帳號:guest(13.59.72.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡維東
作者(外文):Tsai, Wei-Dung
論文名稱(中文):碲化鍺熱電塊材與銅電極間低溫大氣接合技術研究
論文名稱(外文):Development of Low Temperature Ag-to-Ag direct bonding technology for GeTe Thermoelectric Bulk and Cu Electrode in Atmosphere
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳智
廖建能
口試委員(外文):Chen, Chih
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011507
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:96
中文關鍵詞:GeTe 熱電材料接合銀薄膜低溫大氣環境濺鍍製程
外文關鍵詞:GeTe thermoelectric materialsbondingsilver thin filmlow-temperatureatmosphereSputter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:135
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
熱電材料可以直接將熱能和電能相互轉換,這種有用的材料可以被加工串聯成更復雜的熱電模組,如能利用廢熱發電的熱電發電機,或作為小型熱泵的熱電致冷器,能替電子元件散熱,傳遞掉其產生的積聚熱量。中溫型熱電材料的傳統接合技術需在真空條件下進行接合,並且會形成介金屬化合物,導致其接合強度降低。本研究中對Ge0.87Pb0.13Te(GPT)熱電塊材和銅電極間在大氣中進行了低溫銀銀直接接合。首先,通過磁控濺鍍在Ni/GPT熱電塊材和銅電極上製備細晶粒銀薄膜,並在250 ℃和40 MPa的接合壓力下,在大氣中接合30分鐘,形成GPT/Ni/Ag/Cu熱電接腳,但卻發現存在銀薄膜塑性變形的問題,接合比例也只達到79%至84.5%。接下來,通過兩步驟沉積法用鈦擴散阻障層取代了原本的鎳擴散阻障層,並在Ti/GPT熱電塊材和Ti/Cu電極上成功製備了(111)優選的奈米雙晶銀薄膜,在相同結合條件的情況下成功接合出改良的熱電接腳GPT/Ti/Ag/Ti/Cu。不僅解決了塑性變形的問題,接合比例也明顯上升到85.3%至93.3%。最後,將接合好的熱電接腳進行接合強度的分析。GPT/Ti/Ag/Ti/Cu的結合強度能達到 6 MPa,且其銀銀對接層在薄膜對薄膜剪力測試後依然能維持高接合強度。
Thermoelectric materials can directly convert heat and electricity into each other, such useful materials can be processed into much complex thermoelectric modules, like thermoelectric generators that generate electric power from waste heat, or thermoelectric coolers, which function as a small heat pump, transferring heat accumulation between electronic components. However, the traditional bonding technology for medium-temperature thermoelectric bulk usually requires bonding process in a vacuum condition and will form intermetallic compounds that lower the bonding strength. In this study, we performed low-temperature Ag-to-Ag direct bonding technology for Ge0.87Pb0.13Te (GPT) thermoelectric bulk and Cu electrode in the atmosphere. First, fine grain Ag thin film was deposited by magnetron sputtering on Ni/GPT thermoelectric material with Ni diffusion barrier and Cu electrode to form GPT/Ni/Ag/Cu thermoelectric leg under atmospheric bonding process at 250 °C with a bonding pressure of 40 MPa for 30 minutes. However, it had issue of Ag thin film plastic deformation and the bonding ratio was only 79% to 84.5%. Next, improved thermoelectric leg GPT/Ti/Ag/Ti/Cu was formed by a two-step deposition method, replacing Ni diffusion barrier with Ti diffusion barrier and successfully deposited highly (111) oriented nanotwinned Ag film on both Ti/GPT thermoelectric material and Ti/Cu electrode, while the bonding condition was the same as above. Not only did it solve the plastic deformation problem, the bonding ratio significantly increased into 85.3% to 93.3%. In addition, the bonding strength was also analyzed. The highest GPT/Ti/Ag/Ti/Cu bonding strength is 6 MPa, and the Ag-to-Ag direct bonding layer remains well bonded after shear strength test.
