帳號:guest(18.225.56.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅宏斌
作者(外文):Fu, Hung-Pin
論文名稱(中文):啟發式演算法應用於記憶體模組廠SMT排程–以K公司為例
論文名稱(外文):Application of Heuristic Algorithm for SMT Scheduling on Memory Module Factory - A Case Study of K Company
指導教授(中文):陳建良
指導教授(外文):Chen, James C.
口試委員(中文):陳子立
張秉宸
口試委員(外文):Chen, Tzu-Li
Chang, Ping-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:智慧製造跨院高階主管碩士在職學位學程
學號:108005513
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:93
中文關鍵詞:記憶體模組產業先進規劃排程系統啟發式演算法
外文關鍵詞:Memory Module IndustryAdvanced Planning and SchedulingHeuristic Algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:445
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
記憶體模組產業屬於組裝代工,是電子產業供應鏈的最末端,在現代科技與智慧製造的發展一直扮演著非常重要的角色,經過幾十年不斷的進步,供應鏈體系已經相當完整,是屬於成熟的技術。且自2018年中國與美國政府之間開始進行一場持續的貿易戰,再來2019年年末發現新冠狀病毒(COVID-19),導致各國迫使去做生產基地的調整,台灣藉著中美貿易戰與良好的防疫成果,重建作為科技樞紐的地位,因此台灣製造業的產能需求驟增,工廠端的機台利用率必須更嚴密的管理及提升。
本研究以K公司SMT製程為例,SMT為工廠最昂貴的設備也是整段製程的瓶頸站,所以要如何提高機台利用率,降低在製品庫存,精簡的人力配置,以提升公司的整體營運,是一個重要的課題。此研究主要是針對SMT排程優化以提高機台利用率為主,如何選擇正確的產線機台,銜接相同製成優先以減少換線工時的損失,讓產能最大化進而延伸到後段組裝測試製程的分配平均化,以達到人力安排最佳化。SMT製程排程屬於開放性流程式生產(Open Flow Shop),在生產中必須同時考慮每一個工作經過機器的順序及每一機器上的工作順序,不同客戶不同產品只能在特定的SMT線生產,更要同時為因應臨時急單需求、機台突發狀況以及機台保養排程。因此,本研究參考相關文獻,以模擬先進規劃排程系統(Advanced Planning and Scheduling System,簡稱APS)於記憶體模組產業SMT生產排程規劃,提出適合此產業的啟發式演算法,比較傳統排程方式,經過實驗並以關鍵績效指標來證明,本研究所提出的方法確實可以有效提升SMT機台利用率、提高訂單達交率,以及縮短後製程平均等待時間程。
Memory module industry belongs to assembly OEM, which is the end of the supply chain of electronic industry. It plays a very important and significant role in the development of modern technology and intelligent manufacturing. After decades of continuous progress, the supply chain system has been evolving thoroughly into a mature technology. Since 2018, there has been a continuous and stalemated trade war between China and the U.S. government, followed by the discovery of new coronavirus (covid-19) at the end of 2019, which has forced countries to adjust their production strategies and change manufacturing bases. With the Sino US trade war and good epidemic prevention achievements, Taiwan has rebuilt its pivotal position to be a science and technology hub. As a result, the production capacity demand of Taiwan's manufacturing industry has increased sharply, the utilization rate of machines at the factory end must be more closely managed and improved.
This study takes the SMT process of K Company as an example. SMT is the most expensive equipment in the factory, and it has been identified to be the main bottleneck of the whole process. Therefore, how to improve the utilization rate of machines, reduce the inventory of work in process, and simplify the workforce allocation to improve the overall operational performance of the company is an important topic. This study is mainly aimed at SMT scheduling optimization to improve machine utilization, how to select the right production line machine, link up the same production priority to reduce the loss of line changing time, maximize the production capacity, and then extend to the equivalent distribution of the later stage assembly and testing process, so as to achieve the optimization of human resources arrangement. SMT process scheduling belongs to open flow shop. In a realistic production environment, the sequence of each work passing through the machine and the sequence of workflow on each machine must be considered simultaneously. Different customers and different product lines can only be produced in a specific SMT line, and scheduling is also capable of accommodating temporary urgent orders, unexpected machine emergencies and machine preventive maintenance at the same time. Therefore, this study, referring to relevant literature, simulates advanced planning and scheduling system (APS) in SMT production scheduling of memory module industry, proposes heuristic algorithm suitable for this industry, benchmarks against traditional scheduling methods, and proves solid key performance indicators through well-defined experiments. The method proposed in this study can effectively increase the utilization rate of SMT machine, improve the order delivery rate, and shorten the average waiting time of the post process.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 記憶體模組廠介紹 1
1.2 研究背景與動機 3
1.3 研究目的 5
1.4 研究範圍 6
1.5 研究流程 7
第二章 文獻探討 9
2.1 排程問題概述與分類 9
2.2 排程問題的解決方案 12
2.3 工作導向啟發式排程 14
2.3.1 工作為導向之前推排程法 15
2.3.2 工作為導向之後推排程法 16
第三章 SMT排程問題分析與限制 18
3.1 SMT製程介紹 18
3.2 後段組裝測試製程 20
3.3 生產計劃排程與限制 21
3.3.1 生產排程模式 21
3.3.2 SMT製程特性與線別限制 22
第四章 啟發式排程演算法 25
4.1 研究方法 25
4.2 研究過程 28
4.2.1 變數說明 28
4.2.2 正背板製程描述 30
4.2.3 績效指標 30
4.2.4 範例說明 33
第五章 實驗設計與分析 38
5.1 績效評估與分析 38
5.2 實驗流程 40
5.3 實驗組合 42
5.4 實驗結果與績效 45
5.5 實驗數據分析 64
5.5.1 需求淡旺季 64
5.5.2 產品組合 67
5.5.3 需求緊迫程度 68
第六章 結論與建議 69
6.1 結論 69
6.2 未來建議 70
附錄一 雙因子變異數分析結果-需求負荷 71
附錄二 雙因子變異數分析結果-產品組合 76
附錄三、雙因子變異數分析結果-需求緊迫程度 84
參考文獻 92
Barker, J. R., & McMahon, G. B. (1985). Scheduling the general job-shop. Management Science, 31(5), 594-598.
Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A STATE-OF-THE-ART SURVEY OF DISPATCHING RULES FOR MANUFACTURING JOB SHOP OPERATIONS [Article]. International Journal of Production Research, 20(1), 27-45.
Cheng, C.-Y., & Huang, L.-W. (2017). Minimizing total earliness and tardiness through unrelated parallel machine scheduling using distributed release time control. Journal of Manufacturing Systems, 42, 1-10.
Hastings, N., & Yeh, C.-H. (1990). Job oriented production scheduling. European Journal of Operational Research, 47(1), 35-48.
Hastings, N. A., Marshall, P., & Willis, R. J. (1982). Schedule based MRP: An integrated approach to production scheduling and material requirements planning. Journal of the Operational Research Society, 33(11), 1021-1029.
Jain, A., & Elmaraghy, H. (1997). Production scheduling/rescheduling in flexible manufacturing. International Journal of Production Research, 35(1), 281-309.
Kristensen, J., Asmussen, J. N., & Wæhrens, B. V. (2017). The link between the use of advanced planning and scheduling (APS) modules and factory context. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Lageweg, B., Lenstra, J., & Rinnooy Kan, A. (1977). Job-shop scheduling by implicit enumeration. Management Science, 24(4), 441-450.
Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1982). Recent developments in deterministic sequencing and scheduling: a survey. In Deterministic and stochastic scheduling (pp. 35-73). Springer.
McIntosh, R., Culley, S., Mileham, A. R., & Owen, G. (2000). A critical evaluation of Shingo's' SMED'(Single Minute Exchange of Die) methodology. International Journal of Production Research, 38(11), 2377-2395.
Nikzad, F., Rezaeian, J., Mahdavi, I., & Rastgar, I. (2015). Scheduling of multi-component products in a two-stage flexible flow shop. Applied Soft Computing, 32, 132-143.
PackIOT. (2020). The biggest problems in running your factory with Excel. https://packiot.com/the-biggest-problems-running-your-factory-with-excel/
Sharma, P., & Jain, A. (2015). Performance analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times: Simulation approach. CIRP Journal of Manufacturing Science and Technology, 10, 110-119.
Stevenson, W. J. (2005). Operations management. McGraw-hill.
Tamssaouet, K., Dauzère-Pérès, S., & Yugma, C. (2018). Metaheuristics for the job-shop scheduling problem with machine availability constraints. Computers & Industrial Engineering, 125, 1-8.
White, C. (1986). Capacity Constrained Load Sequencing Scheduling Techniques for Production Management Monash University].
White, C., & Hastings, N. (1983). Scheduling techniques for medium scale industry. Australian Society for Operations Research Bulletin, 3, 1-4.
林則孟. (2012). 生產計畫與管理 二版. 華泰文化.
林萬元. (2020). I02-記憶體模組廠之五力分析. Medium. https://medium.com/@victorw.lin0212/i02-%E8%A8%98%E6%86%B6%E9%AB%94%E6%A8%A1%E7%B5%84%E5%BB%A0%E4%B9%8B%E4%BA%94%E5%8A%9B%E5%88%86%E6%9E%90-d7343226b3e3
陳建良. (1995). 排程概述. 機械工業雜誌, 12月, 122-137.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *