帳號:guest(18.217.147.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾建陞
作者(外文):Chung, Chien-Sheng
論文名稱(中文):佔空比及工作氣壓對高功率脈衝與非平衡磁控共濺鍍製備氮化鈦鋯鍍層結構和性質的影響
論文名稱(外文):Effects of Duty Cycle and Working Pressure on Structure and Properties of TiZrN Coatings by Co-sputtering HiPIMS/UBMS
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):呂福興
李志偉
林郁洧
口試委員(外文):Lu, Fu-Hsing
Lee, Jyh-Wei
Lin, Yu-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011506
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:92
中文關鍵詞:氮化鈦鋯高功率脈衝與非平衡磁控共濺鍍佔空比工作氣壓殘留應力
外文關鍵詞:TiZrNHybrid HiPIMS/DCMSDuty cycleWorking pressureResidual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:251
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以非平衡磁控濺鍍法鍍製氮化鈦鋯薄膜往往會產生高殘留應力。先前研究指出利用高功率脈衝與直流磁控共濺鍍法製備薄膜能夠增加鍍膜速率並降低殘留應力。本研究之目的為探討佔空比及工作氣壓對氮化鈦鋯薄膜之結構和性質的影響。氮化鈦鋯薄膜是利用高功率脈衝與非平衡磁控共濺鍍法鍍製於矽 (100) 基板上。鈦靶放置於高功率脈衝磁控濺鍍槍上並調控佔空比從5到100% (D系列)與調控工作氣壓從3到10 mTorr (P系列)。調控佔空比及工作氣壓可以控制氮化鈦鋯薄膜的壓應力。從光譜分析儀量測結果發現,在5%佔空比的情況下,僅產生少量Ti+離子而沒有多價Ti離子產生;因此施加基板偏壓,離子轟擊效應仍然不顯著。佔空比降低會增加入射粒子能量,此能量轉移到吸附與基材之金屬原子並增加其移動性。此外,工作氣壓增加會減少電漿粒子的平均自由徑。結果顯示D和P系列試片最大的殘留應力分別為-2.63和-2.48 GPa。在佔空比 50%的試片中,鍍膜速率和高功率脈衝磁控濺鍍槍的工作時間有關。當佔空比< 10% (高功率脈衝區),鍍膜速率僅降低21%。增加離子轟擊和離子穿隧效應是兩個可能造成(200)織構的原因。在高工作氣壓下鍍製的試片(P10)則由於電漿粒子平均自由徑縮短,使得吸附金屬原子能量降低,因而在低能量鍍膜條件下會生成(111)織構。鈦鋯比會隨佔空比和工作氣壓的降低而減少,而調控佔空比對於鈦鋯比之影響比調控工作氣壓更顯著。
TiZrN coatings deposited by unbalanced magnetron sputtering (UBMS) usually have high residual stress. Previous studies indicated that thin films deposited by hybrid high power impulse magnetron sputtering and DC magnetron sputtering (HiPIMS/DCMS) could increase the deposition rate and lower the residual stress. The purpose of this study was to investigate the effect of duty cycle and working pressure on structure and properties of TiZrN coatings. TiZrN coatings were deposited by co-sputtering of HiPIMS/DCMS on Si (100) substrate. The duty cycle of the HiPIMS sputtering gun with Ti target varied from 5 to 100 % (D-series) and working pressure ranged from 3 to 10 mTorr (P-series). Compressive residual stress of the TiZrN coatings can be controlled by adjusting duty cycle and working pressure. Even at 5% duty cycle, the HiPIMS gun generated small amount of Ti+ species, and no multivalent Ti ions was found in OES spectra. Therefore, ion peening effect on the film surface was not very intense even with applied substrate bias. The mobility of adatoms were enhanced by the energy delivering from the incoming energetic species due to decreasing duty cycle. Furthermore, the mean free path of the plasma species decreased with increasing working pressure. The results showed that the maximum residual stresses for D and P-series specimens were -2.63 and -2.48 GPa, respectively. For specimens deposited at duty cycle  50%, the deposition rate was related to the pulse-on time of HiPIMS sputtering gun. The deposition rate only lowered 21% in HiPIMS regime with duty cycle < 10%. The increase of ion bombardment and ion channeling effect may be the two reasons for the emergence of (200) texture. For specimen deposited at high working pressure (P10), (111) texture was attributed to the low-energy deposition condition, where the mean free path of the plasma species was reduced by the high working pressure. The Ti/(Ti+Zr) ratio of the TiZrN thin film decreased with decreasing duty cycle or decreasing working pressure. Tuning the duty cycle was more effective on changing Ti/(Ti+Zr) ratio than adjusting working pressure.