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Thermoelectric Materials 3
2.1.1 Thermoelectric module 4
2.1.2 Thermoelectric figure of merit 5
2.1.3 Bonding method 6
2.2 Nano-twinned Structure 6
2.2.1 Coincident Site Lattice 8
2.2.2 Stacking Fault Energy 9
2.2.3 Deformation Twin and Growth Twin 10
2.3 Deposition Method 10
2.4 Characteristics of Nano-twinned Silver 12
2.4.1 Ultrahigh strength and ductile 12
2.4.2 High electrical conductivity 14
2.4.3 Superior thermal stability 16
2.5 Direct Silver to Silver Bonding 17
2.5.1 Dissociation of Ag oxide 18
2.5.2 Surface diffusivity 19
2.5.3 Roughness 20
2.5.4 Nabarro-Herring Creep 21
2.5.5 Thermal expansion coefficient (CTE) 21
Chapter 3 Experimental processes 22
3.1 Sputtered Deposition System and Coating process 24
3.2 Specimen Preparation and Structure 26
3.3 Bonding Process 28
3.3.1 Grounding and polishing 30
3.4 Characterization methods 32
3.4.1 Cross-sectional Images and Thickness Measurement: FIB/SEM 32
3.4.2 Preferred Orientation: EBSD 34
3.4.3 Crystal Structure and Preferred Orientation: XRD 35
3.4.4 Surface Roughness: AFM 36
3.4.5 Electrical Resistivity: Four-Point Probe 37
3.4.6 Shear strength test 39
Chapter 4 Results 41
4.1 Microstructure observation and property analysis of As-Deposited Silver Thin Film 41
4.1.1 Ag/Ni/Si 43
4.1.2 Ag/Cu 45
4.1.3 Ag/Ni/GPT 49
4.1.4 Ag/Ti/Cu 53
4.1.5 Ag/Ti/GPT 58
4.2 Microstructure observation and property analysis of the as-bonded samples 63
4.2.1 Cross-sectional observation 63
4.2.2 Electrical resistivity 68
4.2.3 Shear strength 69
Chapter 5 Discussion 79
5.1 Bonding mechanism 79
5.1.1 Dissociation of Silver oxide 81
5.1.2 Diffusivity 81
5.1.3 Surface diffusion 82
5.1.4 Grain boundary diffusion 83
5.2 Properties 86
5.2.1 Electrical performance 86
5.2.2 Bonding strength 86
Chapter 6 Conclusion 88
References 89

[1] Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA, "Waste heat recovery technologies and applications", Thermal Science and Engineering Progress, vol. 6, pp. 268-289, 2018
[2] Patyk A, "Thermoelectrics: Impacts on the Environment and Sustainability", Journal of Electronic Materials, vol. 39, pp. 2023-2028, 2010
[3] Taylor R, Solbrekken GL, "Comprehensive System-Level Optimization of Thermoelectric Devices for Electronic Cooling Applications", Components and Packaging Technologies, IEEE Transactions on, vol. 31, pp. 23-31, 2008
[4] Shtern YI, Mironov RE, Shtern MY, Sherchenkov AA, Rogachev MS, "Technology and Investigation of Ohmic Contacts to Thermoelectric Materials", Acta Physica Polonica A, vol. 129, pp. 785, 2016
[5] Shtern MY, Karavaev IS, Shtern YI, Kozlov AO, Rogachev MS, "The Surface Preparation of Thermoelectric Materials for Deposition of Thin-Film Contact Systems", Semiconductors, vol. 53, pp. 1848-1852, 2019
[6] Park Y-S, Thompson T, Kim Y, Salvador JR, Sakamoto JS, "Protective enamel coating for n- and p-type skutterudite thermoelectric materials", Journal of Materials Science, vol. 50, pp. 1500-1512, 2015
[7] Battiston S, Boldrini S, Fiameni S, Famengo A, Fabrizio M, Barison S, "Multilayered thin films for oxidation protection of Mg¬2Si thermoelectric material at middle–high temperatures", Thin Solid Films, vol. 526, pp. 150-154, 2012
[8] Zawadzka K, Godlewska E, Mars K, Nocun M, "Oxidation resistant coatings for CoSb3", AIP Conference Proceedings, vol. 1449, pp. 231-234, 2012
[9] Goupil C, Continuum Theory and Modeling of Thermoelectric Elements, Wiley-VCH, 2016
[10] Blundell SJ, Blundell KM, Concepts in thermal physics, Oxford University Press, Oxford, 2010
[11] Aranguren P, Bringing Thermoelectricity into Reality, IntechOpen, 2018
[12] LaLonde AD, Pei Y, Wang H, Jeffrey Snyder G, "Lead telluride alloy thermoelectrics", Materials Today, vol. 14, pp. 526-532, 2011
[13] Shtern MY, Gromov DG, Rogachev MS, Shtern YI, Kozlov AO, "Contact Systems for Multisectional Generator Thermoelements", 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1927-1931, 2019
[14] Thimont Y, Lognoné Q, Goupil C, Gascoin F, "Design of Apparatus for Ni/Mg2Si and Ni/MnSi1.75 Contact Resistance Determination for Thermoelectric Legs", Journal of Electronic Materials, vol. 43, pp. 2023-2028, 2013
[15] Kashi S, Keshavarz M, Vasilevskiy D, Masut R, Turenne S, "Effect of Surface Preparation on Mechanical Properties of Ni Contacts on Polycrystalline (Bi1−xSb x)2(Te1−ySey)3 Alloys", Journal of Electronic Materials, vol. 41, pp. 1227, 2012
[16] Snyder G, Snyder A, "Figure of Merit ZT of a Thermoelectric Device from Materials Properties", Energy Environ Sci, vol. 10, pp. 2280-2283, 2017
[17] Kraftmakher Y, "Simple experiments with a thermoelectric module", European Journal of Physics, vol. 26, pp. 959-967, 2005
[18] Mahan GD, "Figure of merit for thermoelectrics", Journal of Applied Physics, vol. 65, pp. 1578-1583, 1989
[19] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, vol. 413, pp. 597-602, 2001
[20] Snyder G, Snyder A, "Figure of Merit ZT of a Thermoelectric Device from Materials Properties", Energy Environ Sci, vol. 10, pp. 2280-2283, 2017
[21] Mueller E, Zabrocki K, Goupil C, Snyder G, Seifert W, Functionally Graded Thermoelectric Generator and Cooler Elements, CRC Press, 2012
[22] Tenorio HCRL, Vieira DA, Souza CPd, Macêdo ECTd, Freire RCS, "A thermoelectric module thermal-cycling testing platform with automated measurement capabilities", 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, vol. pp. 1-5, 2016
[23] Oberg E, Jones FD, Horton HL, Ryffel HH, Machinery's Handbook 23rd Edition, Industrial Press Inc., 1988
[24] Li A-S, "Study on the interface properties of PbTe thermoelectric material and Cu electrode joined", National Taiwan Normal University, master’s thesis, 2012.
[25] Chuang T-H, Yeh W-T, Chuang C-H, Hwang J-D, "Improvement of bonding strength of a (Pb,Sn)Te–Cu contact manufactured in a low temperature SLID-bonding process", Journal of Alloys and Compounds, vol. 613, pp. 46-54, 2014
[26] Yang CL, Lai HJ, Hwang J-D, Chuang TH, "Diffusion Soldering of Pb-Doped GeTe Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer", Journal of Electronic Materials, vol. 42, pp. 359-365, 2012
[27] Li J, Zhao S, Chen J, Han C, Hu L, Liu F, Ao W, Li Y, Xie H, Zhang C, "Al-Si Alloy as a Diffusion Barrier for GeTe-Based Thermoelectric Legs with High Interfacial Reliability and Mechanical Strength", ACS Applied Materials & Interfaces, vol. 12, pp. 18562-18569, 2020
[28] Lu L, Shen Y, Chen X, Qian L, Lu K, "Ultrahigh Strength and High Electrical Conductivity in Copper", Science, vol. 304, pp. 422-426, 2004
[29] Shute C, Myers B, Xie S, Li S, Barbee T, Hodge A, Weertman J, "Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins", Acta Materialia, vol. 59, pp. 4569-4577, 2011
[30] Ovi„ ko I, Sheinerman A, "Mechanical properties of nanotwinned metals: a review", Reviews on Advanced Materials Science, vol. 44, pp. 1-25, 2016
[31] Kronberg ML, Wilson FH, "Secondary Recrystallization in Copper", JOM, vol. 1, pp. 501-514, 1949
[32] Jin ZH, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H, "Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals", Acta Materialia, vol. 56, pp. 1126-1135, 2008
[33] Abbaschian R, Abbaschian L, Reed-Hill RE, Physical metallurgy principles, Cengage Learning, Stamford, CT, 2009
[34] Beyerlein IJ, Zhang X, Misra A, "Growth Twins and Deformation Twins in Metals", Annual Review of Materials Science, vol. 44, pp. 329, 2014
[35] Suzuki H, Barrett CS, "Deformation twinning in silver-gold alloys", Acta Metallurgica, vol. 6, pp. 156-165, 1958
[36] Christian JW, Mahajan S, "Deformation twinning", Progress in Materials Science, vol. 39, pp. 1-157, 1995
[37] Vöhringer O, Lubarda VA, "The onset of twinning in metals: A constitutive description", Acta Materialia, vol. 49, pp. 4025-4039, 2001
[38] Zhang X, Misra A, Nastasi M, Mitchell T, Hirth J, Hoagland RG, Embury JD, "Enhanced ardening in Cu/330 stainless steel multilayers by nanoscale twinning", Acta Materialia, vol. 52, pp. 995-1002, 2004
[39] Wu X, Liao X, Srivilliputhur S, Zhou F, Lavernia E, Valiev R, Zhu Y, "New Deformation Twinning Mechanism Generates Zero Macroscopic Strain in Nanocrystalline Metals", Physical review letters, vol. 100, pp. 095701, 2008
[40] Zhu YT, Langdon TG, "Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials", Materials Science and Engineering: A, vol. 409, pp. 234-242, 2005
[41] Hsiao H-Y, Liu C-M, Lin H-w, Liu T-C, Lu C-L, Huang Y-S, Chen C, Tu K, "Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper", Science, vol. 336, pp. 1007-1010, 2012
[42] Chan T-C, Chueh Y-L, Liao C-N, "Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition", Crystal Growth & Design, vol. 11, pp. 4970-4974, 2011
[43] Bufford D, Wang H, Zhang X, "High strength, epitaxial nanotwinned Ag films", Acta Materialia, vol. 59, pp. 93-101, 2011
[44] Ouyang F-Y, Yang K-H, Chang L-P, "Effect of film thickness and Ti interlayer on structure and properties of Nanotwinned Cu thin films", Surface and Coatings Technology, vol. 350, pp. 848-856, 2018
[45] Zhang X, Wang H, Chen X, Lu L, Lu K, Hoagland R, Misra A, "High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins", Applied Physics Letters, vol. 88, pp. 173116, 2006
[46] Hodge AM, Wang YM, Barbee TW, "Mechanical deformation of high-purity sputter-deposited nano-twinned copper", Scripta Materialia, vol. 59, pp. 163-166, 2008
[47] Lu K, Lu L, Suresh S, "Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale", Science, vol. 324, pp. 349 - 352, 2009
[48] Kulkarni Y, Asaro RJ, Farkas D, "Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability?", Scripta Materialia, vol. 60, pp. 532-535, 2009
[49] Dao M, Lu L, Shen YF, Suresh S, "Strength, strain-rate sensitivity and ductility of copper with nanoscale twins", Acta Materialia, vol. 54, pp. 5421-5432, 2006
[50] Gale WF, Totemeier TC, Smithells Metals Reference Book, Elsevier, 2003
[51] Chen X, Lu L, Lu K, "Electrical Resistivity of Ultrafine-Grained Copper with Nanoscale Growth Twins", Journal of Applied Physics, vol. 102, pp. 083708-083708, 2007
[52] Zhao Y, Furnish T, Kassner ME, Hodge A, "Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture", Journal of Materials Research, vol. 27, pp. 3049-3057, 2012
[53] Bufford D, Wang H, Zhang X, "Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films", Journal of Materials Research, vol. 28, pp. 1729, 2013
[54] Xu D, Sriram V, Ozolins V, Yang J-M, Tu KN, Stafford GR, Beauchamp C, Zienert I, Geisler H, Hofmann P, Zschech E, "Nanotwin formation and its physical properties and effect on reliability of copper interconnects", Microelectronic Engineering, vol. 85, pp. 2155-2158, 2008
[55] Saldana C, Murthy T, Shankar M, Stach E, Chandrasekar S, "Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag", Applied Physics Letters, vol. 94, pp. 2009
[56] Anderoglu O, Misra A, Wang H, Zhang X, "Thermal stability of sputtered Cu films with nanoscale growth twins", Journal of Applied Physics, vol. 103, pp. 2008
[57] Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G, "Molecular dynamics simulation of triple junction migration", Acta Materialia, vol. 50, pp. 1405-1420, 2002
[58] Czubayko U, Sursaeva VG, Gottstein G, Shvindlerman LS, "Influence of triple junctions on grain boundary motion", Acta Materialia, vol. 46, pp. 5863-5871, 1998
[59] Chang L-P, Huang S-Y, Chang T-C, Ouyang F-Y, "Low temperature Ag-Ag direct bonding under air atmosphere", Journal of Alloys and Compounds, vol. 862, pp. 158587, 2021
[60] Karakaya I, Thompson WT, "The Ag-O (silver-oxygen) system", Journal of Phase Equilibria, vol. 13, pp. 137-142, 1992
[61] Gaskell DR, Introduction to the thermodynamics of materials, Taylor & Francis, New York, 2003
[62] Oh C, Nagao S, Kunimune T, Suganuma K, "Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films", Applied Physics Letters, vol. 104, pp. 161603, 2014
[63] Oh C, Nagao S, Suganuma K, "Silver stress migration bonding driven by thermomechanical stress with various substrates", Journal of Materials Science: Materials in Electronics, vol. 26, pp. 2015
[64] Laidler KJ, Chemical kinetics, Harper & Row, New York, 1987
[65] Agrawal PM, Rice BM, Thompson DL, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces", Surface Science, vol. 515, pp. 21-35, 2002
[66] Aziz M, "THERMODYNAMICS OF DIFFUSION UNDER PRESSURE AND STRESS: RELATION TO POINT DEFECT MECHANISMS", Applied Physics Letters, vol. 70, pp. 2810-2812, 1997
[67] Shackelford J, Han Y, Kim S, Kwon S-H, CRC Materials Science and Engineering Handbook, CRC Press, 2016
[68] Courtney TH, Mechanical Behavior of Materials: Solutions Manual to Accompany, McGraw-Hill, Inc., New York, 1990
[69] Liu C-M, Lin H-W, Huang Y-S, Chu Y-C, Chen C, Lyu D-R, Chen K-N, Tu K-N, "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu", Scientific Reports, vol. 5, pp. 9734, 2015
[70] Xing T, Song Q, Qiu P, Zhang Q, Xia X, Liao J, Liu R, Huang H, Yang J, Bai S, Ren D, Shi X, Chen L, "Superior performance and high service stability for GeTe-based thermoelectric compounds", National Science Review, vol. 6, pp. 944-954, 2019
[71] Cverna F, ASM Ready Reference - Thermal Properties of Metals, ASM International, 2002
[72] Gelbstein Y, Davidow J, Girard S, Chung D-Y, Kanatzidis M, "Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance", Advanced Energy Materials, vol. 3, pp. 815-820, 2013
[73] Volkert CA, Minor AM, "Focused Ion Beam Microscopy and Micromachining", MRS Bulletin, vol. 32, pp. 389-399, 2007
[74] Carter CB, Williams DB, Transmission electron microscopy: Diffraction, imaging, and spectrometry, Springer, 2016
[75] Schwartz A, Kumar M, Adams B, Electron Backscatter Diffraction in Material Science, Springer, 2000
[76] Scherrer P, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Springer Berlin Heidelberg, Berlin, Heidelberg, 1912
[77] Nasser SA, Afify H, El-Hakim SA, Zayed M, "Structural and physical properties of sprayed copper-zinc oxide films", Thin Solid Films, vol. 315, pp. 327-335, 1998
[78] Poon CY, Bhushan B, "Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler", Wear, vol. 190, pp. 76-88, 1995
[79] Yilmaz S, "The Geometric Resistivity Correction Factor for Several Geometrical Samples", Journal of Semiconductors, vol. 36, pp. 082001-082001, 2015
[80] Chen Y-Y, Juang J-Y, "Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films", Measurement Science and Technology, vol. 27, pp. 074006, 2016
[81] Lide DR, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC Press, Boca Raton, 1997
[82] Gjostein NA, Surfaces and Interfaces I: Chemical and Physical Characteristics, Syracuse University Press, 1967
[83] Tu K-N, Electronic Thin-Film Reliability, Cambridge University Press, Cambridge, 2010
[84] Shie K-C, Gusak AM, Tu KN, Chen C, "A kinetic model of copper-to-copper direct bonding under thermal compression", Journal of Materials Research and Technology, vol. 15, pp. 2332-2344, 2021
[85] Tadepalli R, Thompson CV, "Formation of Cu–Cu interfaces with ideal adhesive strengths via room temperature pressure bonding in ultrahigh vacuum", Applied Physics Letters, vol. 90, pp. 151919, 2007
[86] Zhang J-M, Ma F, Xu K-W, "Calculation of the surface energy of FCC metals with modified embedded-atom method", Applied Surface Science, vol. 229, pp. 34-42, 2004
[87] Tyson WR, Miller WA, "Surface free energies of solid metals: Estimation from liquid surface tension measurements", Surface Science, vol. 62, pp. 267-276, 1977
(此全文20261026後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *