|
1. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-6. 2. Beyerlein, I.J., X. Zhang, and A. Misra, Growth Twins and Deformation Twins in Metals. Annual Review of Materials Research, 2014. 44(1): p. 329-363. 3. Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303. 4. Huo, W., et al., Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Materialia, 2017. 141: p. 125-128. 5. Huo, W., et al., Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Materials Science and Engineering: A, 2017. 689: p. 366-369. 6. Hung, P.T., et al., Microstructure evolution in a nanocrystalline CoCrFeNi multi-principal element alloy during annealing. Materials Characterization, 2021. 171. 7. Nagy, P., et al., Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film. Surface and Coatings Technology, 2020. 386. 8. Alsaran, A., et al., Optimization of coating parameters for duplex treated AISI 5140 steel. Materials Science and Engineering: A, 2004. 371(1): p. 141-148. 9. Imanishi, Y., M. Taguchi, and K.-i. Onisawa, Effect of sublayer surface treatments on ZnO transparent conductive oxides using dc magnetron sputtering. Thin Solid Films, 2010. 518(11): p. 2945-2948. 10. Hsieh, T.H., et al., Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Current Applied Physics, 2018. 18(5): p. 512-518. 11. Wu, C.-K., J.-H. Huang, and G.-P. Yu, Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods. Materials Chemistry and Physics, 2019. 224: p. 246-256. 12. Huang, J.-H., et al., Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates. Materials Chemistry and Physics, 2003. 77: p. 14-21. 13. 李輝煌, 田口方法:品質設計的原理與實務. 2008: 高立. 14. R.K.Roy, A Primer on the Taguchi Method. 2nd ed. 2010: Society of Manufacturing Engineers. 15. Barnat, E. and T.M. Lu, Pulsed bias magnetron sputtering of thin films on insulators. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(6): p. 3322-3326. 16. Smith, D.L., Thin-film deposition : principles and practice. 1995, New York: McGraw-Hill. 145. 17. Movchan, B.A. and A.V. Demchishin, STUDY OF STRUCTURE AND PROPERTIES OF THICK VACUUM CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINIUM OXIDE AND ZIRCONIUM DIOXIDE. Physics of Metals and Metallography-Ussr, 1969. 28(4): p. 83-+. 18. Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670. 19. Messier, R., A.P. Giri, and R.A. Roy, Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984. 2(2): p. 500-503. 20. Khan, N.A., et al., High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 2019. 495. 21. Sha, C., et al., High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 2020. 385. 22. Lin, Y.-C., et al., Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surface and Coatings Technology, 2020. 403. 23. Köçkar, H. and Ö. Şentürk, Rotation speed induced properties of quaternary FeNiCrCd thin films easy-prepared from a single magnetron sputtering. 2019: p. 620-623. 24. Hsiao, Y.-C., et al., Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering. Thin Solid Films, 2013. 549: p. 281-291. 25. Zou, Y., H. Ma, and R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales. Nature Communications, 2015. 6. 26. Bing Wang, H.H., Muhammad Naeem, Si Lan, Deformation of CoCrFeNi high entropy alloy at large strain. Scripta Materialia, 2018. 155: p. 54-57. 27. Chan, K.W. and S.C. Tjong, Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels. Materials (Basel), 2014. 7(7): p. 5268-5304. 28. Salishchev, G.A., et al., Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 2014. 591: p. 11-21. 29. Liu, W.H., et al., Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015. 60: p. 1-8. 30. Qi, Y.M., T.W. He, and M.L. Feng, The effect of Cu and Mn elements on the mechanical properties of single-crystal CoCrFeNi-based high-entropy alloy under nanoindentation. Journal of Applied Physics, 2021. 129(19). 31. He, F., et al., Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Materialia, 2017. 131: p. 42-46. 32. Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011. 109(10). 33. Savan, A., et al., Structure Zone Investigation of Multiple Principle Element Alloy Thin Films as Optimization for Nanoindentation Measurements. Materials (Basel), 2020. 13(9). 34. Huo, W., et al., Fatigue resistance of nanotwinned high-entropy alloy films. Materials Science and Engineering: A, 2019. 739: p. 26-30. 35. Olson, G.B. and M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metallurgical Transactions A, 1976. 7(12): p. 1897-1904. 36. Wu, Z., Y. Gao, and H. Bei, Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Materialia, 2016. 120: p. 108-119. 37. Tian, F., et al., Ab initioinvestigation of high-entropy alloys of 3delements. Physical Review B, 2013. 87(7). 38. Vaidya, M., et al., Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2016. 688: p. 994-1001. 39. Sun, L., X. He, and J. Lu, Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts. npj Computational Materials, 2018. 4(1). 40. Zaddach, A.J., et al., Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. Jom, 2013. 65(12): p. 1780-1789. 41. Alvi, S., et al., Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Appl Mater Interfaces, 2020. 12(18): p. 21070-21079. 42. Brüggemann, D., B. Wolfrum, and J. Silva, Fabrication, Properties and Applications of Gold Nanopillars. 2014. p. 317-354. 43. Stoney, G.G., The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1909. 82(553): p. 172-175. 44. Shackelford, J.F., & Alexander, W., CRC Materials Science and Engineering Handbook. 3rd ed. 2000: CRC Press. 45. Oliver, W.C. and G.M. Pharr, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS. Journal of Materials Research, 1992. 7(6): p. 1564-1583. 46. Laegreid, N. and G.K. Wehner, Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 ev. Journal of Applied Physics, 1961. 32(3): p. 365-369. 47. Singh, A.K. and A. Subramaniam, On the formation of disordered solid solutions in multi-component alloys. Journal of Alloys and Compounds, 2014. 587: p. 113-119. 48. Messier, R., V.C. Venugopal, and P.D. Sunal, Origin and evolution of sculptured thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000. 18(4): p. 1538-1545. 49. Chan, K.-Y., T.-Y. Tou, and B.-S. Teo, Effects of substrate temperature on electrical and structural properties of copper thin films. Microelectronics Journal, 2006. 37(9): p. 930-937. 50. Huang, P.-K. and J.-W. Yeh, Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. Journal of Physics D: Applied Physics, 2009. 42(11). 51. Watanabe, H., N. Yamada, and M. Okaji, Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K. International Journal of Thermophysics, 2004. 25(1): p. 221-236. 52. Laplanche, G., et al., Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2018. 746: p. 244-255. 53. Lin, Q., et al., Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Materials Research Letters, 2018. 6(4): p. 236-243. 54. Liu, Y. and G.P. Zheng, The effects of chemical disorder and external loading conditions on the structural transformation between HCP and FCC phases in CrCoFeNi high-entropy alloys: a first-principles study. Philosophical Magazine, 2020. 100(22): p. 2857-2875. 55. Zhang, Y.H., et al., The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Materialia, 2017. 130: p. 96-99. 56. Huang, S., et al., Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 2015. 108. 57. Feng, X.B., et al., Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2017. 139: p. 71-76. 58. Chawake, N., et al., Microstructural characterization of medium entropy alloy thin films. Scripta Materialia, 2020. 177: p. 22-26. 59. Niu, C., et al., Magnetically-driven phase transformation strengthening in high entropy alloys. Nat Commun, 2018. 9(1): p. 1363. 60. Jian-Min Zhang, K.-W.X., Vincent Ji, Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Applied Surface Science, 2002 187(1-2): p. 60-67. 61. Pelleg, J., et al., Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films, 1991. 197(1): p. 117-128. 62. Jian-Min Zhang, K.-W., Vincent Ji, Dependence of strain energy on the grain orientations in an FCC-polycrystalline film on rigid substrate. Applied Surface Science, 2002. 185(3-4): p. 177-182. 63. Greene, J.E., et al., Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Applied Physics Letters, 1995. 67(20): p. 2928-2930. 64. Vitos, L., et al., The surface energy of metals. Surface Science, 1998. 411(1): p. 186-202. 65. Jung, Y.S., Study on texture evolution and properties of silver thin films prepared by sputtering deposition. Applied Surface Science, 2004. 221(1-4): p. 281-287. 66. Jae-Won Lim, Y.I., Kiyoshi Miyake, Mutsuo Yamashita, Minoru Isshiki, Influence of substrate bias voltage on the properties of Cu thin films. Materials Transactions, 2002. 43(6): p. 1403-1408. 67. Wang, J.-J., S.-Y. Chang, and F.-Y. Ouyang, Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr)Nx high entropy nitride thin film. Surface and Coatings Technology, 2020. 393. 68. Mattox, D.M., Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A, 1989. 7(3): p. 1105-1114. 69. Mahieu, S., D. Depla, and R.d. Gryse, Modelling the growth of transition metal nitrides. Journal of Physics Conference Series (Online), 2008. 100(8): p. 6. 70. Bradley, R.M., J.M.E. Harper, and D.A. Smith, Theory of thin‐film orientation by ion bombardment during deposition. Journal of Applied Physics, 1986. 60(12): p. 4160-4164. 71. Hall, E.O., The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Section B, 1951. 64(9): p. 747-753. 72. Petch, N.J., The Cleavage Strength of Polycrystals. J. Iron Steel Inst., 1953. 174: p. 25-28. 73. Hirth, J.P., CHAPTER 20 - DISLOCATIONS, in Physical Metallurgy (Fourth Edition), R.W. Cahn and P. Haasen†, Editors. 1996, North-Holland: Oxford. p. 1831-1875. 74. Schiøtz, J. and K.W. Jacobsen, A Maximum in the Strength of Nanocrystalline Copper. Science, 2003. 301(5638): p. 1357-1359. 75. Gupta, A., et al., On the mechanistic origins of maximum strength in nanocrystalline metals. npj Computational Materials, 2020. 6(1). 76. Li, X., et al., Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010. 464(7290): p. 877-880. 77. Song, J., et al., Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique. Crystals, 2018. 8: p. 128.
|