摘要 i
Abstract ii
致謝 iii
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Characteristics of Transition Metal Nitride Coatings 3
2.2 Characteristics of TiZrN Coatings 5
2.2.1 Structure 5
2.2.2 Texture Evolution 7
2.2.2.1 Overall Energy Minimization 7
2.2.2.2 Competitive Growth Theory 8
2.2.2.3 Ion Channeling Effect 8
2.2.3 Properties 9
2.3 Residual Stress 9
2.4 High Power Impulse Magnetron Sputtering (HiPIMS) 11
2.4.1 High adhesion thin film 12
2.4.2 Film conformability 12
2.4.3 Dense Film 13
2.5 Hybrid Technologies 13
Chapter 3 Experimental Procedures 15
3.1 Substrate Preparation 15
3.2 Deposition Procedures 15
3.3 Characterization Methods for Compositions and structure 20
3.3.1 X-Ray Diffraction (XRD) and Glancing Incidence X-Ray Diffraction (GIXRD) 20
3.3.2 Field Emission Gun Scanning Electron Microscope (FEG-SEM) 21
3.3.3 Atomic Force Microscope (AFM) 21
3.3.4 Field Emission Electron Probe Microanalyzer (FE-EPMA) 21
3.3.5 X-Ray Photoelectron Spectroscopy (XPS) 22
3.4 Characterization of Properties 23
3.4.1 Residual Stress - Laser Curvature Method (LCM) 23
3.4.2 Hardness - Nanoindentation 25
3.4.3 Electrical Resistivity – Four-Point Probe 25
3.5 High Power Impulse Magnetron Sputtering (HiPIMS) 26
3.5.1 HiPIMS Power Monitoring - Oscilloscope 26
3.5.2 Plasma Diagnosis - Optical Emission Spectroscope (OES) 27
Chapter 4 Results 28
Part I Effect of Duty Cycle 31
4.1 Oscilloscope and Optical Emission Spectroscope 31
4.1.1 Oscilloscope 31
4.1.2 Optical Emission Spectroscope (OES) 31
4.2 Chemical Composition and Structure 36
4.2.1 Chemical Compositions 36
4.2.2 Crystal Structure and Preferred Orientation 38
4.2.3 Cross-sectional Microstructure 42
4.2.4 Surface Roughness 42
4.3 Properties 46
4.3.1 Hardness, Young’s Modulus and Electrical Resistivity 46
4.3.2 Residual Stress 46
Part II Effect of Working Pressure of HiPIMS Process 49
4.4 Oscilloscope and Optical Emission Spectroscope 49
4.4.1 Oscilloscope 49
4.4.2 Optical Emission Spectroscope 49
4.5 Chemical Composition and Structure 50
4.5.1 Chemical Compositions, Crystal Structure and Preferred Orientation 50
4.5.2 Cross-sectional Microstructure and Surface Roughness 54
4.6 Properties 58
4.6.1 Hardness and Young’s Modulus 58
4.6.2 Residual Stress 58
4.6.3 Electrical Resistivity 58
Chapter 5 Discussion 62
5.1 Effect of Duty Cycle 62
5.1.1 Texture Evolution and Chemical Composition 62
5.1.2 Deposition Rate 67
5.1.3 Residual Stress 67
5.2 Effect of Working Pressure 68
5.2.1 Texture Evolution and Chemical Composition 68
5.2.2 Residual Stress 69
5.3 Adjusting parameters to control low residual stress 71
Chapter 6 Conclusions 74
References 75
Appendix A SEM Images 86
Appendix B 2D AFM Images 87
Appendix C 3D Plots of effects of duty cycle and working pressure on the structure and properties of TiZrN thin films 89
[1] H. Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A 4 (1986) 2661-2669.
