帳號:guest(18.222.7.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪建中
作者(外文):Houng, Cheng-Chung
論文名稱(中文):紫式決策架構以評估工業3.5智慧工廠解決方案
論文名稱(外文):UNISON Framework for Evaluating Smart Factory Solutions to Empower Industry 3.5
指導教授(中文):簡禎富
指導教授(外文):Chien, Chen-Fu
口試委員(中文):彭金堂
黃怡詔
口試委員(外文):Peng, Jin-Tang
Huang, Yi-Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:智慧製造跨院高階主管碩士在職學位學程
學號:108005518
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:工業4.0工業3.5智慧工廠紫式決策架構
外文關鍵詞:Industrial 4.0Industrial 3.5smart factoryUNISON
相關次數:
  • 推薦推薦:0
  • 點閱點閱:298
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於AI技術之蓬勃發展,製造業導入智慧化、工業4.0及工業3.5之需求日益增加,但在導入過程中,由於目標不明確,而產生導入之內容包羅萬象,經常被各種專業術語所混淆,未能針對企業實際需求與能力限制,透過客觀與專業的評估分析,以選擇最適合企業發展之方向與項目,以致落入決策陷阱,產生投資預期與實際效益的落差而有成效不彰情形。
RAMI 4.0(Reference Architecture Model Industry 4.0,工業4.0參考架構模型) 是由德國BITKOM、VDMA及ZVEI等工業組織所共同發展及發表,提供工業4.0系統一個基本的參考模型,使企業能以結構性的方法來進行工業4.0之研究與實現,以確保工業4.0之推行及參與者可在一個共同的認知下來進行。透過參考架構模型,企業可從架構模型中,尋找到企業自己的位置,以導入相對應之智慧製造方案。
本研究參考RAMI4.0、美國IIRA(Industrial Internet Reference Architecture)、日本IVRA(Industrial Value Chain Reference Architecture)以及中國國家智能製造標準體系建設指南等參考架構模型之精神,運用UNISON分析架構,引導決策者經由策略目標之定義,找出推案之根本目標與層級架構,並以根本目標為基礎結合工業3.5策略目標,提出適合台灣工業3.5智慧製造執行之參考架構模型與應用架構,讓參考者快速定位需求與方向,再透過此應用架構製作技術需求矩陣,使用者即可藉由技術需求矩陣找出相對應之關鍵技術內容,據以執行。
本研究實證透過本研究所提出之參考模型架構,快速的依客戶需求,定義問題,找到根本目標,並透過參考模型應用架構,歸納出需求技術矩陣,並提出具體執行規劃建議,驗證本研究之效度及可行性。
關鍵字: 工業4.0、工業3.5、智慧工廠、紫式決策架構
Due to the vigorous development of AI technology, the demand for smart manufacturing, Industry 4.0 and Industry 3.5 is increasing. However, during the adoption process, it is found that the adoption content is all-encompassing and is often confused by various technical terms. It is difficult to target the actual needs under the constrain of the capabilities limitation of the company and make the suitable decision of develop iterm for the enterprise through objective and professional evaluation and analysis. So that it falls into the trap of decision-making, resulting in a gap between investment expectations and actual benefits, and the results are not effective.
RAMI4.0 (Reference Architecture Model Industry 4.0) is developed and published by industrial organizations in Germany. RAMI 4.0 provide Industry 4.0 a baisic reference model to ensure the I 4.0 can be implemented and realize in a structure method under common experience. Through the entire structure, the enterprise can find its acture needs and introduce the corresponding plan.
This research refers to the RAMI4.0, IIRA (Industrial Internet Reference Architecture), IVRA (Industrial Value Chain Reference Architecture), and China's National Intelligent Manufacturing Standard System Construction Guide. We uses UNISON analyze framework to induce decision makers through the definition of strategic objectives to find out the fundamental objectives and hierarchical network architecture of the proposed project, and combine the Industrial 3.5 strategic objectives based on the project fundamental objective, and propose an architecture reference model and application framework for Taiwan's Industrial 3.5 smart manufacturing to be the reference to quickly locate the needs and direction. Finally, through the application framework to create a demand technology matrix, users can find the corresponding key technology content through the demand technology matrix, and execute them accordingly.
The empirical study of this research, through the proposed reference model framework, quickly defines the problem according to customer needs, finds the fundamental objective, and summarizes the demand technology matrix through the reference model application framework, and proposes specific implementation planning recommendations to verify this research validity and feasibility.
Keywords: Industrial 4.0, Industrial 3.5, smart factory, UNISON.

目錄 i
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1 研究背景、動機與重要性 1
1.2 研究目的 4
1.3 論文結構 5
第二章 文獻回顧 6
2.1 德國RAMI 4.0 6
2.1.1 RAMI 4.0模型概述 6
2.1.1.1 應用層級 (Architecture axis "Layer") 7
2.1.1.2 產品生命週期與價值鏈(Life cycle and value chain axis) 11
2.1.1.3 階層層級(Hierarchy Level axis) 13
2.1.2 RAMI4.0解構與應用 17
2.1.2.1 工業4.0元件(Industry 4.0 Component) 18
2.1.2.2 工業4.0工具箱(Industry 4.0 Toolbox) 20
2.2 美國IIRA 25
2.2.1 IIRA的概念 25
2.2.2 IIRA之解構與應用 27
2.2.3 IIRA與RAMI 4.0之比較 30
2.3 日本IVRA 32
2.3.1 IVRA的概念 32
2.3.2 IVRA應用 34
2.3.3 IVRA與RAMI 4.0之比較 36
2.4 中國國家智能製造標準體系建設指南 37
2.4.1 中國國家智能製造標準體系概念 37
2.4.2 中國國家智能製造標準體系之應用 40
2.4.3 中國國家智能製造標準體系與RAMI 4.0之比較 41
2.5 紫式決策分析框架 42
2.6 工業3.5智慧製造策略 44
2.7 相關文獻整理與評析 45
第三章 研究架構 48
3.1 瞭解及定義問題 49
3.2 利基與架構 51
3.2.1 決策目標定義 51
3.2.2 工業3.5智慧製造參考架構模型(Reference Architecture Model) 54
3.2.2.1 策略架構層級 54
3.2.2.2 系統層級 55
3.2.2.3 技術層級 56
3.2.2.4 工業3.5與參考架構模型之映對關係 57
3.3 架構影響關係 58
3.3.1 建立目標層級架構 58
3.3.2 建立參考模型應用架構 59
3.4 客觀敍述 61
3.4.1 評估屬性 61
3.4.2 技術與工具 66
3.4.3 智慧製造技術需求矩陣 69
3.4.3.1 需求矩陣 69
3.5 綜合判斷 71
3.6 最適決策 72
第四章 實證研究 73
4.1 實證研究問題之背景與情境說明 73
4.2 「工業3.5智慧製造實現方案選擇」實證 74
4.2.1 問題定義 75
4.2.2 利基發掘 76
4.2.3 影響關係 76
4.2.4 客觀敘述 78
4.2.5 綜合判斷與決策 78
4.3 A公司智慧製造實作範例 79
4.3.1 資訊基礎建設 79
4.3.2 智能裝備與工業網路 80
4.3.3 智慧整合 82
4.3.4 管控系統 83
4.3.5 應用服務 84
4.4 「工業3.5智慧製造參考架構模型」導入智慧製造之建議 84
第五章 結論 86
5.1 研究貢獻和限制 86
5.2 未來研究方向 86
參考文獻 88

Adolph, L., Anlahr, T., & Bedenbender, H. (2016). German standardization roadmap: Industry 4.0. Version 2. Berlin: DIN eV.
Anderl, R., Picard, A., Wang, Y., Fleischer, J., Dosch, S., Klee, B., & Bauer, J. (2015). Guideline Industrie 4.0-Guiding principles for the implementation of Industrie 4.0 in small and medium sized businesses. Paper presented at the Vdma forum industrie.
BITKOM, VDMA, & ZVEI. (2017). Smart manufacturing - Reference architecture model industry 4.0 (RAMl4.0) PD IEC/PAS 63088:2017. International Electrotecnical Commission, British Standards Institution, 44.
Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2018). Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access, 6, 6505-6519.
Chien, C.-F., Chen, Y.-J., & Peng, J.-T. (2010). Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle. International Journal of Production Economics, 128(2), 496-509.
Chien, C.-F., & Zheng, J.-N. (2012). Mini–max regret strategy for robust capacity expansion decisions in semiconductor manufacturing. Journal of Intelligent Manufacturing, 23(6), 2151-2159. Retrieved from https://link.springer.com/content/pdf/10.1007/s10845-011-0561-1.pdf, (Accessed on 2021.07.30).
Fraile, F., Sanchis, R., Poler, R., & Ortiz, A. (2019). Reference models for digital manufacturing platforms. Applied Sciences, 9(20), 4433.
Hive Ventures Team, & ASVDA. (2021). 台灣企業AI趨勢報告. 67.
Hozdić, E. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies, 7(1), 28-35. Retrieved from https://modtech.ro/international-journal/vol7no12015/Hozdic_Elvis.pdf, (Accessed on 2021.07.30).
IEC. (2013). IEC 62264-1 Enterprise-control system integration–Part 1: Models and terminology. In IEC, Genf: International Electrotechnical Commission, IEC,.
IEC. (2020). IEC 62890 Industrial-process measurement, control and automation Life-cycle- management for systems and components. In: Technical Report.
Industrial Value Chain Initiative. (2016). Industrial Value Chain Reference Architecture (IVRA).
Insustrial Internet Consortium. (2019). The Industrial Internet of Things Volume G1: Reference Architecture. Retrieved from https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf, (Accessed on 2021.07.30).
Lee, H. L., Padmanabhan, V., & Whang, S. (1997). The bullwhip effect in supply chains. Sloan management review, 38, 93-102. Retrieved from https://sloanreview.mit.edu/wp-content/uploads/1997/04/633ecdb037.pdf, (Accessed on 2021.07.30).
Lin, S.-W., Murphy, B., Clauer, E., Loewen, U., Neubert, R., Bachmann, G., . . . Hankel, M. (2017). Architecture alignment and interoperability. An industrial internet consortium and plattform industrie 4.0 joint whitepaper, 1-17.
Nishioka, Y. (2017). Re: Industrial_Value_Chain_Reference_Architecture. Message posted to https://iv-i.org/en/docs/Industrial_Value_Chain_Reference_Architecture_170424.pdf
Pisching, M. A., Pessoa, M. A. O., Junqueira, F., dos Santos Filho, D. J., & Miyagi, P. E. (2018). An architecture based on RAMI 4.0 to discover equipment to process operations required by products. Computers & Industrial Engineering, 125, 574-591. doi:10.1016/j.cie.2017.12.029
Shi-Wan, L., Bradford, M., Jacques, D., Graham, B., Amine, C., Robert, M., . . . Mark, C. (2019). The Industrial Internet of Things Volume G1: Reference Architecture. Retrieved from https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf. (Accessed on 2021.07.30)
TC65, I. (1997). IEC 61512-1: Batch control-Part 1: Models and terminology. International Electrotechnical Commission.
Wang, Y., Towara, T., & Anderl, R. (2017, October 25-27, 2017). Topological Approach for Mapping Technologies in Reference Archtecture Model Industrie 4.0 (RAMI 4.0). Paper presented at the World Congress on Engineering and Computer Science 2017, San Francisco, USA.
田洪川, & 林雪萍. (2016). 工業4.0術語:RAMI4.0 工業4.0參考體系 (工四術語). Retrieved from https://www.sohu.com/a/113596332_403191, (Accessed on 2021.07.30).
呂佑龍, & 張潔. (2016). 基於大數據的智慧工廠技術框架. China Academic Journal, 22, 2691-2697. doi:10.13196/j.cims. 2016.11.022
洪子晏. (2019). 工業 3.5 之智慧製造系統-以 TFT-LCD 陣列製造動態排程與派工為實證研究. (PHD). 國立清華大學,
趙敏. (2018). 基於 RAMI 4.0 解讀新一代智能製造. 中國工程科學(2018 年 04), 90-96.
國家標準化管理委員, (2018). 國家智慧製造標準體系建設指南. Retrieved from https://www.miit.gov.cn/n973401/n4965332/n4965342/c6437915/part/6489131.pdf, (Accessed on 2021.07.30).
勤業眾信. (2020). 台灣智慧製造關鍵能力調查.
歐陽勁松, 劉丹, 汪爍, & 丁露. (2016). 德國工業4.0 参考架構模型與我國智能製造技術體系的思考. Automation Panorama, 62-65.
簡禎富. (2017). 決策分析與管理(二版). 臺北: 雙葉書廊有限公司.
簡禎富. (2019). 工業3.5 台灣企業萬向智慧製造與數位決策的戰略. 台灣: 天下雜誌股份有限公司.
簡禎富, 林國義, 許鉅秉, & 吳政鴻. (2016). 台灣生產與作業管理之相關期刊文獻回顧與前瞻: 從工業 3.0 到工業 3.5. 管理學報, 33(1), 87-103.

(此全文20260810後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *