|
References [1] Bergmann, P., Fauser, M., Sattlegger, D., and Steger, C. Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2019), pp. 9592–9600. [2] Bergmann, P., Fauser, M., Sattlegger, D., and Steger, C. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2020), pp. 4183–4192. [3] Božič, J., Tabernik, D., and Skočaj, D. Mixed supervision for surface-defect detection: From weakly to fully supervised learning. Computers in Industry 129 (2021), 103459. [4] Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich, A. Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In International conference on machine learning (2018), PMLR, pp. 794–803. [5] Cui, Y., Liu, Z., and Lian, S. A survey on unsupervised industrial anomaly detection algorithms. arXiv preprint arXiv:2204.11161 (2022). [6] Deng, H., and Li, X. Anomaly detection via reverse distillation from one-class embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2022), pp. 9737–9746. [7] Groenendijk, R., Karaoglu, S., Gevers, T., and Mensink, T. Multi-loss weighting with coefficient of variations. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (2021), pp. 1469–1478. [8] Hao, Y., Li, J., Wang, N., Wang, X., and Gao, X. Spatiotemporal consistencyenhanced network for video anomaly detection. Pattern Recognition 121 (2022), 108232. [9] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778. [10] Huang, C., Ye, F., Cao, J., Li, M., Zhang, Y., and Lu, C. Attribute restoration framework for anomaly detection, 2020. [11] Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., et al. A large chest radiograph dataset with uncertainty labels and expert comparison. In Proc AAAI Conf Artif Intell, vol. 33. [12] Jiang, J., Zhu, J., Bilal, M., Cui, Y., Kumar, N., Dou, R., Su, F., and Xu, X. Masked swin transformer unet for industrial anomaly detection. IEEE Transactions on Industrial Informatics 19, 2 (2022), 2200–2209. [13] Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 7482–7491. 46[14] Lee, J.-H., and Kim, C.-S. Multi-loss rebalancing algorithm for monocular depth estimation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16 (2020), Springer, pp. 785–801. [15] Li, C.-L., Sohn, K., Yoon, J., and Pfister, T. Cutpaste: Self-supervised learning for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 9664–9674. [16] Liang, Y., Zhang, J., Zhao, S., Wu, R., Liu, Y., and Pan, S. Omni-frequency channel-selection representations for unsupervised anomaly detection. arXiv preprint arXiv:2203.00259 (2022). [17] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (2017), pp. 2980–2988. [18] Liu, T., Li, B., Zhao, Z., Du, X., Jiang, B., and Geng, L. Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection. arXiv preprint arXiv:2210.14485 (2022). [19] Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. A convnet for the 2020s, 2022. [20] Madan, N., Ristea, N.-C., Ionescu, R. T., Nasrollahi, K., Khan, F. S., Moeslund, T. B., and Shah, M. Self-supervised masked convolutional transformer block for anomaly detection. arXiv preprint arXiv:2209.12148 (2022). [21] Mathian, E., Liu, H., Fernandez-Cuesta, L., Samaras, D., Foll, M., and Chen, L. Haloae: An halonet based local transformer auto-encoder for anomaly detection and localization. arXiv preprint arXiv:2208.03486 (2022). [22] Milletari, F., Navab, N., and Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation, 2016. [23] Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., and Foresti, G. L. Vt-adl: A vision transformer network for image anomaly detection and localization. In 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) (2021), IEEE, pp. 01–06. [24] Perlin, K. An image synthesizer. ACM Siggraph Computer Graphics 19, 3 (1985), 287–296. [25] Puccio, B., Pooley, J. P., Pellman, J. S., Taverna, E. C., and Craddock, R. C. The preprocessed connectomes project repository of manually corrected skullstripped t1-weighted anatomical mri data. Gigascience 5, 1 (2016), s13742– 016. [26] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015). 47[27] Rippel, O., Mertens, P., and Merhof, D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In 2020 25th International Conference on Pattern Recognition (ICPR) (2021), IEEE, pp. 6726– 6733. [28] Ristea, N.-C., Madan, N., Ionescu, R. T., Nasrollahi, K., Khan, F. S., Moeslund, T. B., and Shah, M. Self-supervised predictive convolutional attentive block for anomaly detection–supplementary. [29] Ristea, N.-C., Madan, N., Ionescu, R. T., Nasrollahi, K., Khan, F. S., Moeslund, T. B., and Shah, M. Self-supervised predictive convolutional attentive block for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 13576–13586. [30] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and ComputerAssisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (2015), Springer, pp. 234–241. [31] Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., and Gehler, P. Towards total recall in industrial anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 14318–14328. [32] Schlüter, H. M., Tan, J., Hou, B., and Kainz, B. Natural synthetic anomalies for self-supervised anomaly detection and localization. In Computer Vision– ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXI (2022), Springer, pp. 474–489. [33] Shamshad, F., Khan, S., Zamir, S. W., Khan, M. H., Hayat, M., Khan, F. S., and Fu, H. Transformers in medical imaging: A survey. Medical Image Analysis (2023), 102802. [34] Shi, Y., Yang, J., and Qi, Z. Unsupervised anomaly segmentation via deep feature reconstruction. Neurocomputing 424 (2021), 9–22. [35] Tao, X., Gong, X., Zhang, X., Yan, S., and Adak, C. Deep learning for unsupervised anomaly localization in industrial images: A survey. IEEE Transactions on Instrumentation and Measurement (2022). [36] Venkataramanan, S., Peng, K.-C., Singh, R. V., and Mahalanobis, A. Attention guided anomaly localization in images, 2020. [37] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004), 600–612. [38] Welford, B. Note on a method for calculating corrected sums of squares and products. Technometrics 4, 3 (1962), 419–420. 48[39] Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I. S., and Xie, S. Convnext v2: Co-designing and scaling convnets with masked autoencoders. arXiv preprint arXiv:2301.00808 (2023). [40] Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (2018), pp. 3–19. [41] Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., and Ding, N. Gan-based anomaly detection: a review. Neurocomputing (2022). [42] Zavrtanik, V., Kristan, M., and Skočaj, D. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (2021), pp. 8330–8339. [43] Zavrtanik, V., Kristan, M., and Skočaj, D. Reconstruction by inpainting for visual anomaly detection. Pattern Recognition 112 (2021), 107706. [44] Zavrtanik, V., Kristan, M., and Skočaj, D. Dsr–a dual subspace re-projection network for surface anomaly detection. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23– 27, 2022, Proceedings, Part XXXI (Berlin, Heidelberg, 2022), Springer-Verlag, p. 539–554. [45] Zhang, H., Wang, Z., Wu, Z., and Jiang, Y.-G. Diffusionad: Denoising diffusion for anomaly detection. arXiv preprint arXiv:2303.08730 (2023). [46] Zhang, H., Wu, Z., Wang, Z., Chen, Z., and Jiang, Y.-G. Prototypical residual networks for anomaly detection and localization, 2023. [47] Zhang, J., Shen, X., Zhuo, T., and Zhou, H. Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical dice loss. arXiv preprint arXiv:1712.09093 (2017). [48] Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., and Maier-Hein, K. Unsupervised anomaly localization using variational auto-encoders, 2019. [49] Zou, Y., Jeong, J., Pemula, L., Zhang, D., and Dabeer, O. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In European Conference on Computer Vision (2022), Springer, pp. 392–408.
|