帳號:guest(3.148.107.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許志立
作者(外文):Hsu, Chi-Li
論文名稱(中文):應用遊戲式學習探討國小資優生數學解題歷程與發展
論文名稱(外文):Using Game-Based Learning to Explore the Process and Development of Mathematics Problem Solving for Gifted Students in Elementary Schools
指導教授(中文):許瑛珍
指導教授(外文):Hsu, Ying-Jen
口試委員(中文):侯禎塘
黃澤洋
口試委員(外文):Hou, Chen-Tang
Huang, Tse-yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:特殊教育學系
學號:107095517
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:82
中文關鍵詞:資賦優異遊戲式學習數學解題歷程數學學習成就
外文關鍵詞:the giftedgame based learningmathematical problem solving processesMath learning achievement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討遊戲式學習,應用在資賦優異學生的數學解題歷程與其學習成效。採質性與量化研究混和設計,除了利用訪談與內容分析,以瞭解學生的思考歷程;並利用評量表與標準測驗,以比較學生在教學介入後,解題步驟與數學成就的改變。
研究參與者採立意取樣,為四名基隆市國小資優班六年級學生,該校校風較為開放,學生對於創意課程較不排斥。遊戲式學習的介質是數學益智玩具-孔明棋,用以探討學生遊戲時的解題策略歷程發展;教師的介入教學,主要是在協助學生將解題策略統整,引導學生更能有效運用解題策略。在獲得學生家長同意後, 利用假日於學校實施每週一次、每次約一小時的課程,共進行五週、五節課。
教學成效的檢視,除了以2017、2018年AMC8數學測驗為前、後測,比較學生在經過遊戲式學習後,其數學測驗成績的差異;並以結構式開放性問卷訪談後,再利用評量表分析學生在Polya四階段解題步驟上的進展。在整個課程的進展中,研究者以質性研究的訪談大綱,引導學生說出其思考歷程與解題策略,並了解學生對遊戲式學習的接受度。本研究發現遊戲式學習,除了能提升資優生數學學習動機,在遊戲過程中自行發展出解題策略,藉由遊戲中反覆的思考與熟悉解題方式後,也能提升學生在數學解題所需要的能力,包含能掌握解題關鍵、有效運用舊經驗解題、完整的解題步驟以及會反覆檢查自己是否犯錯,因而提升數學本科的學習表現。
This research aims to explore the thinking process of game-based learning in mathematics problem solving and its learning benefits for gifted students. Adopting a mixed-design method of qualitative and quantitative research, interviews with content analysis and assessment scales to understand the thinking process, including strategies and steps, and standard tests to compare changes in math achievements were carried out before and after the teaching intervention.
Participants in the study were a purposive sampling of four sixth-grade students in the gifted resource class of Keelung Elementary School, of which atmosphere had a more open atmosphere, and students are less resistant to creative courses. A puzzle game of mathematical education, Peg solitaire, was used as the medium of game-based learning to explore the development of problem-solving strategies during games. The intervention teaching is mainly to help students integrate their problem-solving strategies and guide students to apply them more effectively. Students attended the game-based learning once a week, approximately an hour each course at the weekend for five weeks, totaling five classes.
This study used the 2018 AMC8 math tests as pre-test and the 2017 AMC8 math tests as post-test to compare the differences in mathematics, and interviews with structured open questionnaires and assessments to analyze the progress in the Polya four-stage problem-solving steps and thinking strategies after the teaching intervention. Throughout the course of the course, the researcher would guide students to explain their thinking process and Problem-solving skills and understand their acceptance of game-based learning.
This study found that game-based learning could improve the motivation of gifted students in mathematics and their problem-solving strategies. Through repeated thinking in the game and familiarity with problem-solving methods, students can also enhance their ability to solve problems in mathematics, including mastering the key to problem-solving, effectively using old experience to solve problems, complete problem-solving steps, and repeatedly checking whether they have made mistakes. Therefore, improve the performance of undergraduate mathematics.
摘要 i
Abstract ii
目錄 iv
圖次 vi
表次 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究問題 3
第三節 名詞解釋 4
第二章 文獻探討 5
第一節 資賦優異學生的數學學習 5
一、資賦優異學生在數學解題上的歷程與思考特質 5
二、符合資優生能力的數學課程設計 7
三、數學學習動機 12
四、認知學徒制 12
第二節 以孔明棋進行遊戲式學習 13
一、遊戲式學習的重要元素 13
二、遊戲式學習的成效 14
三、孔明棋在遊戲式學習的應用 16
第三章 研究方法 19
第一節 研究參與者 19
第二節 研究工具 20
第三節 效度 24
第四節 實施程序 25
第五節 資料分析 28
第四章 研究結果 31
第一節、遊戲式學習進行數學課程的接受度 31
第二節、資優生進行孔明棋時的思考歷程 34
第三節、遊戲式學習對數學成就表現的學習成效 38
第五章 研究結論 45
一、資優生在遇到困難時的思考歷程為舊經驗的有效運用 45
二、符合資優生的數學課應是可類化的問題解決 46
三、學習動機是數學學習的關鍵因素 47
四、遊戲式學習在實際教育現場具有可行性 47
參考文獻 49
一、中文文獻 49
二、英文文獻 52
附件一 孔明棋的玩法 55
附件二 訪談問卷設計 56
附件三 訪談大綱 57
附件四 訪談時間表 58
附件五 第一關詳細解說 60
附件六 編碼矩陣a:遊戲式學習是否能提升學生數學學習動機? 61
附件七 編碼矩陣b:在遇到新的問題時,會利用怎樣的思考策略? 62
附件八 編碼矩陣c:在孔明棋的解題中,發展出怎樣的解題策略? 63
附件九 編碼矩陣d數學解題步驟階段 64
附件十 編碼矩陣e:玩具進行數學課程適合嗎? 65
附件十一 編碼矩陣f:玩具進行數學課程是否提升數學學習能力 66
附件十二 研究參與者AMC8答題情形 67
附件十三 孔明棋關卡數 69
附錄一 孔明棋的關卡 77
附錄二 AMC8題目類型分布、難度(題號) 79
附錄三 台灣學生參與2017年和2018年AMC8成績組距、人數 80
附錄四 美國和台灣參與2017年和2018年AMC8的人數與平均分數 81
附錄五 台灣參與2017年和2018年AMC8平均分數及標準差 82

圖次
圖1 資料的三角驗證 24
圖2 實施程序 25
圖3 參與者S2在其作答題目旁所繪,有助於解題的圖形(S2-I-d-2) 39
圖4 參與者S1在因數概念題的前測與後側的不同表現 40
圖5 參與者S3運用保王法解數學推理題 42
圖6 參與者S4用保王法解數學推理題 42

表次
表1 以Polya解題步驟統整不同學者的解題步驟 8
表2 Polya 解題歷程與策略 10
表3 AMC8題目類型分布(題號) 21
表4 Polya解題步驟問卷架構與評量表的評量標準 21
表5 訪談大綱的主題與與預設的開放編碼 23
表6 孔明棋解題策略運用情形 35
表7 AMC8前後測達到各階段的題數與其題型和難易度差距表 38

一、中文文獻
IBM商業價值研究院(2010)。駕馭複雜環境開創嶄新-2010年IBM全球CEO調查。取自https://www.ibm.com/downloads/cas/ZL2KEZJB
毛連塭(1995)。資優教育-課程與教學。臺北市:五南。
毛連塭(2008)。資優教育課程與教學。臺北市:五南。
方吉正、張新仁(2000)。認知學徒制在國小數學解題教學成效之研究。課程與教學季刊,3(4),49-72。
王姿琴、張世慧(2014)。遊戲創作教學在資優教育上的應用。特殊教育發展期刊,57,39-55。
王振德(2000)。資優教育課程及其相關問題。臺北市:心理。
吳志緯(2003)。國小學生以電腦樂高進行科學學習之個案研究(碩士論文)。取自臺灣碩博士論文知識加值系統。(系統編號091TMTC0231020)。
呂玉琴、呂佳蓉(2013)。國小五年級資優生解空間關係問題的解題歷程。高雄師大學報,35,33-60。
李立中、林順喜(1999)。孔明棋的電腦解法研究。第四屆人工智慧與應用研討會,大葉大學。
周士傑、梁淑坤(2007)。遊戲融入小學六年級數與計算教學的設計及反思。台灣數學教師電子期刊,11,12-32。
周春(2013)。幼兒園玩具教學現狀及對策當議。時代教育,12,47-48。
林業盈(2015)。應用樂高機器人發展資優教育方案之教學實例分析與探討。資優教育季刊,137,33-44。
花敬凱(譯)(2007)啟迪資優-如何開發孩子的潛能(原作者:Clark, B.)。臺北市:心理。(原著出版年:2002)。
侯禎塘、李香慧、林小玲、張乃悅、黃小芳(2005)。融合教育環境中的數學遊戲教學實踐與省思。特殊教育叢書,9401,39-54。
施能木(2007):應用機器人於國小學童「自然與生活科技」領域創意學習之課程設計與實施。生活科技教育月刊,40(2),18-31。
胡為君(譯)(2003)。大師談遊戲設計(原作者:Rollings, A. & Adams, E.)。臺北:上奇。(原著出版年:2003)
范丙林(2011)。桌上遊戲應用於環境教育之研究。100年度國立臺北教育大學發展學校重點特色計劃案成果報告書。臺北市:國立臺北教育大學。
張新仁(2003)。學習與教學新趨勢。臺北市:心理。
張旭鎧(2013)。5分鐘玩出專注力遊戲書。臺北市:新手父母。
張遠南(1996)。使人聰明的智力遊戲。臺北市:九章。
許芷瑋、李芃娟(2018)。應用桌上遊戲教學對國小智能障礙學生功能性詞彙之學習成效,國立臺南大學特殊教育學系特殊教育與復健學報,34,49-74。
陳綵菁、邱榮輝、陳志豪、張宇樑(2013)。數學遊戲融入教學在三年級學生除法概念學習之應用。桃園創新學報,33,313-330。
鈕文英(2007)。教育研究方法與論文寫作。臺北市:雙業書廊。
黃家杰、梁淑坤(2007)。小學一般智能資優資源班新生數學解題歷程與策略之分析。臺灣數學教師電子期刊,12,1-16。
黃嬿樺、賴慶三(2009)。科學玩具遊戲教學對國小三年級學童空氣單元學習的影響。科學教育月刊,318,2-16。
楊惠后(2015)。看資優生玩科學玩具。科學教育月刊,384,50-57。
葉栢維(2017)。Steam理論融入國小科技實作的活動設計:橡皮筋動力車向前衝。科技與人力教育季刊,4(1),63-75。
廖正陽(2016)。國小高年級資優生和一般生在規律型數學問題的解題表現之比較(碩士論文)。取自臺灣碩博士論文知識加值系統。(系統編號104NTPT0480011)
劉哲源、劉祥通(2008)。國一資優生在對因倍數問題的解題分析。資優教育研究,8(1),47-66。
劉貞宜(2001)。數學資優生的解題歷程分析-以建中三位不同能力的數學資優生為例。資優教育研究,2(1),97-120。
蔡典謨(1988)。培養資優生成為知識的生產者。資優教育季刊,69,1-5。
蔡坤憲(譯)(2006)。怎樣解題(原作者:Pólya, G.)。臺北:天下遠見。(原著出版年:1957)
蔡鳳秋、楊德清、吳宛儒(2005)。井字遊戲~我把小數變好玩了!!。台灣數學教師電子期刊,4,16-26。
鄭聖敏等(譯)(2012)。資優教育概論(原作者:Gary A. Davis, Sylvia B. Rimm & Del Siegle)。臺北市:華騰文化。(原著出版年:2011)
蕭仁傑、劉宜谷(2018)。以遊戲式教學進行金融教育對高低數學學習成就學童金融知識提升之影響。臺北市立大學學報,2,33-51。
謝依珊、張世慧(2016)。CPS融入科學玩具製作教學在資優教育上的應用,特殊教育發展期刊,61,49-70。
謝淡宜(1998)。小學五年級數學資優生與普通生數學解題時思考歷程之比較。臺南師院學報,31,225–268。
謝淡宜(1999)。國小數學資優生及普通生「數學解題」歷程之比較(四年級)。臺南師院學報,32,297–367。
饒見維(1996)。國小數學遊戲教學法。臺北市:五南。

二、英文文獻
Aufshnaiter, V. S., Prum, R. & Schwedes, H. (1984). Play and play orientation in physics education. Naturwissenschaften im Unterricht-P/C, 32, 258-263.
