帳號:guest(18.218.8.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林詠揚
作者(外文):Lin, Yung-Yang
論文名稱(中文):寬能隙材料之色心發光特性
論文名稱(外文):Probing the emission properties of color centers in wide band-gap materials
指導教授(中文):蘇雲良
湯茂竹
指導教授(外文):Soo, Yun-Liang
Tang, Mau-Tsu
口試委員(中文):林碧軒
吳泰興
口試委員(外文):Lin, Bi-Hsuan
Wu, Tai-Sing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:108001506
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:彩色色心X光激發發光時間解析X光激發發光脈衝雷射沉積氧化鋁氧化鋅鎂
外文關鍵詞:color centerXEOLTR-XEOLPLDAl2O3MgZnO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
使用同步輻射中心台灣光子源 23A 奈米探測 (X-ray Nanoprobe) 光束線的 X 光技術量測氧化鋁( α-Al2O3 )、氧化鋅鎂(MgxZn1-xO)與氧化鎂(MgO)的X光激發發光光譜 (X-ray excited optical luminescence, XEOL)與時間解析X光激發發光光譜 (time-resolved X-ray excited optical luminescence, TR-XEOL)。
我們在α-Al2O3 wafer的XEOL 中清楚地觀察到預期的缺陷發光,分別為 330 nm 處的寬帶發光和 700 nm 附近的細窄發光,這分別歸因於F+ 色心 (F+ color center) 和Cr3+ 雜質。然而,F+ 色心發光表現出一種異常的發光行為,即發光強度隨著X光照射時間的增長而迅速增加,該行為僅受 X 光峰值功率密度的影響,而與 X 光能量無關。我們發現摻雜其他元素之 α-Al2O3 wafer中,並不是所有摻雜的wafer都能觀察到上述F+ 色心的特殊發光現象,最後也在α-Al2O3 powder中發現此現象。另外,我們使用脈衝雷射濺鍍法(Pulsed Laser Deposition ; PLD)分別生長出鎂(magnesium , Mg)含量x分別為百分之三與百分之十的MgxZn1-xO薄膜在m面α-Al2O3 wafer基板上,發現氧化鎂鋅薄膜之近帶邊緣 (near-band-edge, NEB) 發光會受到來自基板中的F+ 色心發光影響,而使氧化鎂鋅薄膜的NEB發光也隨著X光照射時間增長而增加。其中我們發現隨著鎂摻雜濃度越大而near-band-edge發光強度有更高的增加速率。最後,我們觀察到MgO wafer 的F色心發光強度變化是隨著X光照射時間的增加而衰減,然而在MgO powder中發光強度卻沒有隨著照射時間而有所變化。我們利用台灣光子源 (Taiwan Photon Source, TPS) 同步加速器的混合運轉模式 (hybrid bunch mode) 下對樣品進行TR-XEOL實驗,且記錄氧化鋁、氧化鋅鎂與氧化鎂的發光過程,並試著進一步了解此特殊現象的物理機制。
Based on the high peak power density of the hard X-ray nanoprobe, we observed the peculiar emission properties of the wide band-gap materials via X-ray excited optical luminescence (XEOL) and time-resolved XEOL (TR-XEOL). Not only the XEOL spectra corroborate that the emission intensities of the wide band-gap materials will be influenced by the X-ray irradiation time, but also the luminescence dynamics obtained by TR-XEOL exhibit clearly difference after X-ray irradiation.
In this thesis, the emission properties of c-, a-, r- and m-plane α-Al2O3 wafers and α-Al2O3 powder have been studied using XEOL and TR-XEOL with nano-focused X-ray beams. We observed the well-known sapphire defect emissions, a broad emission at 330 nm and a sharp emission at around 700 nm, which were attributed to F+ color center and Cr3+ impurities, respectively. However, the F+ center emission exhibited a peculiar behavior that the emission intensity will increase with X-ray irradiation time, as well as the decay lifetime will decrease with X-ray irradiation time. This behavior is only influenced by X-ray peak power density, regardless of X-ray energy.
The special phenomenon was also observed in the samples of m-plane MgxZn1-xO epi-films (x = 0.03, 0.1) on m-plane α-Al2O3 substrate which were grown by Pulsed Laser Deposition (PLD) system. The near-band-edge emission intensities of m-plane MgxZn1-xO epi-films will also increase with the X-ray irradiation time. Especially, the emission intensity of Mg0.1Zn0.9O epi-film increases rapidly than that of Mg0.03Zn0.97O epi-film. Which results imply that the higher Mg concentration may cause the higher variation in the emission intensity.
Since the Mg concentration may influence the emission intensity, we study the MgO wafer and powder to further understand the emission mechanism. However, only F color center has been observed in MgO wafer and powder. The emission intensity of F color center of MgO wafer will decrease with the X-ray irradiation, and that of MgO powder does not change.
According the experimental results, we found that the nano-focused hard X-ray beam can influence the emission behaviors in the wide band-gap materials. Although the detailed emission mechanism is still unclear, but the research line will be continued. We anticipate that X-ray nanoprobes to control the emission properties of the color center will open new avenues with great developing for optoelectronics device.
摘要-----1
Abstract-----2
致謝-----4
目錄-----5
圖目錄-----7
表目錄-----12
第一章 緒論-----13
1-1 研究動機與目的-----13
1-2 論文安排-----15
第二章 文獻回顧-----16
2-1 Color center-----16
2-1.1 金屬氧化物之色心-----17
2-2 氧化鋁(Al2O3)-----17
2-2.1 γ-Al2O3-----18
2-2.2 β-Al2O3-----18
2-2.3 α-Al2O3-----19
2-3 氧化鎂(MgO)、氧化鋅(ZnO)與氧化鋅鎂(MgZnO)-----21
第三章 實驗原理與儀器架構-----23
3-1 同步輻射-----23
3-2 台灣光子源(Taiwan Photon Source, TPS)-----26
3-2.1 TPS 23A X光奈米探測光束線實驗站架構-----27
3-3 X光激發發光光譜(X-ray Excited Optical Luminescence, XEOL)-----28
3-3.1 X光激發光光譜儀器架構-----30
3-4 時間解析X光激發發光光譜 (time-resolved X-ray excited optical luminescence, TR-XEOL)-----34
3-4.1 時間解析X光激發發光光譜儀器架構-----42
3-5 光致發光光譜 (Photoluminescence, PL)-----45
3-5.1 光致發光光譜儀器架構-----47
3-6 脈衝雷射沉積(Pulsed Laser Deposition, PLD)-----50
3-6.1脈衝雷射沉積儀器架構-----55
第四章 樣品製備-----59
4-1 α-Al2O3 wafer-----59
4-2 脈衝雷射沉積法製備MgZnO-----59
第五章 實驗結果與討論-----62
5-1 a,r,c and m-plane α-Al2O3 wafer-----62
5-2 Transition Metal - doped α-Al2O3 wafer-----70
5-3 α-Al2O3 powder-----75
5-4 MgxZn1-xO/ m-plane α-Al2O3 wafer-----77
5-6 MgO wafer and MgO powder-----85
第六章 結論-----87
第七章 未來展望-----90
參考文獻-----91
1. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. in Proceedings 35th annual symposium on foundations of computer science. 1994. Ieee.
2. Gruber, A., et al., Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 1997. 276(5321): p. 2012-2014.
3. Smith, J.M., et al., Colour centre generation in diamond for quantum technologies. Nanophotonics, 2019. 8(11): p. 1889-1906.
4. Weber, J., et al., Quantum computing with defects. Proceedings of the National Academy of Sciences, 2010. 107(19): p. 8513-8518.
5. Henderson, B., Optical pumping cycle of exchange-coupled F+-centre pairs in MgO and CaO. Journal of Physics C: Solid State Physics, 1976. 9(11): p. 2185.
6. Katz, O. and O. Firstenberg, Transverse optical pumping of spin states. Communications Physics, 2019. 2(1): p. 1-6.
7. Wang, Z., et al., Probing defect emissions in bulk, micro-and nano-sized α-Al2O3 via X-ray excited optical luminescence. The Journal of chemical physics, 2013. 138(8): p. 084706.
8. Tilley, R.J.D., Color Centers, in Encyclopedia of Color Science and Technology, R. Luo, Editor. 2014, Springer New York: New York, NY. p. 1-9.
9. Jayashree, S. and M. Ashokkumar, Switchable intrinsic defect chemistry of titania for catalytic applications. Catalysts, 2018. 8(12): p. 601.
10. Apetz, R. and M.P. Van Bruggen, Transparent alumina: a light‐scattering model. Journal of the American Ceramic Society, 2003. 86(3): p. 480-486.
11. Krell, A., et al., Transparent sintered corundum with high hardness and strength. Journal of the American Ceramic Society, 2003. 86(1): p. 12-18.
12. 维基百科编者. 氧化鋁. 2021-08-09.
13. Elderfield, H. and J. Hem, The development of crystalline structure in aluminium hydroxide polymorphs on ageing. Mineralogical Magazine, 1973. 39(301): p. 89-96.
14. Ayoola, H.O., et al., Evaluating the accuracy of common γ-Al2O3 structure models by selected area electron diffraction from high-quality crystalline γ-Al2O3. Acta Materialia, 2020. 182: p. 257-266.
15. Bensaude-Vincent, H.A.a.B. Beta-alumina. 2001
16. Dobrovinskaya, E.R., L.A. Lytvynov, and V. Pishchik, Sapphire: material, manufacturing, applications. 2009: Springer Science & Business Media.
17. Chen, J., et al., Pulsed laser deposition and characteristics of epitaxial non-polar m-plane ZnO1-xSx alloy films. Journal of Alloys and Compounds, 2019. 773: p. 443-448.
18. Fierro, J.L.G., Metal Oxides: Chemistry & Applications. Boca Raton, FL : Taylor & Francis, 2006.
19. 梁美惠. 在鍺基板上蒸鍍氧化鋅磊晶薄膜. 2007
20. Yao, T. and S.-K. Hong, Oxide and nitride semiconductors: Processing, properties, and applications. Vol. 12. 2009: Springer Science & Business Media.
21. Moon, T.-H., et al., The fabrication and characterization of ZnO UV detector. Applied Surface Science, 2005. 240(1-4): p. 280-285.
22. Ohtomo, A., et al., Mg x Zn 1− x O as a II–VI widegap semiconductor alloy. Applied physics letters, 1998. 72(19): p. 2466-2468.
23. 國家同步輻射研究中心, 國家同步輻射研究中心 – 中心簡介.
24. 國家同步輻射研究中心. 國家同步輻射研究中心 - 同步光源加速器簡介..
25. Mino, L., et al., Materials characterization by synchrotron x-ray microprobes and nanoprobes. Reviews of Modern Physics, 2018. 90(2): p. 025007.
26. XFEL, E. European XFEL How it works..
27. Lin, B.-H., et al., Capabilities of time-resolved X-ray excited optical luminescence of the Taiwan Photon Source 23A X-ray nanoprobe beamline. Journal of synchrotron radiation, 2020. 27(1): p. 217-221.
28. 台灣光子源TPS 23A試車成果與設施功能概要. 國家同步輻射研究中心簡訊
29. Zhou, Y. and Y. Wang, Perovskite Quantum Dots: Synthesis, Properties and Applications. Vol. 303. 2020: Springer Nature.
30. HORIBA. iHR Series Imaging Spectrometers.
31. DFitzgerald, P., Spatially Resolved Photoluminescence Spectroscopy of 2D Nanomaterials. 2018, WORCESTER POLYTECHNIC INSTITUTE.
32. Andor. Optical Etaloning in Charge Coupled Devices (CCD).
33. K.K., H.P. Universal streak camera C10910 series. 2021.
34. 固體材料的光致發光.
35. 雷射快速成型技術.
36. Chrisey, D.B. and G.K. Hubler, Pulsed laser deposition of thin films. 1994.
37. Kortov, V., et al., Photoluminescence of Ultradisperse Alumina Ceramics under VUV Excitation. Journal of Applied Spectroscopy, 2014. 80(6): p. 835-840.
38. Chien, J.-F., et al., Tunable optical and structural properties of MgxZn1− xO films prepared by in situ atomic layer doping technique. ECS Journal of Solid State Science and Technology, 2012. 2(1): p. P31.
39. Martínez-Boubeta, C., et al., Blue luminescence at room temperature in defective MgO films. Solid state communications, 2011. 151(10): p. 751-753.
40. Li, B., et al., Pulsed Laser Deposition Assisted van der Waals Epitaxial Large Area Quasi‐2D ZnO Single‐Crystal Plates on Fluorophlogopite Mica. Advanced Materials Interfaces, 2019. 6(20): p. 1901156.
41. Chithambo, M.L., J.M. Kalita, and A. Finch, F-and F+-band radioluminescence and the influence of annealing on its emission spectra in Al2O3: C, Mg. Radiation Measurements, 2020. 134: p. 106306.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *