray diffraction, XRD) 80
4.2.3. 對照組樣品二元奈米觸媒之X光吸收光譜(X ray absorption spectroscopy, XAS) 82
4.2.4. 對照組樣品二元奈米觸媒之循環伏安法 (Cyclic Voltammetry, CV) 91
4.2.5. 對照組樣品二元奈米觸媒之一氧化碳剝除 (CO-stripping) 95
4.3. 實驗組樣品三元奈米觸媒(CPTi)結構分析 98
4.3.1 實驗組樣品三元奈米觸媒(CPTi)之高解析穿透式電子顯微鏡 (HRTEM) 98
4.3.2 實驗組樣品三元奈米觸媒(CPTi)之X光繞射分析 (X-ray diffraction, XRD) 100
4.3.3 實驗組樣品三元奈米觸媒(CPTi)之X光吸收光譜 (X-ray absorption spectroscopy, XAS) 102
4.3.4 實驗組樣品三元奈米觸媒(CPTi)之X光光電子能譜 (X-ray photoelectron spectroscopy, XPS) 108
4.3.5 實驗組樣品三元奈米觸媒(CPTi)之感應耦合電漿分析 (Inductively Coupled Plasma, ICP) 112
4.3.6 實驗組樣品三元奈米觸媒(CPTi)之循環伏安法 (Cyclic Voltammetry, CV) 114
4.3.7 實驗組樣品三元奈米觸媒(CPTi)之一氧化碳剝除 (CO-stripping) 118
4.3.8 實驗組樣品三元奈米觸媒(CPTi)之線性掃描伏安法(Linear Sweep Voltammetry, LSV) 120
4.3.9 實驗組樣品三元奈米觸媒(CPTi)之加速劣化測試 (Accelerated Degradation Test, ADT) 124
4.4. 實驗組樣品三元奈米觸媒(CPTi)之臨場X光吸收光譜(Insitu X-ray absoption spectroscopy) 128
第五章 結論 134
參考文獻 136
1. http://igeogers.weebly.com/the-energy-gap-and-energy-efficiency.html.
2. https://www.grandviewresearch.com/industry-analysis/fuel-cell-market.
3. Houchins, C., Kleen, G. J., Spendelow, J. S., Kopasz, J., Peterson, D., Garland, N. L., Ho, D. L., Marcinkoski, J., Martin, K. E., Tyler, R., & Papageorgopoulos, D. C. Membranes 2012, 2, 855-878.
4. Camci, Muhammet. University of Liecester 2015.
5. https://zh.wikipedia.org/wiki/%E5%82%AC%E5%8C%96%E5%89%82.
6. https://www.fuelcellstore.com/blog-section/polarization-curves.
7. B. Pollet, S. Kocha, I. Staffell. Current Opinion in Electrochemistry 2019, 16:90–95.
8. C. Sequeira, D. Santos, Walmar Baptista. Journal of the Brazilian Chemical Society 2016, Vol. 17, No. 5, 910-914.
9. Si F., Zhang Y., Yan L., Zhu J., Xiao M., Liu C., Xing W., Zhang J. Elsevier B.V. 2014 , pp. 133-170.
10. Tianlei Wang, A. Chutia, D. Brett, P. Shearing, Guanjie He, Guoliang Chai, I. Parkin. Energy Environ. Sci., 2021,14, 2639-2669.
11. J. Nørskov, J. Rossmeisl, and A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, H. Jónsson. J. Phys. Chem. B 2004, 108, 17886-17892.
12. Z. Seh, J. Kibsgaard, Colin F. Dickens, I. Chorkendorff, J. Nørskov, T. Jaramillo. Science 2017 355, eaad4998.
13. H. Wang, J. Lu. Chin. J. Chem. 2020, 38, 1422—1444.
14. A Taketoshi, M. Haruta. Chem. Lett. 2014, 43, 380–387.
15. W. Zhou, M. Li, O.L. Ding, S.H. Chan, L. Zhang, Y. Xue. Int. J. Hydrog. Energy, 2014, 39, pp. 6433-6442.
16. M. A. Molina-García and N. V. Rees. RSC Adv., 2016, 6 , 94669 —94681.
17. https://www.cabotcorp.com/.
18. Hilah C. Honig, C. B. Krishnamurthy, Ignacio Borge-Durán, Mariusz Tasior, D. Gryko, I. Grinberg, L. Elbaz. J. Phys. Chem. C 2019, 123, 26351−26357.
19. F.Jinchang, Q.Kun, Hong Chen, Z.Weitao, Xiaoqiang CuiJournal of Colloid and Interface Science 2017 490 190–196.
20. Hammer B, JK Norskov. Nature , 1995 376: 238-240.
21. https://sites.google.com/site/orrcatalysiswithptbasedcsnps/home/d-band-theory.
22. Kun Jiang, H.X. Zhang, S. Zou, W. Cai. Phys.Chem.Chem.Phys.,2014, 16, 20360.
23. J. R. De Lile , S. Y. Lee , H. J. Kim , C. Pak and S. G. Lee , New J. Chem., 2019, 43 , 8195 —8203.
24. S. Back, Yousung Jung. ChemCatChem 2017, 9, 3173 – 3179.
25. José L Fernández, D. Walsh, A. Bard. J. AM. CHEM. SOC. 2005, 127, 357-365.
26. Wei, Y.-C., Liu, C.-W., Lee, H.-W., Chung, S.-R., Lee, S.-L., Chan, T.-S., Lee, J.-F., Wang, K.-W.. International Journal of Hydrogen Energy, 2011 36 (6) , pp. 3789-3802.
27. Shao, Q., Wang, P., Huang. Adv. Funct. Mater. 2019, 29, 1806419.
28. H. Li , C. Chen , D. Yan , Y. Wang , R. Chen , Y. Zou and S. Wang , J. Mater. Chem. A, 2019, 7 , 23432 —23450.
29. Kim, M., Lee, C., Ko, S.M., Nam, J.-M. Journal of Solid State Chemistry, 2019 270, pp. 295-303.
30. G. Bampos, L. Sygellou, S. Bebelis. Catal. Today, 2020, 355 pp. 685-697.
31. Y. Zhuang , J.-P. Chou , P.-Y. Liu , T.-Y. Chen , J. Kai , A. Hu and H.-Y. T. Chen , J. Mater. Chem. A, 2018, 6 , 23326 —23335.
32. Li, X.; Li, X.; Liu, C.; Huang, H.; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.; Yang, J.; Zeng, J. Nano Lett. 2020, 20, 1403– 1409.
33. Bhalothia, D.; Krishnia, L.; Yang, S.-S.; Yan, C.; Hsiung, W.-H.; Wang, K.-W.; Chen, T.-Y. Appl. Sci. 2020, 10, 7708.
34. Y. Zhuang , J.-P. Chou , H.-Y. Tiffany Chen , Y.-Y. Hsu , C.-W. Hu , A. Hu and T.-Y. Chen , Sustainable Energy Fuels, 2018, 2 , 946 —957.
35. S. Dai, J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan and. T.-Y. Chen. Nat. Commun., 2019, 10, 440.
36. Liu Y, Xu C. ChemSusChem. 2013 Jan;6(1):78-84.
37. J. Li , H. Zhou , H. Zhuo , Z. Wei , G. Zhuang , X. Zhong , S. Deng , X. Li and J. Wang. J. Mater. Chem. A, 2018, 6 , 2264 —2272.
38. Yu, J., Liu, Z., Zhai, L., Huang, T., Han, J. International Journal of Hydrogen Energy, 2016 41 (5), pp. 3436-3445.
39. http://www.nscric.nthu.edu.tw/p/404-1186-122226.php?Lang=zh-tw.
40. https://zi.media/@yidianzixun/post/Rf3awp.
41. https://www.narlabs.org.tw/tw/xcscience/contxsmsid=0I148638629329404252&sid=0K107352975420455604.
42. http://47.95.49.117/newsitem/278489750.
43. https://www.nsrrc.org.tw/chinese/index.aspxaspxerrorpath=/Chinese/experiment.aspx#3.
44. https://zhuanlan.zhihu.com/p/78090546.
45. https://www.tsri.org.tw/tw/commonPage.jsp?kindId=E0028.
46. https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy.
47. https://www.wikiwand.com/en/X-ray_absorption_near_edge_structure.
48. https://www.gushiciku.cn/dc_tw/105943467.
49. https://www.nsrrc.org.tw/chinese/index.aspxaspxerrorpath=/Chinese/experiment.aspx#3.
50. http://www.aandb.com.tw/.
51. http://nscric.site.nthu.edu.tw/p/404-1186-122439.php?Lang=zh-tw.
52. https://en.wikipedia.org/wiki/Cyclic_voltammetry.
53. Prass, S., St-Pierre, J., Klingele, M., Friedrich, K. A., & Zamel, N. Electrocatalysis, 2021 12(1), 45-55.
54. Mais, Laura. 2015. Electrodeposition of Nb, Ta, Zr and Cu from Ionic Liquid for Nanocomposites Preparation..
55. D. Bhalothia , C.-Y. Lin , C. Yan , Y.-T. Yang and T.-Y. Chen . Sustainable Energy Fuels, 2019, 3 , 1668 —1681.
56. K. Shinozaki, J. Zack, R. Richards, B. Pivovar, S. Kocha. JECS, 2015, 162, pp. 1144-1158.
57. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang,
X. F. Duan, T. Mueller, Y. Huang. Science, 2015, 348, 1230–1234.
58. D. Bhalothia , D.-L. Tsai , S.-P. Wang , C. Yan , T.-S. Chan , K.-W. Wang , T.-Y. Chen and P.-C. Chen . J. Alloys Compd., 2020, 844 , 156160.
59. H. Zhang , B. Chen and J. F. Banfield. Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78 , 214106.
60. I. L. Chen , Y. C. Wei , K. T. Lu , T. Y. Chen , C. C. Hu and J. M. Chen . Nanoscale, 2015, 7 , 15450 —15461.
61. Chen, L. X.; Rajh, T.; Wang, Z.; Thurnauer, M. C. J. Phys. Chem. B 1997, 101, 10688– 10697.
62. Z.Y. Wu, J. Zhang, K. Ibrahim, D.C. Xian, G. Li, Y. Tao, T.D. Hu, S. Bellucci, A. Marcelli, Q.H. Zhang, L. Gao, Z.Z. Chen. Appl. Phys. Lett., 2002 , 80 , pp. 2973-2975.
63. otestein, J. M.; Andrini, L. R.; Kalchenko, V. I.; Requejo, F. G.; Katz, A.; Iglesia, E. J. Am. Chem. Soc. 2007, 129, 1122– 1131.
64. Wu, Q.; Zheng, Q.; van de Krol, R. J.Phys. Chem. C, 2012, 116, 7219– 7226.
65. Hanley, T.L., Luca, V., Pickering, I., Howe, R.F. Journal of Physical Chemistry B, 2002, 106, 6, pp. 1153-1160.
66. Waychunas, Glenn A. American Mineralogist, 1987, 72.1-2 : 89-101.
67. Rossi, T.C.; Grolimund, D.; Nachtegaal, M.; Cannelli, O.; Mancini, G.F.; Bacellar, C.; Kinsche, D.; Rouxel, J.R.; Ohannessian, N.; Pergolesi, D.; et al. Phys. Rev. B Condens. Matter Mater. Phys. 2019, 100, 245207.
68. Oliveira, M. M.; Schnitzler, D. C.; Zarbin, A. J. G. Chem. Mater. 2003, 15, 1903– 1909
69. Kuo H.-W., Lin C.-J., Do H.-Y., Wu R.-Y., Tseng C.-M., Kumar K., Dong C.-L., Chen C.-L. Applied Surface Science, 2020. 502 , art. no. 144297.
70. Benjamin B Rich, Yael Etinger-Geller, G. Ciatto, A. Katsman, B. Pokroy. Physical Chemistry Chemical Physics, 2021, 23, 11, 6600-6612.
71. M. Biesinger, L. Lau, A. Gerson, R. S. C. Smart. Applied Surface Science,2010, 257, 3 , pp. 887-898.
72. Santiago, R. S., Silva, L. C. D., Origo, F. D., Stegemann, C., Graff, I. L., Delatorre, R. G., & Duarte, D. A. Thin Solid Films, 2020, 700: 137917.
73. Henderson, M. A. Langmuir, 1996, 12, 5093– 5098.
74. Y. Wang, X. Wang, C.M. Li. Appl. Catal. B Environ., 2010, 99 pp. 229-234.
75. Y. Zhao, G. Wang, L. Xiao, J. Lu, L. Zhuang. ChemistrySelect ,2020, 5, 7803.
76. D Bhalothia, C. Y. Lin, C. Yan, Y.T. Yang, T.Y. Chen. ACS Omega, 2019, 4, 971−982.
77. Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Nat. Catal. 2018, 1, 711– 719.
78. Z.X. Liu, Z.P. Li, H.Y. Qin, B.H. Liu. J. Power Sources, 2011, 196, pp. 4972-4979.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以鉑原子團簇修飾銅核鈀殼結構增強鉑於氧氣還原反應之質量活性與長時效穩定性之探究
2. 以反應程序控制白金原子團之表面修飾對鈷鈀層疊結構奈米晶體原子結構與氧還原活性
3. 以鉑原子團簇修飾錫核鈀殼結構增強鉑於氧氣還原反應之質量活性之探究
4. 金修飾釕鉑核殼奈米觸媒應用於染料敏化太陽能電池之研究
5. 直接甲醇燃料電池與染料敏化太陽能電池電極奈米結構與穩定性之研究
6. 銀鈀合金打線經高溫儲存及溫度循環測試下在腐蝕環境中的可靠度及破壞模式之研究
7. 以溶膠-凝膠法製備MgF2-SiO2 抗反射層
8. 脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池
9. 以奈米金屬薄膜材料建立表面增益拉曼光譜對環境賀爾蒙快速篩檢之資料庫與數據分析方法
10. 以近室壓光電子能譜研究甲醇在氧化亞銅表面分解和氧化反應
11. 樹狀奈米金表面電漿增益拉曼感測器可靠度測試與數值分析方法
12. 以均質與異質同步成核法合成具有鉑原子團修飾之鈷錫鈀多尺度觸媒以用於氧還原反應
13. 探討去合金化效應對鉑修飾之鎳錫鈀多尺度觸媒於鹼性環境中氧氣還原反應之影響
14. 以賈凡尼置換反應製備鍍銀銅粉於導電膠之應用
15. 以次毫秒雷射退火誘發銅鎳接合鈀三元金屬與金屬氧化物奈米異質結構
 
* *