帳號:guest(3.135.203.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇義鈞
作者(外文):Su, Yi-Chun
論文名稱(中文):兩相磷酸鈣奈米顆粒對於成骨細胞骨化與抑制發炎反應之研究
論文名稱(外文):Nanoscaled biphasic calcium phosphate modulates osteogenesis of osteoblasts and attenuates inflammation
指導教授(中文):林立元
徐子勝
指導教授(外文):Lin, Lih-Yuan
Hsu, Tzu-Sheng
口試委員(中文):周裕珽
李東芳
李易展
陳建鋒
口試委員(外文):Chou, Yu-Ting
Lee, Dung-Fang
Lee, Yi-Jang
Chen, Chian-Feng
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:107080851
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:92
中文關鍵詞:奈米材料巨噬細胞成骨細胞發炎反應免疫調控抗發炎兩相材料氫氧機磷灰石三鈣磷酸鹽
外文關鍵詞:nanomaterialsmacrophagesosteoblastsinflammatory responseimmunomodulationanti-inflammationbiphasic materialshydroxyapatitetricalcium phosphate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微米級之兩相磷酸鈣材料在臨床上已被證實在骨組織修復中具有效果,但目前對於奈米等級之兩相磷酸鈣材料之研究則仍非常少,尤其是兩相奈米材料對於成骨細胞分化、免疫調控與發炎狀態下之微環境的影響。本研究運用奈米研磨分散技術,通過使用聚合羧酸作為分散劑成功製備出非針狀之奈米顆粒,此材料具備無細胞毒性、表面帶負電與能夠進入細胞之特性。我們的結果顯示,使用較低濃度的兩相奈米顆粒處理人類成骨細胞,可顯著增加鹼性磷酸酶(ALP)活性,並增強與成骨相關的基因表達,其中包括ALP、RUNX2與OPN。此外,兩相奈米顆粒還表現出免疫調節效果,在無發炎誘導的條件下,以兩相奈米顆粒處理單核球細胞來源之巨噬細胞,可以降低發炎性細胞因子的基因表現量,其中包括IL-1beta、TNF-alpha和IL-6。在LPS誘導發炎的情況下,兩相奈米顆粒可以有效的抑制LPS所誘發之發炎性細胞因子的基因與蛋白質表現量。本研究進一步以條件培養液的實驗發現,兩相奈米顆粒能夠降低由LPS刺激的巨噬細胞培養液對成骨細胞分化和礦化的負面影響。這些發現說明了兩相奈米顆粒在骨組織修復和再生的臨床應用中具有潛力。總體而言,本研究開發出之兩相奈米顆粒能促進成骨細胞骨化並俱備免疫調節特性,為解決臨床手術中的發炎性骨溶解併發症提供了潛在的治療途徑。
Micron-scale biphasic calcium phosphate materials have been effective in bone tissue repair, but there is limited research on their nanoscale counterparts. This study focuses on synthesizing granular-shaped biphasic calcium phosphate nanomaterials with beneficial properties such as negatively charged surfaces, non-cytotoxicity, and cellular penetration. These characteristics were achieved using a nanogrinding dispersion method with polymeric carboxylic acid as the dispersant. Our results demonstrate that treating human osteoblasts with lower concentration of these nanoparticles significantly increases alkaline phosphatase (ALP) activity and enhances the expression of genes related to osteogenesis. Furthermore, the biphasic calcium phosphate nanoparticles exhibit immunomodulatory effects. When applied to THP-1-derived macrophages, these nanomaterials reduce the expression of several inflammatory genes. They also inhibit the heightened inflammatory gene expression and inflammatory protein production induced by lipopolysaccharide (LPS) in THP-1-derived macrophages. Importantly, biphasic calcium phosphate nanoparticles can reverse the negative effects of LPS-stimulated macrophage-conditioned medium on osteoblast osteogenesis and mineralization. These findings suggest that biphasic calcium phosphate nanoparticles have the potential utility for clinical applications in bone tissue repair and regeneration. In summary, this study highlights the advantageous properties of biphasic calcium phosphate nanoparticles in promoting osteogenesis and modulating immune responses, offering a potential pathway for addressing inflammatory osteolysis in clinical surgery.
中文摘要 Ⅰ
英文摘要 Ⅱ
謝誌 Ⅳ
目錄 Ⅴ
圖表目錄 Ⅶ
中英文對照表 Ⅷ
縮寫全名對照表 XⅡ
第一章 前言 1
一、 骨頭的組成與動態平衡 1
二、 骨頭癒合過程 4
三、 免疫反應與骨癒合的關聯性 6
四、 發炎性骨溶解 7
五、 磷酸鈣材料應用於骨修復 12
六、 奈米材料應用於骨修復 16
七、 奈米材料應用於調控免疫反應 20
八、 研究動機 21
第二章 材料與方法 23
一、 化學試劑與藥物 23
二、 兩相奈米顆粒的製備 23
三、 奈米顆粒的特性測試 24
四、 細胞培養 24
五、 細胞活性與細胞增生測試 25
六、 細胞內活性氧物質(ROS)含量測試 26
七、 兩相奈米材料進入細胞測試 27
八、 成骨細胞活性測試 28
九、 LPS刺激與ELISA測試 29
十、 數據分析 30
第三章 實驗結果 31
一、 兩相奈米顆粒的製備與特性測試 31
二、 兩相奈米顆粒對於人類胚胎成骨細胞之生物特性測試 32
三、 兩相奈米顆粒對於人類胚胎成骨細胞之成骨作用測試 34
四、 兩相奈米顆粒對於由單核球細胞衍生之巨噬細胞的生物特性測試 36
五、 兩相奈米顆粒調控單核球細胞衍生之巨噬細胞的發炎反應測試 37
六、 兩相奈米顆粒可以抑制LPS刺激THP-1-derived macrophages後之培養液對hFOB 1.19細胞的成骨破壞 39
第四章 討論 42
參考文獻 52
附圖表 73
附錄 91
附錄一、骨癒合流程圖 91
附錄二、論文發表 92
Amarasekara, D. S., Yun, H., Kim, S., Lee, N., Kim, H., and Rho, J. (2018). Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, e8. doi:10.4110/in. 2018.18.e8

Amirian, J., Linh, N. T., Min, Y. K., and Lee, B. T. (2015). Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int. J. Biol. Macromol. 76, 10–24.
doi:10.1016/j.ijbiomac.2015.02.021

Arend W. P. (2002). The mode of action of cytokine inhibitors. The Journal of rheumatology. Supplement, 65, 16–21.

Arinzeh, T. L., Tran, T., Mcalary, J., and Daculsi, G. (2005). A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26, 3631–3638. doi:10.1016/j.biomaterials.2004.09.035

Awasthi, S., Pandey, S., Arunan, E., and Srivastava, C. (2020). A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J. Mater. Chem. B 10, 228–249. doi:10.1039/d0tb02407d

Basu, S., and Basu, B. (2019). Unravelling doped biphasic calcium phosphate: synthesis to application. ACS Appl. Bio Mater 2, 5263–5297. doi:10.1021/acsabm. 9b00488

Bains, P. S., Singh, G., Bhui, A. S., Sidhu, S. S., & Bains, P. (2019). Biomaterials in Orthopaedics and Bone Regeneration.

Baldelli, A., Ou, J., Li, W., & Amirfazli, A. (2020). Spray-On Nanocomposite Coatings: Wettability and Conductivity. Langmuir : the ACS journal of surfaces and colloids, 36(39), 11393–11410. doi:10.1021/acs.langmuir.0c01020

Bi, Y., Seabold, J. M., Kaar, S. G., Ragab, A. A., Goldberg, V. M., Anderson, J. M., & Greenfield, E. M. (2001). Adherent endotoxin on orthopedic wear particles stimulates cytokine production and osteoclast differentiation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 16(11), 2082–2091. doi:10.1359/jbmr.2001.16.11.2082

Bohner, M., & Lemaitre, J. (2009). Can bioactivity be tested in vitro with SBF solution?. Biomaterials, 30(12), 2175–2179. doi:10.1016/j.biomaterials.2009.01.008

Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. (1996). Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect. 45:371-86. PMID: 8727757.

Calderin, L., Stott, M. J., & Rubio, A. (2003). Electronic and crystallographic structure of apatites. Physical Review B, 67(13), 134106.

Callaway, D. A., and Jiang, J. X. (2015). Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Min. Metab. 33, 359–370. doi:10.1007/s00774-015-0656-4

Capulli, M., Paone, R., & Rucci, N. (2014). Osteoblast and osteocyte: games without frontiers. Archives of biochemistry and biophysics, 561, 3-12. doi: 10.1016/j.abb.2014.05.003.

Chen, J., & Long, F. (2018). mTOR signaling in skeletal development and disease. Bone research, 6, 1. https://doi.org/10.1038/s41413-017-0004-5

Chen, Y. J., Pao, J. L., Chen, C. S., Chen, Y. C., Chang, C. C., Hung, F. M., et al. (2017). Evaluation of new biphasic calcium phosphate bone substitute: rabbit femur defect model and preliminary clinical results. J. Med. Biol. Eng. 37, 85–93. doi:10.1007/s40846- 016-0203-3

Chen, Z., Bachhuka, A., Wei, F., Wang, X., Liu, G., Vasilev, K., Xiao, Y. (2017). Nanotopography-Based Strategy for the Precise
Manipulation of Osteoimmunomodulation in Bone Regeneration. Nanoscale , 9, 18129–18152. doi:10.1039/C7NR05913B

Chen, Z., Klein, T., Murray, R.Z., Crawford, R., Chang, J., Wu, C., Xiao, Y. (2016). Osteoimmunomodulation for the Development of
Advanced Bone Biomaterials. Mater. Today, 19, 304–321.
doi:10.1016/j.mattod.2015.11.004

Chen, Zetao & Han, Shengwei & Shi, Mengchao & Liu, Guanqi & Chen, Zhuofan & Chang, Jiang & Wu, Chengtie & Xiao, Yin. (2017). Immunomodulatory effects of mesoporous silica nanoparticles on osteogenesis: From nanoimmunotoxicity to nanoimmunotherapy. Applied Materials Today. doi:10.1016/j.apmt.2017.12.003

Chigurupati, S., Mughal, M. R., Okun, E., Das, S., Kumar, A., McCaffery, M., Seal, S., & Mattson, M. P. (2013). Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 34(9), 2194–2201. doi:10.1016/j.biomaterials.2012.11.0613

Čitaković, N. M. (2019). Physical properties of nanomaterials. Vojnotehnički glasnik/Military Technical Courier, 67(1), 159-171.

Claes, L., Recknagel, S., & Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. Nature reviews. Rheumatology, 8(3), 133–143. doi: 10.1038/nrrheum.2012.1

Crush, J., Hussain, A., Seah, K. T. M., & Khan, W. S. (2021). Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Frontiers in cell and developmental biology, 9, 643781. doi:10.3389/fcell.2021.643781

Darimont, G. L., Cloots, R., Heinen, E., Seidel, L., and Legrand, R. (2002). In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23, 2569–2575. doi:10.1016/s0142-9612(01)00392-1

Datta, H. K., Ng, W. F., Walker, J. A., Tuck, S. P., & Varanasi, S. S. (2008). The cell biology of bone metabolism. Journal of clinical pathology, 61(5), 577–587. doi:10.1136/jcp.2007.048868

Dai, Q., Xu, Z., Ma, X., Niu, N., Zhou, S., Xie, F., Jiang, L., Wang, J., & Zou, W. (2017). mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell death and differentiation, 24(11), 1886–1899. doi:10.1038/cdd.2017.110

Darimont, G. L., Cloots, R., Heinen, E., Seidel, L., & Legrand, R. (2002). In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials, 23(12), 2569–2575. doi:10.1016/s0142-9612(01)00392-1

Dayer J. M. (2002). Interleukin 1 or tumor necrosis factor-alpha: which is the real target in rheumatoid arthritis?. The Journal of rheumatology. Supplement, 65, 10–15.

Dey, A., Mukhopadhyay, A. K., Gangadharan, S., Sinha, M. K., & Basu, D. (2009). Characterization of microplasma sprayed hydroxyapatite coating. Journal of thermal spray technology, 18, 578-592.

Di Benedetto, P., Ruscitti, P., Vadasz, Z., Toubi, E., & Giacomelli, R. (2019). Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmunity reviews, 18(10), 102369. doi:10.1016/j.autrev.2019.102369

Dickens, B., Schroeder, L. W., & Brown, W. E. (1974). Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3 (PO4) 2. The crystal structure of pure β-Ca3 (PO4) 2. Journal of Solid State Chemistry, 10(3), 232-248. doi:10.1016/0022-4596(74)90030-9

Dinarello C. A. (1997). Interleukin-1. Cytokine & growth factor reviews, 8(4), 253–265. doi.10.1016/s1359-6101(97)00023-3

Ding, C., Yang, C., Cheng, T., Wang, X., Wang, Q., He, R., Sang, S., Zhu, K., Xu, D., Wang, J., Liu, X., & Zhang, X. (2021). Macrophage-biomimetic porous Se@SiO2 nanocomposites for dual modal immunotherapy against inflammatory osteolysis. Journal of nanobiotechnology, 19(1), 382. doi.10.1186/s12951-021-01128-4

Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie (International ed. in English), 41(17), 3130–3146. doi:10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1

Dorozhkin S. V. (2012). Biphasic, triphasic and multiphasic calcium orthophosphates. Acta biomaterialia, 8(3), 963–977. doi:10.1016/j.actbio.2011.09.003