[2] W. D. Sproul, Very high rate reactive sputtering of TiN, ZrN, and HfN, Thin Solid Films 107 (1983) 141-147.
[3] J. -H. Huang, K. -W. Lau, G. -P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17-24.
[4] Z. B. Qi, P. Sun, F. P. Zhu, Z. C. Wang, D. L. Peng, C. H. Wu, The inverse Hall-Patch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692-3697.
[5] U. K. Wiiala, I. M. Penttinen, A. S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41 (1990) 191-204.
[6] D. Valerini, M. A. Signore, L. Tapfer, E. Piscopiello, U. Galietti, A. Rizzo, Adhesion and wear of ZrN films sputtered on tungsten carbide substrates, Thin Solid Films 538 (2013) 42-47.
[7] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Technol. 66 (1994) 318-322.
[8] L. Hultman, Thermal stability of nitride thin films, Vacuum 57 (2000) 1-30.
[9] Y. -W. Lin, H. -A. Chen, G. -P. Yu, J. -H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films 618 (2016) 13-20.
[10] H. -M. Tung, P. -H. Wu, G. -P. Yu, J. -H. Huang, Microstructures, mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films, Vacuum 115 (2015) 12-18.
[11] Y. -W. Lin, J. -H. Huang, W. -J. Cheng, G. -P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
[12] Y. -W. Lin, P. -C. Chih, J. -H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol. 394 (2020) 125690.
[13] G. Greczynski, J. Lu, J. Jensen, I. Petrov, J. E. Greene, S. Bolz, W. Kölker, C. Schiffers, O. Lemmer, L. Hultman, Metal versus rare-gas ion irradiation during Ti1-xAlxN film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias, J. Vac. Sci. Technol. A 30 (2012) 061504.
[14] G. Greczynski, J. Lu, M. P. Johansson, J. Jensen, I. Petrov, J. E. Greene, L. Hultman, Role of Tin+ and Aln+ ion irradiation (n=1,2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode, Surf. Coat. Technol. 206 (2012) 4202-4211.
[15] G. Greczynski, J. Patscheider, J. Lu, B. Alling, A. Ektarawong, J. Jensen, I. Petrov, J. E. Greene, L. Hultman, Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPMS/DCMS co-deposition, Surf. Coat. Technol. 280 (2015) 174-184.
[16] M. Nose, M. Zhou, E. Honbo, M. Yokota, S. Saji, Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering, Surf. Coat. Technol. 142-144 (2001) 211-217.
[17] H. A. Wriedt, J. L. Murray, The N-Ti (Nitrogen-Titanium) System, Bull. Alloy Phase Diagr. 8 (1987) 378-388.
[18] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus. 27 (2006) 551.
[19] N. Pessall, R. E. Gold, H. A. Johansen, A study of superconductivity in interstitial compounds, J. Phys. Chem. Solids 29 (1968) 19-38.
[20] W. -J. Chou, G. -P. Yu, J. -H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films 405 (2002) 162-169.
[21] K. Chen, L. R. Zhao, J. Rodgers, J. S. Tse, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys. 36 (2003) 2725-2729.
[22] A. J. Perry, A contribution to the study of Poisson's ratios and elastic constants of TiN, ZrN and HfN, Thin Solid Films 193-194 (1990) 463-471.
[23] D. Mahéo, J. -M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films 237 (1994) 78-86.
[24] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, S. A. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys. 72 (1992) 1805-1811.
[25] E. Török, A. J. Perry, L. Chollet, W. D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films 153 (1987) 37-43.
[26] Y. -W. Lin, J. -H. Huang, G. -P. Yu, C. -N. Hsiao, F. -Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci. 354 (2015) 155-160.
[27] G. Abadias, L. E. Koutsokeras, A. Siozios, P. Patsalas, Stress, phase stability and oxidation resistance of ternary Ti-Me-N (Me = Zr, Ta) hard coatings, Thin Solid Films 538 (2013) 56-70.
[28] O. Knotek, M. Böhmer, T. Leyendecker, F. Jungblut, The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings, Mater. Sci. Eng. A 105-106 (1988) 481-488.
[29] A. Hoerling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, L. Hultman, Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films, Thin Solid Films 516 (2008) 6421-6431.
[30] J. -H. Huang, Y. -F. Chen, G. -P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol. 358 (2019) 487-496.
[31] G. Abadias, V. I. Ivashchenko, L. Belliard, Ph. Djemia, Structure, phase stability and elastic properties in the Ti1-xZrxN thin-film system: Experimental and computational studies, Acta Mater. 60 (2012) 5601-5614.
[32] A. P. Ehiasarian, A. Vetushka, Y. A. Gonzalvo, G. Sáfrán, L. Székely, P. B. Barna, Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films, J. Appl. Phys. 109 (2011) 104314.
[33] J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D: Appl. Phys. 30 (1997) 5-12.
[34] J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117-128.
[35] L. Hultman, J. -E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, High-flux low-energy (≂20 eV) N2+ ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys. 78 (1995) 5395-5403.
[36] D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, J. E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys. 93 (2003) 9086-9094.
[37] Y. -W. Lin, J. -H. Huang, G. -P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518 (2010) 7308-7311.
[38] I. Petrov, L. Hultman, J. -E. Sundgren, J. E. Greene, Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bombardment on resputtering rates, film composition, and microstructure, J. Vac. Sci. Technol. A 10 (1992) 265-272.
[39] W. Ensinger, Growth of thin films with preferential crystallographic orientation by ion bombardment during deposition, Surf. Coat. Technol. 65 (1994) 90-105.
[40] L. S. Yu, J. M. E. Harper, J. J. Cuomo, D. A. Smith, Control of thin film orientation by glancing angle ion bombardment during growth, J. Vac. Sci. Technol. A 4 (1986) 443-447.
[41] C. -H. Ma, J. -H. Huang, H. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films 446 (2004) 184-193.
[42] C. -L. Chang, S. -G. Shih, P. -H. Chen, W. -C. Chen, C. -T. Ho, W. -Y. Wu, Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coat. Technol. 259 (2014) 232-237.
[43] L. A. Donohue, J. Cawley, J. S. Brooks, Deposition and characterization of arc-bond sputter TixZryN coatings from pure metallic and segmented targets, Surf. Coat. Technol. 72 (1995) 128-138.
[44] Y. -W. Lin, C. -W. Lu, G. -P. Yu, J. -H. Huang, Structure and properties of nanocrystalline (TiZr)xN1-x thin films deposited by DC unbalanced magnetron sputtering, J. Nanomater. 2016 (2016) 2982184.
[45] J. A. Thornton, D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films 171 (1989) 5-31.
[46] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74-75 (1995) 273-278.
[47] R. W. Hoffman, Physics of Non-metallic Thin Films, New York, 1970.
[48] P. -Y. Jouan, L. L. Brizoual, M. Ganciu, C. Cardinaud, S. Tricot, M. -A. Djouadi, HiPIMS ion energy distribution measurements in reactive mode, IEEE T. Plasma Sci. 38 (2010) 3089-3094.
[49] K. A. Aissa, A. Achour, J. Camus, L. L. Brizoual, P. -Y. Jouan, M. -A. Djouadi, Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures, Thin Solid Films 550 (2014) 264-267.
[50] G. Greczynski, I. Zhirkov, I. Petrov, J. E. Greene, J. Rosen, Control of the metal/gas ion ratio incident at the substrate plane during high-power impulse magnetron sputtering of transition metals in Ar, Thin Solid Films 642 (2017) 36-40.
[51] R. P. B. Viloan, D. Lundin, J. Keraudy, U. Helmersson, Tuning the stress in TiN films by regulating the doubly charged ion fraction in a reactive HiPIMS discharge, J. Appl. Phys. 127 (2020) 103302.
[52] M. Ohring, The Material Science of Thin Films, Academic Press, San Diego, 1992.
[53] M. Ohring, The Material Science of Thin Films 2nd Edition, Academic Press, San Diego, 2002.
[54] A. Hemberg, S. Konstantinidis, F. Renaux, J. P. Dauchot, R. Snyders, Ion flux-film structure relationship during magnetron sputtering of WO3, Eur. Phys. J. Appl. Phys. 56 (2011) 24016.
[55] K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov, Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge, J. Vac. Sci. Technol. A 18 (2000) 1533-1537.
[56] K. Sarakinos, J. Alami, S. Konstantinidis, High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surf. Coat. Technol. 204 (2010) 1661-1684.
[57] J. Bohlmark, J. T. Gudmundsson, J. Alami, M. Latteman, U. Helmersson, Spatial electron density distribution in a high-power pulsed magnetron discharge, IEEE T. Plasma Sci. 33 (2005) 346-347.
[58] J. T. Gudmundsson, J. Alami, U. Helmersson, Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge, Appl. Phys. Lett. 78 (2001) 3427-3429.
[59] V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122 (1999) 290-293.
[60] V. A. Semenov, A. S. Grenadyorov, V. O. Oskirko, A. N. Zakharov, S. V. Rabotkin, I. V. Ionov, A. A. Solovyev, Comparison of plasma parameters and optical emission in DC, HiPIMS and hybrid DC+HiPIMS modes of magnetron sputtering, J. Phys.: Conf. Ser. 1393 (2019) 012023.
[61] J. Keraudy, R. P. B. Viloan, M. A. Raadu, N. Brenning, D. Lundin, U. Helmersson, Bipolar HiPIMS for tailoring ion energies in thin film deposition, Surf. Coat. Technol. 359 (2019) 433-437.
[62] A. E. Ross, R. Sanginés, B. Treverrow, M. M. M. Bilek, D. R. McKenzie, Optimizing efficiency of Ti ionized deposition in HiPIMS, Plasma Sources Sci. Technol. 20 (2011) 035021.
[63] J. Andersson, A. P. Ehiasarian, A. Anders, Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma, Appl. Phys. Lett. 93 (2008) 071504.
[64] J. Lin, R. Wei, A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance, Surf. Coat. Technol. 338 (2018) 84-95.
[65] G. Li, J. Sun, Y. Xu, Y. Xu, J. Gu, L. Wang, K. Huang, K. Liu, L. Li, Microstructure, mechanical properties, and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS, Surf. Coat. Technol. 353 (2018) 274-281.
[66] J. A. Santiago, I. Fernández-Martínez, A. Wennberg, J. M. Molina-Aldareguia, M. Castillo-Rodríguez, T. C. Rojas, J. C. Sánchez-López, M. U. González, J. M. García-Martín, H. Li, V. Bellido-González, M. A. Monclús, R. González-Arrabal, Adhesion enhancement of DLC hard coatings by HiPIMS metal ion etching pretreatment, Surf. Coat. Technol. 349 (2018) 787-796.
[67] K. D. Bakoglidis, S. Schmidt, G. Greczynski, L. Hultman, Improved adhesion of carbon nitride coatings on substrates using metal HiPIMS pretreatments, Surf. Coat. Technol. 302 (2016) 454-462.
[68] J. Alami, P. O. A. Persson, D. Music, J. T. Gudmundsson, J. Bohlmark, U. Helmersson, Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces, J. Vac. Sci. Technol. A 23 (2005) 278-280.
[69] F. Ferreira, R. Serra, A. Cavaleiro, J. C. Oliveira, Additional control of bombardment by deep oscillation magnetron sputtering: Effect on the microstructure and topography of Cr thin films, Thin Solid Films 619 (2016) 250-260.
[70] J. Weichart, M. Lechthaler, Titanium aluminum nitride sputtered by HiPIMS, IOP Conf. Ser.: Mat. Sci. Eng. 39 (2012) 012001.
[71] G. Greczynski, J. Jensen, L. Hultman, CrNx films prepared by DC magnetron sputtering and high-power pulsed magnetron sputtering: A comparative study, IEEE T. Plasma Sci. 38 (2010) 3046-3056.
[72] R. P. B. Viloan, J. Gu, R. Boyd, J. Keraudy, L. Li, U. Helmersson, Bipolar high power impulse magnetron sputtering for energetic ion bombardment during TiN thin film growth without the use of a substrate bias, Thin Solid Films 688 (2019) 137350.
[73] A. P. Ehiasarian, P. Eh. Hovsepian, L. Hultman, U. Helmersson, Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique, Thin Solid Films 457 (2004) 270-277.
[74] J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, J. A. Rees, Z. Wu, R. Chistyakov, B. Abraham, Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering, Surf. Coat. Technol. 203 (2009) 3676-3685.
[75] F. Fernandes, J. C. Oliveira, A. Cavaleiro, Self-lubricating TiSi(V)N thin films deposited by deep oscillation magnetron sputtering (DOMS), Surf. Coat. Technol. 308 (2016) 256-263.
[76] D. Lundin, T. Minea, J. T. Gudmundsson, High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, Elsevier Science, 2020.
[77] A. Anders, Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS), J. Appl. Phys. 121 (2017) 171101.
[78] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[79] L. V. Azaroff, M. J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, New York, 1958.
[80] M. P. Seah D Briggs, Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy 2nd ed, John Wiley & Sons, 1990.
[81] S. R. Kelemen, M. L. Gorbaty, G. N. George, P. J. Kwiatek, M. Sansone, Thermal reactivity of sulphur forms in coal, Fuel 70 (1991) 396-402.
[82] G. G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A. Mat. A 82 (1909) 172-175.
[83] J. J. Wortman, R. A. Evans, Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium, J. Appl. Phys. 36 (1965) 153-156.
[84] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[85] A. Qayyum, S. Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri, M. Zakaullah, Optical emission spectroscopy of Ar-N2 mixture plasma, J. Quant. Spectrosc. Ra. 107 (2007) 361-371.
[86] J. Lin, W. D. Sproul, J. J. Moore, Z. Wu, S. Lee, R. Chistyakov, B. Abraham, Recent advances in modulated pulsed power magnetron sputtering for surface engineering, JOM 63 (2011) 48-58.
[87] S. -H. Seo, J. -H. In, H. -Y. Chang, Effect of duty cycle on plasma parameters in the pulsed dc magnetron argon discharge, Appl. Phys. Lett. 86 (2005) 262103.
[88] J. T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, High power impulse magnetron sputtering discharge, J. Vac. Sci. Technol. A 30 (2012) 030801.
[89] ICDD Kabekkodu, International Centre for Diffraction Data, (1987) PDF 00-038-1420.
[90] ICDD Kabekkodu, International Centre for Diffraction Data, (1972) PDF 01-089-5269.
[91] G. Abadias, Ph. Djemia, L. Belliard, Alloying effects on structure and elastic properties of hard coatings based on ternary transition metal (M = Ti, Zr or Ta) nitrides, Surf. Coat. Technol. 257 (2014) 129-137.
[92] R. Machunze, A. P. Ehiasarian, F. D. Tichelaar, G. C. A. M. Janssen, Stress and texture in HiPIMS TiN thin films, Thin Solid Films 518 (2009) 1561-1565.
[93] C. T. Chen, Y. C. Song, G. -P. Yu, J. -H. Huang, Microstructure and hardness of hollow cathode discharge ion-plated titanium nitride film, J. Mater. Eng. Perform. 7 (1998) 324-328.
[94] W. -J. Chou, G. -P. Yu, J. -H. Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Surf. Coat. Technol. 140 (2001) 206-214.
[95] H. F. Jiang, X. B. Tian, S. Q. Yang, R. K. Y. Fu, P. K. Chu, Effects of bias on surface properties of TiN films fabricated by hollow cathode discharge, J. Vac. Sci. Technol. A 25 (2007) 837-842.
[96] A. Ghailane, H. Larhlimi, Y. Tamraoui, M. Makha, H. Busch, C. B. Fischer, J. Alami, The effect of magnetic field configuration on structural and mechanical properties of TiN coatings deposited by HiPIMS and dcMS, Surf. Coat. Technol. 404 (2020) 126572.
[97] F. Cemin, G. Abadias, T. Minea, D. Lundin, Tuing high power impulse magnetron sputtering discharge and substrate bias conditions to reduce the intrinsic stress of TiN thin films, Thin Solid Films 688 (2019) 137335.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *