帳號:guest(3.137.210.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭博文
作者(外文):Tinn, Phok-Bun
論文名稱(中文):探討以鈀銅原子團簇點綴之鐵基奈米觸媒間局部協同作用對於二氧化碳甲烷化之影響
論文名稱(外文):The performance of CO2 methanation over TiO2@Fe-based nanocatalyst with Pd, Cu clusters decorated through the local synergetic effect
指導教授(中文):陳燦耀
指導教授(外文):Chen, Tsan-Yao
口試委員(中文):王冠文
陳馨怡
口試委員(外文):Wang, Kuan-Wen
Chen, Hsin-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011518
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:73
中文關鍵詞:二氧化碳氫化反應二氧化碳甲烷化反應局部協同作用逆水煤氣反應鐵基奈米觸媒
外文關鍵詞:CO2 hydrogenationCO2 methanationRWGS reactionLocal synergetic effectFe-based catalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
世界因過量的二氧化碳排放而產生的全球暖化問題已日趨嚴重,所衍生出的環境問題目前正強烈著衝擊人類的生活,為了改善當今嚴峻之現況,想方設法減少二氧化碳之排放量是當務之急,科學家也正投入大量心力開發降低大氣中二氧化碳濃度之方案,而二氧化碳轉換方案中的熱催化法(即二氧化碳氫化反應),是最具未來性與發展潛力的方式之一。
本研究分為兩部分,旨在開發二氧化碳氫化反應之甲烷化反應觸媒,第一部分中,發展以二氧化鈦作為載體,並於上方成長以鐵為基底、銅原子作為點綴之觸媒;第二部分則是在鐵銅奈米觸媒上方再添加鈀原子作點綴,以此構型達更良好之甲烷化效果。本研究利用X光繞射儀分析奈米觸媒之主要結晶相;X光吸收光譜分析觸媒中各金屬原子之局部配位環境與局部氧化程度;X光光電子能譜則用以分析觸媒表面化學組態分布;並以一氧化碳剝離試驗了解表面各項成分之活性;最後利用氣相層析儀得到觸媒在真實加氫環境中的二氧化碳氫化反應之產物結果。
本研究之鐵銅/鐵銅鈀觸媒之主要結晶相經分析後都以氧化鐵(Fe2O3、Fe3O4)為主體,上方點綴金屬則多為氧化銅及金屬鈀/氧化鈀之型態。且在點綴原子的添加後,都能發現不同金屬原子間之局部協同作用發生,彼此間對於氣體的吸附能力不同而對二氧化碳氫化有更好的增益效果,實驗結果顯示鐵銅奈米觸媒中,FC(5/0075)有最佳的一氧化碳及甲烷產量,分別為800.3 ppm及102.2 ppm。而在加入鈀點綴後,兩者產量都有顯著提升,其中FCP(03)有最佳一氧化碳產量1313.9 ppm,而FCP(0075)則有最佳甲烷產量130.6 ppm,成功達到良好甲烷化反應效果。
The problem of global warming caused by excessive carbon dioxide emissions in the world has become more and more serious. The resulting environmental problems are currently strongly impacting human lives. In order to improve today’s severe conditions, it is imperative to find ways to reduce carbon dioxide emissions. Scientists are also devoted to develope useful plans to reduce the concentration of carbon dioxide in the atmosphere. The carbon dioxide thermal catalytic method (ie, hydrogenation of carbon dioxide) in the carbon dioxide conversion plan is one of the most promising methods.
There are two parts in this study, aiming to develop the methanation reaction catalyst for the hydrogenation of carbon dioxide. In the first part, titanium dioxide is developed as support material, and the iron-based nano-catalyst with copper decorated has been develop; In the second part, The addition of palladium atoms is on the top of the iron-copper nano-catalyst to achieve a better methanation effect with this configuration. In this study, X-ray diffraction spectroscopy was used to analyze the main crystalline phase of the nano-catalyst; X-ray absorption spectroscopy was used to analyze the local coordination environment and local oxidation degree of each metal atom in the catalyst; X-ray photoelectron spectroscopy was used to analyze the surface chemical configuration distribution of catalyst; and the carbon monoxide stripping test is used to understand the activity of the various components on the surface; finally, the gas chromatograph is used to obtain the product result of the carbon dioxide hydrogenation reaction of the catalyst in the real hydrogenation environment.
The main crystalline phases of the iron-copper/iron-copper-palladium catalyst in this study are all iron oxide (Fe2O3, Fe3O4) as the main body after analysis, and the decorated metallic atom on the top are mostly copper oxide and metallic palladium/palladium oxide. And after the addition of the decorated atoms, it can be found that the local synergetic effect between the different metal atoms occurs, and the adsorption capacity of each other is different, which has a better effect on the hydrogenation of carbon dioxide. The experimental results show that the iron-copper nano-catalyst FC (5/0075) has the best carbon monoxide and methane production at 800.3 ppm and 102.2 ppm, respectively. After the addition of palladium, the yields of both product have been significantly improved. Among them, FCP (03) has the best carbon monoxide yield of 1313.9 ppm, and FCP (0075) has the best methane yield of 130.6 ppm, which successfully achieved a significant methanation reaction effect.
摘要 i
Abtract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 ix
第一章 緒論 1
1-1研究背景 1
1-2降低二氧化碳排放量之策略 2
1-2-1 再生能源之使用 2
1-2-2 碳捕捉與封存 3
1-2-3 二氧化碳轉換 4
1-3 二氧化碳轉換 4
1-3-1光催化 4
1-3-2電催化 6
1-3-3熱催化 7
1-4研究動機 8
第二章 文獻回顧 9
2-1二氧化碳氫化之反應路徑及種類 9
2-2 二氧化碳氫化反應之路徑 11
2-3 影響觸媒活性之因素 12
2-3-1 活性金屬之選擇 12
2-3-2 觸媒結構與形貌 14
2-3-3 觸媒載體之選擇 15
2-4文獻回顧總結 16
第三章 實驗方法 18
3-1前言 18
3-2 實驗設計 18
3-2-1 實驗研究方向 18
3-2-2 實驗藥品 18
3-3 實驗步驟 19
3-4 材料物理性質分析 20
3-4-1 X光繞射分析儀 (X-ray diffraction) 20
3-4-2 X光吸收光譜 (X-ray absorption spectroscopy) 22
3-4-3 X光光電子圖譜 (X-ray photoelectron spectroscopy, XPS) 25
3-4-4 高解析度穿透式電子顯微鏡 (HRTEM) 27
3-4-5 感應耦合電漿質譜儀 (ICP-MS) 28
3-5電化學分析 29
一氧化碳剝離試驗 (CO-stripping) 29
3-6產物分析 30
氣相層析儀 (Gas chromatograph) 30
第四章 結果與討論 32
4-1銅原子團簇點綴之鐵基奈米催化劑之材料分析 33
4-1-1鐵銅奈米觸媒之感應耦合電漿質譜儀 33
4-1-2 鐵銅奈米觸媒之X光繞射分析 34
4-1-3 鐵銅奈米觸媒之X光吸收光譜 37
4-1-4 鐵銅奈米觸媒之X光光電子能譜 43
4-1-5 鐵銅奈米觸媒之一氧化碳剝離試驗 47
4-1-6 鐵銅奈米觸媒之氣相層析儀 49
4-2 鈀原子修飾之鐵銅奈米催化劑之材料分析 51
4-2-1鐵銅鈀奈米觸媒之感應耦合電漿質譜儀 51
4-2-2 鐵銅鈀奈米觸媒之X光繞射分析 52
4-2-3 鐵銅鈀奈米觸媒之X光吸收光譜 54
4-2-4 鐵銅鈀奈米觸媒之一氧化碳剝離試驗 59
4-2-5鐵銅鈀奈米觸媒之氣相層析儀 61
第五章 結論 66
參考文獻 68

1. B. Kahn, Earth's CO2 Passes the 400 PPM Threshold—Maybe Permanently, Climate Central, 2016
2. Wenhui Li,Haozhi Wang, Xiao Jiang, Jie Zhu, Zhongmin Liu, Xinwen Guo,Chunshan Song, A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts,RSC Advances.,2018,14,7315-7898
3. Berkeley Earth,Global Temperature Report for 2019,2020
4. https://en.wikipedia.org/wiki/Renewable_energy
5. https://en.wikipedia.org/wiki/Carbon_capture_and_storage
6. Yangyang Liu, Zhiyong U. Wang, Hong-Cai Zhou, Recent advances in carbon dioxide capture with metal-organic frameworks,Sci.Technol.,2021,2,9-16
7. A.Saravanan, P.Senthil kumar,Dai-Viet N.Vo, S.Jeevanantham, V.Bhuvaneswari, V.Anantha Narayanan, P.R.Yaashikaa, S.Swetha, B.Reshma, A comprehensive review on different approaches for CO2 utilization and conversion pathways,Chemical Engineering Science,2021,236,1-16
8. P.R.Yaashikaa, P.Senthil Kumara, Sunita J.Varjani, A.Saravanan, A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products, Journal of CO2 Utilization,2019,33,131-147
9. Muhammad Tahir, Nor Aishah SaidinaAmin, Photo-induced CO2 reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO2 nanocatalyst,2017,42,15507-15522
10. Guangcheng Xi, Shuxin Ouyang, Peng Li, Jinhua Ye, Qiang Ma, Ning Su, Hua Bai, Chao Wang, Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide,A Journal of German Chemical Society,2012,51,2395-2399
11. Xiukai Li, HuiqiPan, WeiLi, ZongjinZhuang, Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts, Applied Catalysis A: General, 2012,413,103-108
12. Yong Zhou, Zhongping Tian, Zongyan Zhao, Qi Liu, Jiahui Kou, Xiaoyu Chen, Jun Gao, Shicheng Yan, and Zhigang Zou, High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light, ACS Appl. Mater. Interfaces 2011,3,3594–3601
13. K.Kočí, L.Obalová, L.Matějová, D.Plachá, Z.Lacný, J.Jirkovský, O.Šolcová, Effect of TiO2 particle size on the photocatalytic reduction of CO2,Applied Catalysis B: Environmental,2009,89,494-502
14. Qi Liu, Yong Zhou, Jiahui Kou, Xiaoyu Chen, Zhongping Tian, Jun Gao, Shicheng Yan, and Zhigang Zou, High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel, J. Am. Chem. Soc,2010,132,14385–14387
15. Jonathan W. Lekse, M. Kylee Underwood, James P. Lewis, and Christopher Matranga, Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1–xFexO2 (x = 0.05, 0.10, 0.15, 0.20) Delafossites, J. Phys. Chem. C,2012,116,1865–1872
16. Jacob Schneider, Hongfei Jia, James T. Muckerman, Etsuko Fujita, Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts, Chemical society reviews,2012,41(6),2036-2051
17. Che Yan Chia-Hsin Wang,Moore Lin, Dinesh Bhalothia, Shou-Shiun Yang,a Gang-Jei Fan, Jia-Lin Wang, Ting-Shan Chan, Yao-lin Wang, Xin Tu, Sheng Dai, Kuan-Wen Wang, Jr-Hau Heg, Tsan-Yao Chen, Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO2 thermal methanation, J. Mater. Chem. A,2020,8,12744
18. K. Bando, K. Soga, K. Kunimori, N. Ichikuni, K. Okabe, H. Kusama, K. Sayama, H. Arakawa, CO2 hydrogenation activity and surface structure of zeolite-supported Rh catalysts, Applied Catalysis A: General,1998,173,47-60
19. Marc D. Porosoff, Xiaofang Yang, J. A. Boscoboinik, Jingguang G. Chen, Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO2 to CO, A Journal of German Chemical Society ,2014,53,6705-6709
20. AdriánQuindimil, UnaiDe-La-Torre, BeñatPereda-Ayo, José A.González-Marcos, Juan R.González-Velasco. Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation, Applied Catalysis B: Environmental,2018,238,393-403
21. Guilin Zhou, Tian Wu, H. Xie, Xu-xu Zheng, Effects of structure on the carbon dioxide methanation performance of Co-based catalysts, International Journal of Hydrogen Energy,2013,38,10012-10018
22. Qingquan Lin, Xiao Yan Liu, Ying Jiang, Yong Wang, Yanqiang Huang, Tao Zhang, Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation, Catal. Sci. Technol.,2014,4,2058-2063
23. Wei Wang, Shengping Wang, Xinbin Ma, Jinlong Gong, Recent advances in catalytichydrogenation of carbon dioxide, Chem. Soc. Rev., 2011,40, 3703-3727
24. Jingyun Ye, Changjun Liu, Donghai Me, and Qingfeng Ge, Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenatioon In2O3(110): A DFT Study. ACS Catal. 2013, 3, 1296–1306
25. Jijie Wang, Guanna Li, Zelong Li, Chizhou Tang, Zhaochi Feng, Hongyu An, Hailong Liu, Taifeng Liu, Can Li, A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol,Sci. Adv, 2017, 3, e1701290
26. S. Kattel, P. Liu and J. Chen, Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface, J. Am. Chem. Soc., 2017, 139, 9739–9754
27. Paraskevi Panagiotopoulou , Hydrogenation of CO2 over supported noble metal catalysts, Applied Catalysis A: General , 2017,542, 63-70
28. Felix Studt, Irek Sharafutdinov, Frank Abild-Pedersen, Christian F. Elkjær, Jens S. Hummelshøj, Søren Dahl, Ib Chorkendorff & Jens K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol, Nature Chemistry,2014,6, 320–324
29. Liping Fan, JingZhang, Kexin ma, Yunshang Zhang, Yi-Ming Hu, Lichun Kong, Ai-ping Jia, Zhenhua Zhang, Weixin Huang, Ji-Qing Lu, Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate, 2020, 397, 116-127
30. MaoshuaiLi, HouariAmari, Adré C.van Veen, Metal-oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites,2018,239, 27-35
31. J. Díez-Ramírez, P. Sánchez, V. Kyriakou, S. Zafeiratos, G.E. Marnellos, M. Konsolakis, F. Dorado, Journal of CO2 Utilization, Effect of support nature on the cobalt-catalyzed CO 2 hydrogenation, 2017, 21, 562-571
32. M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny J. Phys. Chem. C, Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts, 2008, 112, 14, 5275–5300
33. Sulochanadevi Baskaran, Structure and Regulation of Yeast Glycogen Synthase, University of California, Berkeley, (2010)
34. https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html
35. https://www.nsrrc.org.tw/Chinese/experiment.aspx#3
36. https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy
37. file:///C:/Users/caeser/Downloads/C10703281%20(1).pdfhttps://ywcmatsci.yale.edu/xps
38. G. Samjeske, S.-i. Nagamatsu, S. Takao, K. Nagasawa, Y. Imaizumi, O. Sekizawa, et al. Phys Chem Chem Phys, 15 (2013), pp. 17208-17218
39. https://www.slideserve.com/brianne-haughey/tem-transmission-electron-microscope
40. http://nscric.site.nthu.edu.tw/p/404-1186-122124.php?Lang=zh-tw
41. Amir Shirzadi and Susan Jackson, Structural Alloys for Power Plants,2014,36-38

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 探討以鈷團簇修飾的CoOx @ Pd奈米觸媒表面之局部協同作用對其二氧化碳甲烷化性能之影響
2. 金修飾釕鉑核殼奈米觸媒應用於染料敏化太陽能電池之研究
3. 直接甲醇燃料電池與染料敏化太陽能電池電極奈米結構與穩定性之研究
4. 銀鈀合金打線經高溫儲存及溫度循環測試下在腐蝕環境中的可靠度及破壞模式之研究
5. 以溶膠-凝膠法製備MgF2-SiO2 抗反射層
6. 脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池
7. 以奈米金屬薄膜材料建立表面增益拉曼光譜對環境賀爾蒙快速篩檢之資料庫與數據分析方法
8. 以近室壓光電子能譜研究甲醇在氧化亞銅表面分解和氧化反應
9. 以反應程序控制白金原子團之表面修飾對鈷鈀層疊結構奈米晶體原子結構與氧還原活性
10. 樹狀奈米金表面電漿增益拉曼感測器可靠度測試與數值分析方法
11. 以均質與異質同步成核法合成具有鉑原子團修飾之鈷錫鈀多尺度觸媒以用於氧還原反應
12. 探討去合金化效應對鉑修飾之鎳錫鈀多尺度觸媒於鹼性環境中氧氣還原反應之影響
13. 以賈凡尼置換反應製備鍍銀銅粉於導電膠之應用
14. 以次毫秒雷射退火誘發銅鎳接合鈀三元金屬與金屬氧化物奈米異質結構
15. 點綴金奈米團簇之金核鐵殼奈米顆粒於電刺激下之物理結構演變及對神經細胞成長的影響
 
* *