Assouline, S., & Doellinger, H. L. (2001). Elementary students who can do junior high mathematics: Policy or pedagogy? In N. Colangelo & S. G. Assouline (Eds.), Talent development IV: Proceedings from the 1998 Henry B. and Jocelyn Wallace National Research Symposium on Talent Development (pp. 123-133). Scottsdale, AZ: Great Potential.
Assouline, S., & Lupkowski-Shoplik, A. (2011). Developing math talent: A comprehensive guide to math education for gifted students in elementary and middle school (2nd.). Waco, TX: Prufrock Press.
Ball, D.L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J.Boaler (Ed.) Multiple Perspectives on Mathematics of Teaching and Learning (pp. 83-104). Westport, Conn.: Ablex Publishing.
Berk, L., & Winsler, A. (1995). Schaffolding Children’s Learning: Vygotsky and Early Childhood Education. Washington DC: NAEYC.
Betts, G.T. & Kercher, J.K. (1999). The autonomous learner model: Optimizing ability. Greeley, CO: ALPS Publishing.
Bloom, B. S. (Ed.) (1956). Taxonomy of educational objectives. New York: McKay.
Brodie, K. (2010). Teaching mathematical reasoning in secondary school classrooms. London: Dordrecht Heidelberg.
Bruner, J. S. (1972). Nature and uses of immaturity. American Psychologist, 27, 687. doi:10.1037/h0033144
Christopher, J., Angela, M., Ian, M., & Armagan, T. (2006). Modelling and solving English Peg Solitaire. Computers & Operations Research, 33(2006), 2935–2959.
Dickey, M. D. (2011). Murder on Grimm Isle: the impact of game narrative design in an educational game-based learning environment. British Journal of Educational Technology, 42(3), 456–469.
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill Book Co.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago:University of Chicago Press.
Malone, T. W. (1981). What makes computer games fun? Byte, 6(12), 258-277.
Martin J. C. (2002) . Unconstrained Peg Solitaire. INFORMS Transactions on Education, 2(3), 99-100. https://doi.org/10.1287/ited.2.3.99
National Council of Supervisors of Mathematics. (1977). Position paper on basic mathematical skills. Arithmetic Teacher, 25, 19-22.
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Prensky, M. (2001). Digital game-based Learning. New York: McGraw-Hill.
Prensky, M. (2007). Digital game-based learning. St. Paul, MN: Paragon House.
Sarah, L., & Jennifer, W. (2015). Fool’s solitaire on joins and Cartesian products of graphs. Discrete Mathematics, 338. 66–71.
Stonecipher, L, D. (1986). A comparison of mathematical problem solving processes between gifted and average junior high students. A clinical investigation (Doctoral dissertation, Southern Illinois University at Carbondale, 1986), Ann Arbor, MI: University Microfilms International, A Bell & Howell Information Co.
Vygotsky, L, S. (1978). Mind in society: The development of higher mental processes. Cambridge, MA: Harvard University Press.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *