帳號:guest(3.17.81.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾靜儀
作者(外文):Zhong, Jing-Yi
論文名稱(中文):田口法探討濺鍍因子對鈷鉻鐵鎳中熵合金薄膜微結構及性質影響
論文名稱(外文):Optimization of CoCrFeNi thin film sputtering process by Taguchi method
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):黃嘉宏
李志偉
口試委員(外文):Huang, Jia-Hong
Lee, Jyh-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:108011503
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:80
中文關鍵詞:田口法中熵合金鈷鉻鐵鎳濺鍍
外文關鍵詞:Taguchi methodmedium entropy alloyCoCrFeNisputter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
不同於傳統合金設計,高熵合金採用多元合金的組成使其具備抗腐蝕、高強度、高熱穩定性等特殊性質,其中以鈷鉻鐵鎳作為基底的合金因具備高強度等絕佳的機械性質成為備受矚目的材料。本研究將鈷鉻鐵鎳中熵合金薄膜利用脈衝磁控濺鍍系統沉積於矽(100)基板上,透過田口實驗規劃法中的L16 (45)直交表進行製程優化。實驗中調整五種鍍膜參數(基板偏壓、基板溫度、工作氣壓、基板轉速及脈衝電壓)至四個層級做為控制變因,並設定低電阻、低粗糙度及高硬度為性質優化的指標。製備完薄膜後,首先計算每組參數的訊雜比,得出三組最佳參數後分別進行確認試驗,獲得低電阻(98.2±0.8 μΩ·cm)、低粗糙度(0.5±0.1 nm)及高硬度(9.28±0.33 GPa)的結果。接著經變異數分析,發現影響電阻最敏感的因子為基板偏壓,而影響粗糙度及硬度最顯著的因子皆為基板升溫。除了性質量測,亦進行微結構的分析,包含利用能量散佈分析儀確認元素含量多寡及分布均勻度,利用X光繞射儀分析晶體結構及優選方向,發現部分薄膜呈現面心立方堆積(FCC)及六方最密堆積(HCP)的雙相結構,更有趣的是,本研究發現可以透過濺鍍參數的調整,控制薄膜的優選方向。此外,也從穿透式電子顯微鏡分析結果發現薄膜中含有大量的奈米雙晶,不同薄膜濺鍍參數如何影響微結構及性質將在本研究中詳細討論。
Different from conventional alloy design, high entropy alloy (HEA) has attracted much interest due to its superior properties, such as high hardness, corrosion resistance and thermal stability. Among various HEAs, CoCrFeNi-based HEAs have been investigated a lot due to its high toughness. In present study, CoCrFeNi medium entropy alloys have been prepared by pulsed DC magnetron sputtering system on Si (100) substrate. The effects of five deposition parameters, including substrate bias, substrate temperature, working pressure, rotation speed and frequency, have been investigated using Taguchi experimental method and analysis of variance (ANOVA). Based on a L16 (45) orthogonal array and the signal-to-noise ratio results, the optimized parameters for low electrical resistivity (98.2±0.8 μΩ·cm), low surface roughness (0.5±0.1 nm) and superior hardness (9.3±0.2 GPa) are achieved. In addition, the chemical composition was studied by energy dispersive X-ray spectrometry (EDS). The X-ray Diffractometer (XRD) results show that a dual phase of FCC-HCP is formed in some specimens. Moreover, some of specimens possess FCC (111) preferred oriented, while the others are FCC (200) preferred oriented. The Transmission electron microscope (TEM) results indicate that abundant nanotwins are formed in CoCrFeNi thin films. The link between deposition parameters, microstructure and properties has been discussed in this study.
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1. Design of Experiment (DOE) 3
2.1.1. Taguchi Method 3
2.1.2. Analysis of Variance (ANOVA) 6
2.2. Thin Film Deposition 7
2.2.1. Physical Vapor Deposition 7
2.2.2. Film Formation Mechanism and Zone Model 8
2.3. Characteristics of High Entropy Alloys 12
2.3.1. High Entropy Alloy Thin Films 12
2.3.2. Characteristics of CoCrFeNi Medium Entropy Alloy 13
2.3.3. Nanotwin Structure in High Entropy Alloy 15
Chapter 3 Experimental Methods 18
3.1. Sample Preparation and Deposition Process 18
3.1.1. Target Manufacturing 18
3.1.2. Substrate Preparation and Coating Process 19
3.2. Characterization Methods 22
3.2.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 22
3.2.2. Scanning Electron Microscopy- Energy Dispersive X-ray Spectrometry (SEM-EDS) 23
3.2.3. X-ray diffractometer (XRD) 24
3.2.4. Transmission Electron Microscope (TEM) 25
3.2.5. Focus Ion Beam Microscope (FIB) 27
3.3. Properties Measurement 28
3.3.1. Four-Point Probe 28
3.3.2. Scanning Probe Microscope (SPM) 30
3.3.3. Laser Curvature Measurement 31
3.3.4. Nanoindentation 31
Chapter 4 Results and Discussion 33
4.1. Microstructure 33
4.1.1. Chemical Composition 33
4.1.2. Thickness and Deposition Rate 36
4.1.3. Crystal Structure and Texture 38
4.1.4. Cross-sectional Microstructure 47
4.2. Properties 48
4.2.1. Resistivity 48
4.2.2. Surface Roughness 52
4.2.3. Residual Stress 55
4.2.4. Hardness 56
4.3. Other Observations 59
4.3.1. Formation of Dual Phase 59
4.3.2. Preferred Orientation 61
Chapter 5 Conclusions 66
Chapter 6 Future Work 67
Reference 72
1. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-6.
2. Beyerlein, I.J., X. Zhang, and A. Misra, Growth Twins and Deformation Twins in Metals. Annual Review of Materials Research, 2014. 44(1): p. 329-363.
3. Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
4. Huo, W., et al., Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Materialia, 2017. 141: p. 125-128.
5. Huo, W., et al., Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Materials Science and Engineering: A, 2017. 689: p. 366-369.
6. Hung, P.T., et al., Microstructure evolution in a nanocrystalline CoCrFeNi multi-principal element alloy during annealing. Materials Characterization, 2021. 171.
7. Nagy, P., et al., Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film. Surface and Coatings Technology, 2020. 386.
8. Alsaran, A., et al., Optimization of coating parameters for duplex treated AISI 5140 steel. Materials Science and Engineering: A, 2004. 371(1): p. 141-148.
9. Imanishi, Y., M. Taguchi, and K.-i. Onisawa, Effect of sublayer surface treatments on ZnO transparent conductive oxides using dc magnetron sputtering. Thin Solid Films, 2010. 518(11): p. 2945-2948.
10. Hsieh, T.H., et al., Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Current Applied Physics, 2018. 18(5): p. 512-518.
11. Wu, C.-K., J.-H. Huang, and G.-P. Yu, Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods. Materials Chemistry and Physics, 2019. 224: p. 246-256.
12. Huang, J.-H., et al., Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates. Materials Chemistry and Physics, 2003. 77: p. 14-21.
13. 李輝煌, 田口方法:品質設計的原理與實務. 2008: 高立.
14. R.K.Roy, A Primer on the Taguchi Method. 2nd ed. 2010: Society of Manufacturing Engineers.
15. Barnat, E. and T.M. Lu, Pulsed bias magnetron sputtering of thin films on insulators. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(6): p. 3322-3326.
16. Smith, D.L., Thin-film deposition : principles and practice. 1995, New York: McGraw-Hill. 145.
17. Movchan, B.A. and A.V. Demchishin, STUDY OF STRUCTURE AND PROPERTIES OF THICK VACUUM CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINIUM OXIDE AND ZIRCONIUM DIOXIDE. Physics of Metals and Metallography-Ussr, 1969. 28(4): p. 83-+.
18. Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
19. Messier, R., A.P. Giri, and R.A. Roy, Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984. 2(2): p. 500-503.
20. Khan, N.A., et al., High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 2019. 495.
21. Sha, C., et al., High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 2020. 385.
22. Lin, Y.-C., et al., Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surface and Coatings Technology, 2020. 403.
23. Köçkar, H. and Ö. Şentürk, Rotation speed induced properties of quaternary FeNiCrCd thin films easy-prepared from a single magnetron sputtering. 2019: p. 620-623.
24. Hsiao, Y.-C., et al., Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering. Thin Solid Films, 2013. 549: p. 281-291.
25. Zou, Y., H. Ma, and R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales. Nature Communications, 2015. 6.
26. Bing Wang, H.H., Muhammad Naeem, Si Lan, Deformation of CoCrFeNi high entropy alloy at large strain. Scripta Materialia, 2018. 155: p. 54-57.
27. Chan, K.W. and S.C. Tjong, Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels. Materials (Basel), 2014. 7(7): p. 5268-5304.
28. Salishchev, G.A., et al., Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 2014. 591: p. 11-21.
29. Liu, W.H., et al., Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015. 60: p. 1-8.
30. Qi, Y.M., T.W. He, and M.L. Feng, The effect of Cu and Mn elements on the mechanical properties of single-crystal CoCrFeNi-based high-entropy alloy under nanoindentation. Journal of Applied Physics, 2021. 129(19).
31. He, F., et al., Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Materialia, 2017. 131: p. 42-46.
32. Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011. 109(10).
33. Savan, A., et al., Structure Zone Investigation of Multiple Principle Element Alloy Thin Films as Optimization for Nanoindentation Measurements. Materials (Basel), 2020. 13(9).
34. Huo, W., et al., Fatigue resistance of nanotwinned high-entropy alloy films. Materials Science and Engineering: A, 2019. 739: p. 26-30.
35. Olson, G.B. and M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metallurgical Transactions A, 1976. 7(12): p. 1897-1904.
36. Wu, Z., Y. Gao, and H. Bei, Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Materialia, 2016. 120: p. 108-119.
37. Tian, F., et al., Ab initioinvestigation of high-entropy alloys of 3delements. Physical Review B, 2013. 87(7).
38. Vaidya, M., et al., Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2016. 688: p. 994-1001.
39. Sun, L., X. He, and J. Lu, Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Computational Materials, 2018. 4(1).
40. Zaddach, A.J., et al., Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. Jom, 2013. 65(12): p. 1780-1789.
41. Alvi, S., et al., Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Appl Mater Interfaces, 2020. 12(18): p. 21070-21079.
42. Brüggemann, D., B. Wolfrum, and J. Silva, Fabrication, Properties and Applications of Gold Nanopillars. 2014. p. 317-354.
43. Stoney, G.G., The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1909. 82(553): p. 172-175.
44. Shackelford, J.F., & Alexander, W., CRC Materials Science and Engineering Handbook. 3rd ed. 2000: CRC Press.
45. Oliver, W.C. and G.M. Pharr, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS. Journal of Materials Research, 1992. 7(6): p. 1564-1583.
46. Laegreid, N. and G.K. Wehner, Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 ev. Journal of Applied Physics, 1961. 32(3): p. 365-369.
47. Singh, A.K. and A. Subramaniam, On the formation of disordered solid solutions in multi-component alloys. Journal of Alloys and Compounds, 2014. 587: p. 113-119.
48. Messier, R., V.C. Venugopal, and P.D. Sunal, Origin and evolution of sculptured thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000. 18(4): p. 1538-1545.
49. Chan, K.-Y., T.-Y. Tou, and B.-S. Teo, Effects of substrate temperature on electrical and structural properties of copper thin films. Microelectronics Journal, 2006. 37(9): p. 930-937.
50. Huang, P.-K. and J.-W. Yeh, Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. Journal of Physics D: Applied Physics, 2009. 42(11).
51. Watanabe, H., N. Yamada, and M. Okaji, Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K. International Journal of Thermophysics, 2004. 25(1): p. 221-236.
52. Laplanche, G., et al., Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2018. 746: p. 244-255.
53. Lin, Q., et al., Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Materials Research Letters, 2018. 6(4): p. 236-243.
54. Liu, Y. and G.P. Zheng, The effects of chemical disorder and external loading conditions on the structural transformation between HCP and FCC phases in CrCoFeNi high-entropy alloys: a first-principles study. Philosophical Magazine, 2020. 100(22): p. 2857-2875.
55. Zhang, Y.H., et al., The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Materialia, 2017. 130: p. 96-99.
56. Huang, S., et al., Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 2015. 108.
57. Feng, X.B., et al., Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2017. 139: p. 71-76.
58. Chawake, N., et al., Microstructural characterization of medium entropy alloy thin films. Scripta Materialia, 2020. 177: p. 22-26.
59. Niu, C., et al., Magnetically-driven phase transformation strengthening in high entropy alloys. Nat Commun, 2018. 9(1): p. 1363.
60. Jian-Min Zhang, K.-W.X., Vincent Ji, Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Applied Surface Science, 2002
187(1-2): p. 60-67.
61. Pelleg, J., et al., Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films, 1991. 197(1): p. 117-128.
62. Jian-Min Zhang, K.-W., Vincent Ji, Dependence of strain energy on the grain orientations in an FCC-polycrystalline film on rigid substrate. Applied Surface Science, 2002. 185(3-4): p. 177-182.
63. Greene, J.E., et al., Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Applied Physics Letters, 1995. 67(20): p. 2928-2930.
64. Vitos, L., et al., The surface energy of metals. Surface Science, 1998. 411(1): p. 186-202.
65. Jung, Y.S., Study on texture evolution and properties of silver thin films prepared by sputtering deposition. Applied Surface Science, 2004. 221(1-4): p. 281-287.
66. Jae-Won Lim, Y.I., Kiyoshi Miyake, Mutsuo Yamashita, Minoru Isshiki, Influence of substrate bias voltage on the properties of Cu thin films. Materials Transactions, 2002. 43(6): p. 1403-1408.
67. Wang, J.-J., S.-Y. Chang, and F.-Y. Ouyang, Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr)Nx high entropy nitride thin film. Surface and Coatings Technology, 2020. 393.
68. Mattox, D.M., Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A, 1989. 7(3): p. 1105-1114.
69. Mahieu, S., D. Depla, and R.d. Gryse, Modelling the growth of transition metal nitrides. Journal of Physics Conference Series (Online), 2008. 100(8): p. 6.
70. Bradley, R.M., J.M.E. Harper, and D.A. Smith, Theory of thin‐film orientation by ion bombardment during deposition. Journal of Applied Physics, 1986. 60(12): p. 4160-4164.
71. Hall, E.O., The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Section B, 1951. 64(9): p. 747-753.
72. Petch, N.J., The Cleavage Strength of Polycrystals. J. Iron Steel Inst., 1953. 174: p. 25-28.
73. Hirth, J.P., CHAPTER 20 - DISLOCATIONS, in Physical Metallurgy (Fourth Edition), R.W. Cahn and P. Haasen†, Editors. 1996, North-Holland: Oxford. p. 1831-1875.
74. Schiøtz, J. and K.W. Jacobsen, A Maximum in the Strength of Nanocrystalline Copper. Science, 2003. 301(5638): p. 1357-1359.
75. Gupta, A., et al., On the mechanistic origins of maximum strength in nanocrystalline metals. npj Computational Materials, 2020. 6(1).
76. Li, X., et al., Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010. 464(7290): p. 877-880.
77. Song, J., et al., Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique. Crystals, 2018. 8: p. 128.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *