帳號:guest(3.141.41.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊幼威
作者(外文):Yang, Yu-Wei.
論文名稱(中文):工業4.0下之人力資源專業職能探究 ─ 以模糊階層分析法為途徑
論文名稱(外文):Research on the Professional Competency of Human Resource under Industry 4.0 by Fuzzy Analytic Hierarchy Process Method
指導教授(中文):陳殷哲
指導教授(外文):Chen, Yin-Che.
口試委員(中文):張嘉雯
朱惠瓊
學位類別:碩士
校院名稱:國立清華大學
系所名稱:教育心理與諮商學系
學號:107096529
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:工業4.0專業職能人力資源角色
外文關鍵詞:Industry 4.0Professional FunctionsHuman Resource Role
相關次數:
  • 推薦推薦:0
  • 點閱點閱:307
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來全球焦點著重在工業4.0科技的發展,可以預想到未來企業競爭將會往智慧製造等趨勢發展,雖可大幅度提升企業效能,但同時也發展出新型態的商業模式及人力資源結構的改變,而人力資源角色的專業職能之探討對於人力資源人員的未來職涯發展及組織經營是重要的,當人資人員在面臨不管是內外在環境的的變化及挑戰時,所需扮演的人力資源角色之專業職能也會隨著轉變,如從以前的行政支援幕僚逐漸轉型為企業夥伴,或者重新思考現有的人力資源政策及管理的配套措施是否需要因應新時代進行調整,因此過往的人力資源專業職能勢必要進行改變,這將是人力資源需面臨的必要議題與挑戰(王聖閔,2019)。
本研究以參與中華人事主管協會之工業4.0相關課程的人力資源從業者為研究對象,首先運用修正式德爾菲法根據研究目的與問題蒐集相關文獻,並取得專家共識發展出半結構式問卷,分析出5個指標向度及25個指標檢核項目,分別為「人力資本策進者」、「策略定位者」、「誠信的行動者」、「數據運用者」以及「科技創新及整合者」,再採用模糊層級分析法求得指標間之相對權重,以此歸納出指標的權重分配與重要性排序,旨在分析及建構出工業4.0下人力資源專業職能模型的指標架構。本研究於2020年4月17日至5月15日回收有效問卷35份,回收率100%,經由模糊層級分析法的資料分析結果得知:「人力資本策進者」群組相對權重職值為0.332為最高,其中要素為「1-1因應工業4.0組織發展與創新,需重新定位人才」0.296所占權重最重,其次群組權重為「策略定位者」0.230,其中要素為「2-1瞭解工業4.0下內外部環境的變化」0.312權重最高、「誠信的行動者」0.180,其中要素為「3-1能遵循法令保護員工的個資不受到系統的洩漏」0.412最重要、「數據運用者」0.142,其中要素為「4-5運用數據對組織創造價值」0.335最受重視、「科技創新及整合者」0.115,其中要素為「5-1制定符合組織的人力資源管理標準,作為實施智能化人力資源參考依據」0.239權重最高,最受重視,且層級及各別層級之要素一致性指標C.I.及一致性比率C.R.皆 <0.1,顯示專家填答結果通過一致性檢定,綜合上述所言得知「人力資本策進者」為工業4.0下人力資源專業職能模型最重視的層級指標,因此為人力資源應用時最優先考量的面向,欲能應用在將來工業4.0普及化的時代下,給予人資人員在自身能力之檢核與組織招募條件之參考依據使用。
In recent years, the global focuses on the development of science and technology for industry 4.0, we can expect smart manufacturing enterprise competition will be a future trend. Although it is greatly going to improve enterprise efficiency, the development of new types of business model and the changes in the structure of human resources will happen. It is important that the role of human resource professional function of the human resources staff future career development and organizational management, when human resources personnel in both environmental change and challenge, the role of human resources of the professional function will also along with the transition, such as previous administrative support staffs gradually transfer to corporate partners, or rethink whether the existing human resources policies and supporting measures of management need to be adjusted by the new era. Therefore, the past professional functions of human resources are bound to be changed, which will be a necessary issue and challenge for human resources.
The subjects of this study are HR practitioners who participated in the courses related to Industry 4.0 of Chinese Personal Executive Association. First of all, Modified Delphi Method is used to collect relevant literatures based on the purpose and questions of the study. Semi-structured questionnaire was developed based on consensus from the specialists, which analyzed 5 index items and 25 index check items. They are " Human Capital Curtor ", " Strategic Positioner ", " Credible Activist", " Data User " and " Technological and Media Integrator ", and the fuzzy analytic hierarchy process was adopted to discover the relative weights among indicators in order to conclude indicators’ weight distribution and the importance of sequencing. The objectives of this study are to analyze and construct an indicator framework of HR professional competency models on the basis of Industry 4.0. A total of 35 valid questionnaires were collected from 17th of April until 15th of May in 2020, with 100% recovery rate. According to the results of data analysis of fuzzy analytic hierarchy process: the group ‘’HR Strategist’’ was with the highest relative weight at 0.332, in which the factor “1-1. In response to Industry 4.0 organization development and innovation, talents need to be repositioned” was with the highest weight at 0.296; the second group ‘’Strategic Positioner’’ was at 0.230, of which the factor “2-1. Understand the internal and external environment changes of Industry 4.0” was with the highest weight at 0.312; the group ‘’Trustworthy Mover’’ was at 0.180, in which the factor “3-1. Capable of complying with laws and regulations to protect employees’ personal assets from system leakage” was the most important, at 0.412; the group ‘’Data User’’ is at 0.142, in which the factor “4-5. Utilise data to create values for the organization” was the most emphasised, at 0.335; the group ‘’Technology Innovator and Integrator’’ was at 0.115, in which the factor “5-1. Formulate human resources management standards that conform to the organization as a reference on the basis of intelligent human resources implementation” was the most emphasised with the highest weight, at 0.239. In addition, the elements of every hierarchy of consistency index (C.I.) and consistency ratio (C.R.) were both <0.1. It shows that the questionnaire results of specialists passed the consistency test. Based on the information shown above, ‘’HR Strategist’’ is the most emphasised indicator of hierarchy in HR professional competency models of Industry 4.0. Therefore, it should be the top priority facet of HR application, and it can be used during the times when Industry 4.0 is commonly implemented as the reference of self-competency check and organizational recruitment conditions for HR personnel.
目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 名詞解釋 2
第二章 文獻探討 4
第一節 工業4.0 4
第二節 人力資源之職能 18
第三節 工業4.0下之人力資源專業職能 33
第四節 修正式德爾菲法 38
第五節 模糊層級分析法(簡稱FAHP) 39
第三章 研究設計與方法 43
第一節 研究流程與架構 43
第二節 研究方法 44
第三節 研究對象 46
第四節 研究工具 46
第五節 資料處理分析 49
第四章 資料分析與結果 50
第一節 專家問卷資料分析 50
第二節 工業4.0下之人力資源專業職能模型培育發展訓練課程時數 51
第三節 修正式德爾菲法問卷結果分析 52
第四節 模糊層級分析法問卷結果分析 53
第五章 討論與建議 61
第一節 研究討論 61
第二節 研究建議 63
第三節 研究限制 67
參考文獻 68
附錄 73

參考文獻
一、中文文獻
孔錦、劉洪、王艷、李權莉(2010)。轉型經濟下中國企業人力資源管理角色轉變與組織有效性的關連研究。 軟科學,24(11),72-77。
中山淳史(2015)。「日本追趕德國工業4.0」,日本經濟新聞中文版,7 月 1 日。
王明傑、呂國禎(2015)。應用模糊層級分析法探討自來水事業經營策略與經費配置之適配。管理實務與理論研究,9(2),20-42。
王怡惠(2015)。從工業4.0看我國生產力4.0之挑戰。 臺灣經濟研究月刊,38(8),111-119。
王文娟(2016)。物聯網概念及應用。經濟前瞻,(168),29-36。
王聖閔(2019)。數位時代下之人力資源發展與包容性成長。臺灣經濟研究月刊,42(5),41-47。
行政院(2015)。行政院生產力4.0發展方案。線上[Available: http://www. bost. ey. gov. tw/Upload/UserFiles/行政院生產力4.0發展方案],1-188。
李隆盛、黃同圳(2000)。人力資源發展。台北,師大書苑,8-13。
李聲吼(2004)。人力資源發展。台灣五南圖書出版股份有限公司。
吳凰菁(2014)。台灣中小企業人資人員專業職能技能類分析-以A公司為例。全球商業經營管理學報,(6),89-101。
林湘霖、王貞淑(2015)。結合模糊層級分析法與關聯法則建構數位學習系統活動流程評估準則。管理與系統,22(1),125-147。
林蒧均(2015)。淺談工業4.0浪潮下的國際製造業政策。經濟前瞻,(162),65-72。
林柏儀(2016)。面對生產力4.0挑戰的實習教育改革。師友月刊,(589),25-30。
林顯明(2016)。兩岸新世代生產模式的發展和挑戰:臺灣生產力4.0與中國製造 2025。新社會政策,(43), 65-73。
林弘洲(2017)。實現工業4.0之創新商業模式的進程與關鍵佈局。電工通訊季刊,73-83。
林正敏(2018)。CDIOT物聯網工程教育模式可行性分析。大學教學實務與研究學刊,2(1),25-52。
紀乃文、張火燦(2006)。人力資源主管角色,人力資源部門績效指標與組織績效關係之研究。人力資源管理學報,6(3),71-93。
范維恩、陳真毓、陳美齡、楊靜宜、黃冠智、賴聽柔(2012)。2020年人力資源管理角色之趨勢調查與未來挑戰(未出版碩士論文)。國立中央大學,桃園市。
陳佩鈴(2019)。從人力資源業務夥伴展現人力資源價值的最佳實踐-以某外商集團公司實務為例。科技與人力教育季刊, 6(1),28-40。
陳殷哲、李彩琴(2019)。應用模糊層級法分析人力資源職能模型指標與發展訓練課程體系之研究。企業管理學報,44(2),87-111。
郭楚其、徐作聖(2018)。[工業4.0]下製造業之轉型政策。管理評論,37(3),1-13。
莊祐軒、羅乃維(2013)。物聯網安全的現況與挑戰。資訊安全通訊,19(4),16-29。
莊朝榮(2015)。中國製造2025規劃前瞻。臺灣經濟研究月刊,38(2),94-99。
張美燕、貝家寶、余姵歆(2017)。人力資源專業職能與人力資源管理及策略性人力資源管理關係之研究:以台灣造紙業為例。臺灣企業績效學刊,11(1),23-44。
戚玉樑(2019)。語意網技術在工業4.0的角色與應用。機械工業雜誌,(437),75-84。
勞動力發展署(2014)。生產力4.0趨勢-「智慧機器人產業」對職業訓練發展與挑戰。線上【https://www2.wda.gov.tw/safe/docs/safe95/userplane/half_year_display.asp?menu_id=3&submenu_id=581&ap_id=2343】。
曾淑穎、黃生(2017)。運用大數據分析員工個人背景對教育訓練之影響-以旅館業為例。育達科大學報,(45),33-49。
黃朝盟(1999)。21世紀公務人力資源發展之策略議題管理。中國行政評論,9(1),75-102。
賀立、齊善鴻(2007)。倫理視角的人力資源管理研究回顧與述評。科學管理研究,25(3),96-99。
黃建文、陳柏瑜、周瑞蓉(2017)。服飾零售店經營者評選供應商之指標:模糊德菲法、模糊層級分析法。慈濟科技大學學報,(4),35-57。
葉晉嘉、翁興利、吳濟華(2007)。德菲法與模糊德菲法之比較研究。調查研究─ 方法與應用,21,31-58。
楊何炳(1988)。市場調查。台北:五南圖書。
楊千慧、黃美婷(2015)。運用修正式德菲法及層級分析法探討團購行為之關鍵因素。中華管理評論國際學報,18(1),1-29。
溫芳宜(2015)。解析中國製造2025。經濟前瞻,(160),13-19。
溫蓓章、陳信宏(2016)。日本推動機器人革命形塑未來社會。經濟前瞻,(164),76-81。
鄧振源、曾國雄(1989)。層級分析法(AHP)的內涵特性與應用(上)。中國統計學報,27(6),5-22。
趙曙明(2001)。人力資源管理研究 。中國人民大學出版社,(7),1-259。
劉昭恕、康耀鴻(2016)。跨越生產力4.0的教育地位與人才培育。師友月刊,(589),15-19。
簡建忠(1994)。臺灣企業人力資源發展。勞資關係論叢,(1),109-130。
簡禎富、林國義、許鉅秉、吳政鴻(2016)。台灣生產與作業管理之相關期刊文獻回顧與前瞻:從工業3.0到工業3.5。管理學報,33(1),87-103。
嚴國慶、王淑卿、彭金山、王順生(2016)。以整合式職能評價e化系統模型之建構提昇企業人力資源管理的效能。資訊科技國際期刊,10(1),29-41。
二、英文部分
Bonvillian, W. B. (2013). Advanced Manufacturing Policies and Paradigms for Innovation. Science, 342(6163), 1173-1175.
Dalkey, N. C. (1969). The Delphi Method: An Experimental Study of Group Opinion. Santa Monica, CA: The Rand Corporation.
Faherty, V. (1979). Continuing Social Work Education: Results of a Delphi Survey. Journal of Education for Social Work, 15(1), 12-19.
Ferris, G. R., & Judge, T. A. (1991). Personnel/Human Resources Management: A Political Influence Perspective. Journal of management, 17(2), 447-488.
Fitzgerald, W. (1992). Training Versus Development. Training and Development, 46(5), 81-84.
Gehrke, L. (2015). Industry 4.0, A Discussion of Qualifications and Skills in the Factory of the Future: A German and American Perspective.
Holden, M. C., & Wedman, J. F. (1993). Future Issues of Computer-Mediated Communication: The Results of a Delphi Study. Educational technology research and development, 41(4), 5-24.
Hecklau, F., Galeitzke, M., Flachs, S., & Kohl, H. (2016). Holistic Approach for Human Resource Management in Industry 4.0. Procedia Cirp, 54, 1-6.
Jarvis, P. L., 1983. The Psychology of Leisure Travel: Effective Marketing and Selling of Travel Service. Boston, MA: CBI Publishing Co.
Jia, X., Feng, Q., Fan, T., & Lei, Q. (2012, April). RFID Technology and its Applications in Internet of Things (IoT). In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet) (pp. 1282-1285). IEEE.
Kuo, C. C., & Shyu, J. Z. (2018). Restructuring the Manufacturing Industry during the Industry 4.0 Transition. Management Review, 37, 91-103.
Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity and Variety. META Group Research Note, 6(70), 1.
Lee, J., Kao, H. A., & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia Cirp, 16, 3-8.
Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manufacturing Letters, 3, 18-23.
Liu, J. Y. S., & Shyu, D. W. (2016). Integrative Manufacturing and Commerce Curriculum in the Wake of Productivity 4.0-Meeting the Challenge of Global Competition. 東亞論壇, (493), 61-66.
Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A Versatile Methodology for Conducting Qualitative Research. The Review of Higher Education, 18(4), 423-436.
McClelland, D. C. (1973). Testing for Competence Rather than for" Intelligence.". American Psychologist, 28(1), 1-24.
McLagan, P. A., & Bedrick, D. (1983). Models for Excellence: The Results of the ASTD Training and Development Competency Study. Training and Development Journal, 37(6).
McLagan, P. A. (1989). Models for HRD practice. Training & Development Journal, 43(9), 49-60.
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big Data: the Management Revolution. Harvard Business Review, 90(10), 60-68
Nadler. L. (1970). Developing Human Resources. Houston, TX: Gulf Publishing Co, 14-21.
Noe, R. A., Hollenbeck, J. R., Gerhart, B., & Wright, P. M. (2017). Human Resource Management: Gaining a Competitive Advantage. New York, NY: McGraw-Hill Education.
Ornes, S. (2016). Core Concept: The Internet of Things and the Explosion of Interconnectivity. Proceedings of the National Academy of Sciences, 113(40), 11059-11060.
Pirzada, D. S., Hayat, F., Ikram, A. A., Ayub, M., & Waheed, K. (2013). Impact of Human Resources Management Practices on Turnover, Productivity and Corporate Financial Performance. European Journal of Business and Management, 5(10), 163-176.
Park, S. (2016). Development of Innovative Strategies for the Korean Manufacturing Industry by Use of the Connected Smart Factory (CSF). Procedia Computer Science, (91), 744-750.
Pikas, B., Zhang, X., Peek, W. A., & Lee, T. (2016). The Transformation and Upgrading of the Chinese Anufacturing Industry: Based on “German Industry 4.0”. Journal of Applied Business and Economics, 18(5).
Rowe, G., Wright, G., & Bolger, F. (1991). Delphi: a Reevaluation of Research and Theory. Technological Forecasting and Social Change, 39(3), 235-251.
Roblek, V., Meško, M., & Krapež, A. (2016). A Complex View of Industry 4.0. Sage Open, 6(2), 2158244016653987.
Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill, Inc.
Saaty, T. L., & Kearns, K. P. (1985). Analytical Planning. Pergamum Press Inc., New York.
Spencer, L. M., & Spencer, S. M. (1993). Competence at Work: Models for Superior Performance. New York: John Wiley & Sons.
Scott, B.P. (1996), “The Quest for Competencies,” Training, 33(7), 48-54.
Suresh, P., Daniel, J. V., Parthasarathy, V., & Aswathy, R. H. (2014, November). A State of the Art Review on the Internet of Things (IoT) history, Technology and Fields of Deployment.In 2014 International Conference on Science Engineering and Management Research (ICSEMR) (pp. 1-8). IEEE.
Stock, T., & Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia Cirp, 40, 536-541.
Ślusarczyk, B. (2018). Industry 4.0: Are we Ready?Polish Journal of Management Studies, 17.
Ulrich, D. (1987). Organizational Capability as a Competitive Advantage: Human. People and Strategy, 10(4), 169-184.
Ulrich, D., Brockbank, W., Yeung, A. K., & Lake, D. G. (1995). Human Resource Competencies: An Empirical Assessment. Human Resource Management, 34(4), 473-495.
Ulrich, D. (1997). Human Resource Champions. Cambridge, MA: Harvard Business School Press.
Ulrich, D., & Brockbank, W. (2005). The HR Value Proposition. Harvard Business Press.
Ulrich, D., Younger,J., Brockbank, W., & Ulrich M. (2012).HR From the Outside in:Six Competencies for the Future of Human Resources: McGraw-Hill.
Ulrich, D. (2016). HR at a Crossroads. Asia Pacific Journal of Human Resources, 54(2), 148-164.
Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A Fuzzy Extension of Saaty's Priority Theory. Fuzzy Sets and Systems, 11(1-3), 229-241.
Wright, P. M., & McMahan, G. C. (1992). Theoretical Perspectives for Strategic Human Resource Management. Journal of Management, 18(2), 295-320.
Werther, W. B., & Davis, K. (1993). Human Resources and Personnel Management.
Williamson, J. (2014). Getting a Big Data Job for Dummies. John Wiley & Sons.
Wilson, J. P. (2014). International Human Resource Development: Learning, Education and Training for Individuals and Organisations. Development and Learning in Organizations, 28(2).
Wang, Y. H. (2015). The Challenge of Taiwan Productivity 4.0 from Industry 4.0. Taiwan Economic Research Monthly, 38(8), 111-119.
Wang, G. G., Werner, J. M., Sun, J. Y., Gilley, A., & Gilley, J. W. (2017). Means vs Ends: Theorizing a Definition of Human Resource Development. Personnel Review, 46(6), 1165-1181.
Witkowski, K. (2017). Internet of Things, Big Data, Industry 4.0 Innovative Solutions in Logistics and Supply Chains Management. Procedia Engineering, 182, 763-769.
Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17-27.
Zahra, S. A. (2003). The Practice of Management: Reflections on Peter F. Drucker's Landmark Book. Academy of Management Perspectives, 17(3), 16-23.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *