|
[1] Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA, "Waste heat recovery technologies and applications", Thermal Science and Engineering Progress, vol. 6, pp. 268-289, 2018 [2] Patyk A, "Thermoelectrics: Impacts on the Environment and Sustainability", Journal of Electronic Materials, vol. 39, pp. 2023-2028, 2010 [3] Taylor R, Solbrekken GL, "Comprehensive System-Level Optimization of Thermoelectric Devices for Electronic Cooling Applications", Components and Packaging Technologies, IEEE Transactions on, vol. 31, pp. 23-31, 2008 [4] Shtern YI, Mironov RE, Shtern MY, Sherchenkov AA, Rogachev MS, "Technology and Investigation of Ohmic Contacts to Thermoelectric Materials", Acta Physica Polonica A, vol. 129, pp. 785, 2016 [5] Shtern MY, Karavaev IS, Shtern YI, Kozlov AO, Rogachev MS, "The Surface Preparation of Thermoelectric Materials for Deposition of Thin-Film Contact Systems", Semiconductors, vol. 53, pp. 1848-1852, 2019 [6] Park Y-S, Thompson T, Kim Y, Salvador JR, Sakamoto JS, "Protective enamel coating for n- and p-type skutterudite thermoelectric materials", Journal of Materials Science, vol. 50, pp. 1500-1512, 2015 [7] Battiston S, Boldrini S, Fiameni S, Famengo A, Fabrizio M, Barison S, "Multilayered thin films for oxidation protection of Mg¬2Si thermoelectric material at middle–high temperatures", Thin Solid Films, vol. 526, pp. 150-154, 2012 [8] Zawadzka K, Godlewska E, Mars K, Nocun M, "Oxidation resistant coatings for CoSb3", AIP Conference Proceedings, vol. 1449, pp. 231-234, 2012 [9] Goupil C, Continuum Theory and Modeling of Thermoelectric Elements, Wiley-VCH, 2016 [10] Blundell SJ, Blundell KM, Concepts in thermal physics, Oxford University Press, Oxford, 2010 [11] Aranguren P, Bringing Thermoelectricity into Reality, IntechOpen, 2018 [12] LaLonde AD, Pei Y, Wang H, Jeffrey Snyder G, "Lead telluride alloy thermoelectrics", Materials Today, vol. 14, pp. 526-532, 2011 [13] Shtern MY, Gromov DG, Rogachev MS, Shtern YI, Kozlov AO, "Contact Systems for Multisectional Generator Thermoelements", 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1927-1931, 2019 [14] Thimont Y, Lognoné Q, Goupil C, Gascoin F, "Design of Apparatus for Ni/Mg2Si and Ni/MnSi1.75 Contact Resistance Determination for Thermoelectric Legs", Journal of Electronic Materials, vol. 43, pp. 2023-2028, 2013 [15] Kashi S, Keshavarz M, Vasilevskiy D, Masut R, Turenne S, "Effect of Surface Preparation on Mechanical Properties of Ni Contacts on Polycrystalline (Bi1−xSb x)2(Te1−ySey)3 Alloys", Journal of Electronic Materials, vol. 41, pp. 1227, 2012 [16] Snyder G, Snyder A, "Figure of Merit ZT of a Thermoelectric Device from Materials Properties", Energy Environ Sci, vol. 10, pp. 2280-2283, 2017 [17] Kraftmakher Y, "Simple experiments with a thermoelectric module", European Journal of Physics, vol. 26, pp. 959-967, 2005 [18] Mahan GD, "Figure of merit for thermoelectrics", Journal of Applied Physics, vol. 65, pp. 1578-1583, 1989 [19] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, vol. 413, pp. 597-602, 2001 [20] Snyder G, Snyder A, "Figure of Merit ZT of a Thermoelectric Device from Materials Properties", Energy Environ Sci, vol. 10, pp. 2280-2283, 2017 [21] Mueller E, Zabrocki K, Goupil C, Snyder G, Seifert W, Functionally Graded Thermoelectric Generator and Cooler Elements, CRC Press, 2012 [22] Tenorio HCRL, Vieira DA, Souza CPd, Macêdo ECTd, Freire RCS, "A thermoelectric module thermal-cycling testing platform with automated measurement capabilities", 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, vol. pp. 1-5, 2016 [23] Oberg E, Jones FD, Horton HL, Ryffel HH, Machinery's Handbook 23rd Edition, Industrial Press Inc., 1988 [24] Li A-S, "Study on the interface properties of PbTe thermoelectric material and Cu electrode joined", National Taiwan Normal University, master’s thesis, 2012. [25] Chuang T-H, Yeh W-T, Chuang C-H, Hwang J-D, "Improvement of bonding strength of a (Pb,Sn)Te–Cu contact manufactured in a low temperature SLID-bonding process", Journal of Alloys and Compounds, vol. 613, pp. 46-54, 2014 [26] Yang CL, Lai HJ, Hwang J-D, Chuang TH, "Diffusion Soldering of Pb-Doped GeTe Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer", Journal of Electronic Materials, vol. 42, pp. 359-365, 2012 [27] Li J, Zhao S, Chen J, Han C, Hu L, Liu F, Ao W, Li Y, Xie H, Zhang C, "Al-Si Alloy as a Diffusion Barrier for GeTe-Based Thermoelectric Legs with High Interfacial Reliability and Mechanical Strength", ACS Applied Materials & Interfaces, vol. 12, pp. 18562-18569, 2020 [28] Lu L, Shen Y, Chen X, Qian L, Lu K, "Ultrahigh Strength and High Electrical Conductivity in Copper", Science, vol. 304, pp. 422-426, 2004 [29] Shute C, Myers B, Xie S, Li S, Barbee T, Hodge A, Weertman J, "Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins", Acta Materialia, vol. 59, pp. 4569-4577, 2011 [30] Ovi„ ko I, Sheinerman A, "Mechanical properties of nanotwinned metals: a review", Reviews on Advanced Materials Science, vol. 44, pp. 1-25, 2016 [31] Kronberg ML, Wilson FH, "Secondary Recrystallization in Copper", JOM, vol. 1, pp. 501-514, 1949 [32] Jin ZH, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H, "Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals", Acta Materialia, vol. 56, pp. 1126-1135, 2008 [33] Abbaschian R, Abbaschian L, Reed-Hill RE, Physical metallurgy principles, Cengage Learning, Stamford, CT, 2009 [34] Beyerlein IJ, Zhang X, Misra A, "Growth Twins and Deformation Twins in Metals", Annual Review of Materials Science, vol. 44, pp. 329, 2014 [35] Suzuki H, Barrett CS, "Deformation twinning in silver-gold alloys", Acta Metallurgica, vol. 6, pp. 156-165, 1958 [36] Christian JW, Mahajan S, "Deformation twinning", Progress in Materials Science, vol. 39, pp. 1-157, 1995 [37] Vöhringer O, Lubarda VA, "The onset of twinning in metals: A constitutive description", Acta Materialia, vol. 49, pp. 4025-4039, 2001 [38] Zhang X, Misra A, Nastasi M, Mitchell T, Hirth J, Hoagland RG, Embury JD, "Enhanced ardening in Cu/330 stainless steel multilayers by nanoscale twinning", Acta Materialia, vol. 52, pp. 995-1002, 2004 [39] Wu X, Liao X, Srivilliputhur S, Zhou F, Lavernia E, Valiev R, Zhu Y, "New Deformation Twinning Mechanism Generates Zero Macroscopic Strain in Nanocrystalline Metals", Physical review letters, vol. 100, pp. 095701, 2008 [40] Zhu YT, Langdon TG, "Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials", Materials Science and Engineering: A, vol. 409, pp. 234-242, 2005 [41] Hsiao H-Y, Liu C-M, Lin H-w, Liu T-C, Lu C-L, Huang Y-S, Chen C, Tu K, "Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper", Science, vol. 336, pp. 1007-1010, 2012 [42] Chan T-C, Chueh Y-L, Liao C-N, "Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition", Crystal Growth & Design, vol. 11, pp. 4970-4974, 2011 [43] Bufford D, Wang H, Zhang X, "High strength, epitaxial nanotwinned Ag films", Acta Materialia, vol. 59, pp. 93-101, 2011 [44] Ouyang F-Y, Yang K-H, Chang L-P, "Effect of film thickness and Ti interlayer on structure and properties of Nanotwinned Cu thin films", Surface and Coatings Technology, vol. 350, pp. 848-856, 2018 [45] Zhang X, Wang H, Chen X, Lu L, Lu K, Hoagland R, Misra A, "High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins", Applied Physics Letters, vol. 88, pp. 173116, 2006 [46] Hodge AM, Wang YM, Barbee TW, "Mechanical deformation of high-purity sputter-deposited nano-twinned copper", Scripta Materialia, vol. 59, pp. 163-166, 2008 [47] Lu K, Lu L, Suresh S, "Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale", Science, vol. 324, pp. 349 - 352, 2009 [48] Kulkarni Y, Asaro RJ, Farkas D, "Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability?", Scripta Materialia, vol. 60, pp. 532-535, 2009 [49] Dao M, Lu L, Shen YF, Suresh S, "Strength, strain-rate sensitivity and ductility of copper with nanoscale twins", Acta Materialia, vol. 54, pp. 5421-5432, 2006 [50] Gale WF, Totemeier TC, Smithells Metals Reference Book, Elsevier, 2003 [51] Chen X, Lu L, Lu K, "Electrical Resistivity of Ultrafine-Grained Copper with Nanoscale Growth Twins", Journal of Applied Physics, vol. 102, pp. 083708-083708, 2007 [52] Zhao Y, Furnish T, Kassner ME, Hodge A, "Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture", Journal of Materials Research, vol. 27, pp. 3049-3057, 2012 [53] Bufford D, Wang H, Zhang X, "Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films", Journal of Materials Research, vol. 28, pp. 1729, 2013 [54] Xu D, Sriram V, Ozolins V, Yang J-M, Tu KN, Stafford GR, Beauchamp C, Zienert I, Geisler H, Hofmann P, Zschech E, "Nanotwin formation and its physical properties and effect on reliability of copper interconnects", Microelectronic Engineering, vol. 85, pp. 2155-2158, 2008 [55] Saldana C, Murthy T, Shankar M, Stach E, Chandrasekar S, "Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag", Applied Physics Letters, vol. 94, pp. 2009 [56] Anderoglu O, Misra A, Wang H, Zhang X, "Thermal stability of sputtered Cu films with nanoscale growth twins", Journal of Applied Physics, vol. 103, pp. 2008 [57] Upmanyu M, Srolovitz DJ, Shvindlerman LS, Gottstein G, "Molecular dynamics simulation of triple junction migration", Acta Materialia, vol. 50, pp. 1405-1420, 2002 [58] Czubayko U, Sursaeva VG, Gottstein G, Shvindlerman LS, "Influence of triple junctions on grain boundary motion", Acta Materialia, vol. 46, pp. 5863-5871, 1998 [59] Chang L-P, Huang S-Y, Chang T-C, Ouyang F-Y, "Low temperature Ag-Ag direct bonding under air atmosphere", Journal of Alloys and Compounds, vol. 862, pp. 158587, 2021 [60] Karakaya I, Thompson WT, "The Ag-O (silver-oxygen) system", Journal of Phase Equilibria, vol. 13, pp. 137-142, 1992 [61] Gaskell DR, Introduction to the thermodynamics of materials, Taylor & Francis, New York, 2003 [62] Oh C, Nagao S, Kunimune T, Suganuma K, "Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films", Applied Physics Letters, vol. 104, pp. 161603, 2014 [63] Oh C, Nagao S, Suganuma K, "Silver stress migration bonding driven by thermomechanical stress with various substrates", Journal of Materials Science: Materials in Electronics, vol. 26, pp. 2015 [64] Laidler KJ, Chemical kinetics, Harper & Row, New York, 1987 [65] Agrawal PM, Rice BM, Thompson DL, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces", Surface Science, vol. 515, pp. 21-35, 2002 [66] Aziz M, "THERMODYNAMICS OF DIFFUSION UNDER PRESSURE AND STRESS: RELATION TO POINT DEFECT MECHANISMS", Applied Physics Letters, vol. 70, pp. 2810-2812, 1997 [67] Shackelford J, Han Y, Kim S, Kwon S-H, CRC Materials Science and Engineering Handbook, CRC Press, 2016 [68] Courtney TH, Mechanical Behavior of Materials: Solutions Manual to Accompany, McGraw-Hill, Inc., New York, 1990 [69] Liu C-M, Lin H-W, Huang Y-S, Chu Y-C, Chen C, Lyu D-R, Chen K-N, Tu K-N, "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu", Scientific Reports, vol. 5, pp. 9734, 2015 [70] Xing T, Song Q, Qiu P, Zhang Q, Xia X, Liao J, Liu R, Huang H, Yang J, Bai S, Ren D, Shi X, Chen L, "Superior performance and high service stability for GeTe-based thermoelectric compounds", National Science Review, vol. 6, pp. 944-954, 2019 [71] Cverna F, ASM Ready Reference - Thermal Properties of Metals, ASM International, 2002 [72] Gelbstein Y, Davidow J, Girard S, Chung D-Y, Kanatzidis M, "Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance", Advanced Energy Materials, vol. 3, pp. 815-820, 2013 [73] Volkert CA, Minor AM, "Focused Ion Beam Microscopy and Micromachining", MRS Bulletin, vol. 32, pp. 389-399, 2007 [74] Carter CB, Williams DB, Transmission electron microscopy: Diffraction, imaging, and spectrometry, Springer, 2016 [75] Schwartz A, Kumar M, Adams B, Electron Backscatter Diffraction in Material Science, Springer, 2000 [76] Scherrer P, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Springer Berlin Heidelberg, Berlin, Heidelberg, 1912 [77] Nasser SA, Afify H, El-Hakim SA, Zayed M, "Structural and physical properties of sprayed copper-zinc oxide films", Thin Solid Films, vol. 315, pp. 327-335, 1998 [78] Poon CY, Bhushan B, "Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler", Wear, vol. 190, pp. 76-88, 1995 [79] Yilmaz S, "The Geometric Resistivity Correction Factor for Several Geometrical Samples", Journal of Semiconductors, vol. 36, pp. 082001-082001, 2015 [80] Chen Y-Y, Juang J-Y, "Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films", Measurement Science and Technology, vol. 27, pp. 074006, 2016 [81] Lide DR, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC Press, Boca Raton, 1997 [82] Gjostein NA, Surfaces and Interfaces I: Chemical and Physical Characteristics, Syracuse University Press, 1967 [83] Tu K-N, Electronic Thin-Film Reliability, Cambridge University Press, Cambridge, 2010 [84] Shie K-C, Gusak AM, Tu KN, Chen C, "A kinetic model of copper-to-copper direct bonding under thermal compression", Journal of Materials Research and Technology, vol. 15, pp. 2332-2344, 2021 [85] Tadepalli R, Thompson CV, "Formation of Cu–Cu interfaces with ideal adhesive strengths via room temperature pressure bonding in ultrahigh vacuum", Applied Physics Letters, vol. 90, pp. 151919, 2007 [86] Zhang J-M, Ma F, Xu K-W, "Calculation of the surface energy of FCC metals with modified embedded-atom method", Applied Surface Science, vol. 229, pp. 34-42, 2004 [87] Tyson WR, Miller WA, "Surface free energies of solid metals: Estimation from liquid surface tension measurements", Surface Science, vol. 62, pp. 267-276, 1977
|