帳號:guest(3.145.174.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王怡
作者(外文):Wang, Yi
論文名稱(中文):改善先進駕駛輔助系統在台灣汽車供應鏈協作平台應用研究
論文名稱(外文):Platform Application For ADAS in Taiwan Automobiles Supply Chain
指導教授(中文):賴尚宏
吳建瑋
指導教授(外文):Lai, Shang-Hong
Wu, Chien-Wei
口試委員(中文):林義貴
陳子立
口試委員(外文):Lin, Yi-Kuei
Chen, Tzu-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:智慧製造跨院高階主管碩士在職學位學程
學號:108005501
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:54
中文關鍵詞:先進駕駛輔助系統協作平台深度學習機器學習
外文關鍵詞:ADAScollaboration platformdeep learningmachine learningMOTLSTM
相關次數:
  • 推薦推薦:11
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近五年全球汽車大廠努力發展電動車,積極導入先進駕駛輔助系統,結合智慧城市的車輛自動駕駛,傳統汽車產業關鍵零組件廠商的轉型升級,配合系統整合服務技術廠商,使用人工智慧及大數據技術與工具,將生產機械零組件的中衛體系,應用長短期記憶模型,及多目標跟蹤規劃供應鏈上下游的資源與資訊共享,透過新創協作平台的設計,串聯國際汽車大廠、零組件供應廠商、汽車安全規範標準檢測實驗室,發展垂直與平行的感知,思考和行動的解決方案,設計安全,可靠性高和合規合法的關鍵零組件與技術,提高生產效能,維持高良率與交貨穩定的優勢,共同開發符合先進駕駛輔助系統適用的端子線及連接器,成功轉型為機電整合的車用電子關鍵零組件生產製造。

近期內有國際大車廠及全球製造組裝領導廠商,利用協作平台邀請產業鏈內國際製造大廠加入,共同開發電動車整車設計開發零組件,獲得業界龍頭及眾多廠商的聯合支持。本學位論文觀察近三年傳統汽車零組件機械加工製造廠商,利用協作平台完成先進駕駛輔助系統關鍵零組件開發設計生產,也屬於電動車產業鏈其中之一員,具體節省生產時間及控制成本並且避免重工及錯誤,希望協作平台能夠繼續提供傳統汽車產業製造廠商,轉型升級下個世代應用。


關鍵字:先進駕駛輔助系統、協作平台、深度學習、機器學習。
In the past five years, global automobile manufacturers have worked hard to develop electric vehicles, and have introduced advanced driving assistance systems,combined with the automatic driving of vehicles in smart cities, the transformation
and upgrading of key component manufacturers in the traditional automobile industry,and the use of artif icial intelligence and large scale Data technology and tools will
use the long term and short term memory model for the production of mechanicalparts and components, and multi target tracking to plan the resource and information sharing of the supply chai n upstream and downstream. Through the design of the collaborative platform, connect international automobile manufacturers and parts
supply Manufacturers, automotive safety standards and standards testing laboratories,
develop vertical and parallel percep tion, thinking and action solutions, design key
components and technologies that are safe, highly reliable, and legally compliant,
improve production efficiency, and maintain high yield and delivery With the
advantages of stable cargo, jointly develop term inal wires and connectors suitable for
advanced driving assistance systems, and successfully transformed into the
production and manufacture of electromechanical integrated key electronic
components for vehicles.
In the near future, there are major inte rnational car manufacturers and global
manufacturing and assembly leaders who have used the collaborative platform to
invite international manufacturers in the industry chain to join in to jointly develop
the design and development of components for electr ic vehicles. This dissertation
observes the use of collaborative platforms to complete advanced driving in the past
three years The development, design and production of key components of the
auxiliary system is also a member of the electric vehicle indust ry chain. Specifically,
it saves production time and controls costs and avoids heavy work and errors. It is
hoped that the collaboration platform can continue to provide traditional auto industry
manufacturers and transform and upgrade the next generation of applications. .
目錄
摘要2
Abstract3
誌謝辭 4
目錄 5
圖目錄 6
第一章 緒論 7
第一節 研究背景 7
第二節 研究動機 10
第三節 研究目的 13
第二章 文獻探討 17
第三章 研究方法 29
第四章 研究貢獻 41
第五章 結論與建議 47
第一節 結論47
第二節 未來研究建議51
參考文獻 53

英文文獻
1. A Ziebinski, R Cupek, D Grzechca, B Nassi, D Nassi, R Ben-Netanel, Y Mirsky, (2020). Phantom of the ADAS: Phantom Attacks on Driver-Assistance Systems. IACR Cryptol. ePrint, - eprint.iacr.org.
2. Brownlee, J.,.(2017). How to Scale Data for Long Short-term Memory Networks in Python. https://machinelearningmastery.com.
3. Eddins, S. (2018). Classify ECG Signals Using LSTM Networks. Fusion of optimized indicators from Advanced Driver Assistance Systems (ADAS) for driver drowsiness detection IG Daza mdpi.com.
4. http://www.sciencedirect.com. A survey of personalization for advanced driver assistance systems.
5. https://www.utitech.com.tw/Product_AVEVA_EPC_Engineering.html.
6. J Orlovska, F Novakazi, B Lars-Ola, MA Karlsson. (2020). Effects of the driving context on the usage of Automated Driver Assistance Systems (ADAS)-Naturalistic Driving Study for ADAS evaluation.
7. JM Sullivan, MJ Flannagan, AK Pradhan, S Bao. (2014). How to consider emotional reactions of the driver within the development of Advanced Driver Assistance Systems (ADAS)?
8. KA Brookhuis, D De Waard. (2001). Behavioural impacts of advanced driver assistance systems–an overview - European Journal, 2001 - journals.open.tudelft.nl.
9. M Hasenjäger, H Wersing. (2017). Personalization in advanced driver assistance systems and autonomous vehicles: A review 2017 ieee 20th international, 2017 - ieeexplore.ieee.org.
10. M Sullivan, MJ Flannagan, AK Pradhan, S Bao. (2016). Literature review of behavioral adaptations to advanced driver assistance systems J- 2016 - trid.trb.org.
11. Menner, M., Neuner, L., Lünenburger, L., Zeilinger, M.N. (2020). Using human ratings for feedback control: a supervised learning approach with application to rehabilitation robotics. IEEE Transactions on Robotics 2020.
12. Minato, T., Murata, Y., Suzuki A. (2015). Proposal of Automobile Driving Interface Using Strain Sensor for the Disabled People. In: 2015 Tohoku-Section Joint Convention of Institutes of Electrical and Information Engineers 2015.
13. Nacpil, E.J.C., Nakano, K. (2020). Surface Electromyography-Controlled Automobile Steering Assistance. Sensors 2020.
14. P., Prinold, J.A.I., Bull, A.M.J. (2015). Shoulder muscle forces during driving: sudden steering can load the rotator cuff beyond its repair limits. Clin. Biotech.
15. R van der Heijden, K van Wees. (2001). Introducing advanced driver assistance systems: some legal issues European journal. journals.open.tudelft.nl.
16. S Choi, F Thalmayr, D Wee, F Weig. (2016). Advanced driver-assistance systems: Challenges and opportunities ahead. McKinsey & Company, mckinsey.com.
17. VK Kukkala, J Tunnell, S Pasricha. (2018). Advanced driver-assistance systems: A path toward autonomous vehicles VK Kukkala, J Tunnell, S Pasricha - IEEE Consumer, 2018 - ieeexplore.ieee.org.
18. Wang, Z., Yan, Z., Nakano, K. (2019). Comfort-oriented haptic guidance steering via deep reinforcement learning for individualized lane keeping assist. In: IEEE International Conference on Systems, Man and Cybernetics.
19. X Mosquet, M Andersen. (2016). An Arora, A roadmap to safer driving through advanced driver assistance systems Auto Tech Review. Springer.
20. Ziebinski, R Cupek, D Grzechca. (2017). Review of advanced driver assistance systems (ADAS) An AIP Conference. aip.scitation.org.

(此全文20261022後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *