|
[1] B.L.Mordike, Creep-resistant magnesium alloys, 324 (2002) 103–112. [2] P.W.Chu, E.A.Marquis, Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior, Corros. Sci. 101 (2015) 94–104. [3] T.Cain, L.G.Bland, N.Birbilis, J.R.Scully, A Compilation of Corrosion Potentials for Magnesium Alloys, 70 (2014) 1043–1051. [4] M.Esmaily, J.E.Svensson, S.Fajardo, N.Birbilis, G.S.Frankel, S.Virtanen, R.Arrabal, S.Thomas, L.G.Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193. [5] X.Liu, D.Shan, Y.Song, E. houHan, Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy, J. Magnes. Alloy. 5 (2017) 26–34. [6] G.Ben-Hamu, D.Eliezer, K.S.Shin, S.Cohen, The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys, J. Alloys Compd. 431 (2007) 269–276. [7] X.Zhang, Y.Li, C.Wang, Corrosion and electrochemical behavior of Mg − Y alloys in 3.5 % NaCl solution, Trans. Nonferrous Met. Soc. China. 23 (2013) 1226–1236. [8] M.Liu, P.Schmutz, P.J.Uggowitzer, G.Song, A.Atrens, The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys, Corros. Sci. 52 (2010) 3687–3701. [9] H.D.Zhao, G.W.Qin, Y.P.Ren, W.L.Pei, D.Chen, Y.Guo, The maximum solubility of y in α-Mg and composition ranges of Mg 24Y5 - X and Mg2Y1 - X intermetallic phases in Mg-Y binary system, J. Alloys Compd. 509 (2011) 627–631. [10] A.D.Sudholz, K.Gusieva, X.B.Chen, B.C.Muddle, M.A.Gibson, N.Birbilis, Electrochemical behaviour and corrosion of Mg-Y alloys, Corros. Sci. 53 (2011) 2277–2282. [11] J.H.Zhang, H.F.Liu, W.Sun, H.Y.Lu, D.X.Tang, J.Meng, Influence of Structure and Ionic Radius on Solubility Limit in the Mg–Re Systems, Mater. Sci. Forum. 561–565 (2007) 143–146. [12] X.Zhang, K.Zhang, X.Deng, L.Hongwei, L.Yongjun, M.Minglong, L.Ning, Y.Wang, Corrosion behavior of Mg–Y alloy in NaCl aqueous solution, Prog. Nat. Sci. Mater. Int. 22 (2012) 169–174. [13] H.B.Yao, Y.Li, A.T.S.Wee, Passivity behavior of melt-spun Mg-Y Alloys, Electrochim. Acta. 48 (2003) 4197–4204. [14] M.Wang, H.Zhou, L.Wang, Effect of Yttrium and Cerium Addition on Microstructure and Mechanical Properties of AM50 Magnesium Alloy, J. Rare Earths. 25 (2007) 233–237. [15] Q.A.Li, Q.Zhang, C.Q.Li, Y.G.Wang, Microstructure and mechanical properties of Mg-Y alloys, Adv. Mater. Res. 239–242 (2011) 352–355. [16] 邱垂泓/Davy C.Chiu, 鎂合金成形技術, 台灣輕金屬協會. (2013). [17] I.J.Polmear, Magnesium alloys and applications, 10 (1994). [18] B.L.Mordike, T.Ebert, Magnesium Properties - applications - potential, Mater. Sci. Eng. A. 302 (2001) 37–45. [19] G.L.Song, A.Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999) 11–33. [20] A.Prasad, P.J.Uggowitzer, Z.Shi, A.Atrens, Production of high purity magnesium alloys by melt purification with Zr, Adv. Eng. Mater. 14 (2012) 477–490. [21] C.Sanchez, G.Nussbaum, P.Azavant, H.Octor, Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths, Mater. Sci. Eng. A. 221 (1996) 48–57. [22] G.L.Song, Corrosion of magnesium alloys, Corros. Magnes. Alloy. (2011) 1–640. [23] M.Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, (n.d.). [24] S.Fajardo, G.S.Frankel, Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium, Electrochim. Acta. 165 (2015) 255–267. [25] G.Williams, H.N.Mcmurray, Localized Corrosion of Magnesium in Chloride-Containing Technique, (2008) 340–349. [26] E.Ghali, W.Dietzel, K.Kainer, General and Localized Corrosion of Magnesium Alloys : A Critical Review, 13 (2004) 7–23. [27] L.Yang, X.Zhou, M.Curioni, S.Pawar, H.Liu, Z.Fan, G.Scamans, G.Thompson, Corrosion Behavior of Pure Magnesium with Low Iron Content in 3.5 wt% NaCl Solution, J. Electrochem. Soc. 162 (2015) C362–C368. [28] G.L.Song, A.Atrens, Understanding Magnesium Corrosion A Framework for Improved Alloy Performance, (2003) 837–858. [29] H.Okamoto, Mg-Y (magnesium-yttrium), J. Phase Equilibria Diffus. 31 (2010) 199. [30] Y.M.Kim, C.D.Yim, H.S.Kim, B.S.You, Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures, Scr. Mater. 65 (2011) 958–961. [31] Fridman, Tutorial a beginner ’ s guide to ICP-MS, Spectroscopy. 16 (2001) 38–55. [32] C.Growth, N.P.Company, A.Energy, Letter to the editors etchant for revealing dislocations in magnesium oxide single crystals Toshio Harada, 44 (1978) 635–637. [33] S.Feliu, Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges, Metals (Basel). 10 (2020) 1–23. [34] B.Myers, TEM Sample Preparation with the FIB / SEM TEM Sample Prep with FIB Bulk-Out U-Cut, (2009). [35] D.Qiu, M.X.Zhang, P.M.Kelly, Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg-10 wt.% Y alloy, Scr. Mater. 61 (2009) 312–315. [36] D.Qiu, M.X.Zhang, J.A.Taylor, P.M.Kelly, A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys, Acta Mater. 57 (2009) 3052–3059. [37] P.W.Chu, E.LeMire, E.A.Marquis, Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution, Corros. Sci. 128 (2017) 253–264. [38] R.K.S.Raman, The role of microstructure in localized corrosion of magnesium alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35 A (2004) 2525–2531. [39] R.Arrabal, A.Pardo, M.C.Merino, M.Mohedano, P.Casajús, K.Paucar, G.Garcés, Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt .% NaCl solution, Corros. Sci. 55 (2012) 301–312. [40] M.Sun, A.Yerokhin, M.Y.Bychkova, D.VShtansky, E.A.Levashov, A.Matthews, Self-healing Plasma Electrolytic Oxidation Coatings Doped with Benzotriazole Loaded Halloysite Nanotubes on AM50 Magnesium Alloy, Eval. Program Plann. (2016). [41] P.L.Bonora, M.Andrei, A.Eliezer, E.M.Gutman, Corrosion behaviour of stressed magnesium alloys, 44 (2002) 729–749. [42] R.Arrabal, A.Pardo, M.C.Merino, M.Mohedano, P.Casajús, K.Paucar, G.Garcés, Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt .% NaCl solution, Corros. Sci. 55 (2012) 301–312. [43] M.Liu, S.Zanna, H.Ardelean, I.Frateur, P.Schmutz, G.Song, A.Atrens, P.Marcus, A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al3Mg2 and Mg17Al12, Corros. Sci. 51 (2009) 1115–1127. [44] G.Baril, N.Pébère, Corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions, Corros. Sci. 43 (2001) 471–484. [45] A.E.Coy, F.Viejo, P.Skeldon, G.E.Thompson, Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion, Corros. Sci. 52 (2010) 3896–3906.
|