Douglas, T., Pamula, E., Hauk, D., Wiltfang, J., Sivananthan, S., Sherry, E., & Warnke, P. H. (2009). Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. Journal of materials science. Materials in medicine, 20(9), 1909–1915. doi:10.1007/s10856-009-3756-7

Dougall, W. C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M. E., Maliszewski, C. R., Armstrong, A., Shen, V., Bain, S., Cosman, D., Anderson, D., Morrissey, P. J., Peschon, J. J., & Schuh, J. (1999). RANK is essential for osteoclast and lymph node development. Genes & development, 13(18), 2412–2424.
doi.10.1101/gad.13.18.2412

Downey, P. A., & Siegel, M. I. (2006). Bone biology and the clinical implications for osteoporosis. Physical therapy, 86(1), 77-91. doi: 10.1093/ptj/86.1.77

Egbuna, C., Parmar, V. K., Jeevanandam, J., Ezzat, S. M., Patrick-Iwuanyanwu, K. C., Adetunji, C. O., et al. (2021). Toxicity of nanoparticles in biomedical application: nanotoxicology. J. Toxicol. 2021, 1–21. doi:10.1155/2021/9954443

Eivazzadeh-Keihan, R., Bahojb Noruzi, E., Khanmohammadi Chenab, K., Jafari, A., Radinekiyan, F., Hashemi, S. M., Ahmadpour, F., Behboudi, A., Mosafer, J., Mokhtarzadeh, A., Maleki, A., & Hamblin, M. R. (2020). Metal-based nanoparticles for bone tissue engineering. Journal of tissue engineering and regenerative medicine, 14(12), 1687–1714. doi:10.1002/term.3131

Ellinger, R. F., Nery, E. B., & Lynch, K. L. (1986). Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. The International journal of periodontics & restorative dentistry, 6(3), 22–33.

Fatima, S., Alfrayh, R., Alrashed, M., Alsobaie, S., Ahmad, R., and Mahmood, A. (2021). Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int. J. Nanomedicine 16, 331–343. doi:10. 2147/ijn.s285233

Feldmann, M., Brennan, F. M., & Maini, R. N. (1996). Role of cytokines in rheumatoid arthritis. Annual review of immunology, 14(1), 397-440. doi: 10.1146/annurev.immunol.14.1.397

Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced drug delivery reviews, 156, 4–22. doi:10.1016/j.addr.2020.06.022

Franceschi, R. T., & Ge, C. (2017). Control of the Osteoblast Lineage by Mitogen-Activated Protein Kinase Signaling. Current molecular biology reports, 3(2), 122–132. doi:10.1007/s40610-017-0059-5

Franz, S., Rammelt, S., Scharnweber, D., and Simon, J. C. (2011). Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709. doi:10.1016/j.biomaterials.2011.05.078

Franz-Odendaal, T. A., Hall, B. K., & Witten, P. E. (2006). Buried alive: how osteoblasts become osteocytes. Developmental dynamics : an official publication of the American Association of Anatomists, 235(1), 176–190. doi.org/10.1002/dvdy.20603

Fratzl, P.; Gupta, H. S.; Paschalis, E. P.; Roschger, P. (2004). Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem, 14 (14), 2115-2123. doi: 10.1039/B402005G

Freytes, D. O., Wan, L. Q., & Vunjak-Novakovic, G. (2009). Geometry and force control of cell function. Journal of cellular biochemistry, 108(5), 1047–1058. doi:10.1002/jcb.22355

Gallo, J., Goodman, S. B., Konttinen, Y. T., Wimmer, M. A., and Holinka, M. (2013). Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 9, 8046–8058. doi:10.1016/j.actbio.2013.05.005

Ge, C., Xiao, G., Jiang, D., Yang, Q., Hatch, N. E., Roca, H., & Franceschi, R. T. (2009). Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. The Journal of biological chemistry, 284(47), 32533–32543. doi:10.1074/jbc.M109.040980

Gerhardt, Lutz-Christian, and Aldo R. Boccaccini. (2010). Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 3, no. 7: 3867-3910. doi:10.3390/ma3073867

Ghahremani, F., Kefayat, A., Shahbazi-Gahrouei, D., Motaghi, H., Mehrgardi, M. A., and Haghjooy-Javanmard, S. (2018). AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine (Lond) 13, 2563–2578. doi:10.2217/nnm-2018-0180

Glass, G. E., Chan, J. K., Freidin, A., Feldmann, M., Horwood, N. J., & Nanchahal, J. (2011). TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1585–1590. doi:10.1073/pnas.1018501108

Greenblatt, M. B., Shim, J. H., Zou, W., Sitara, D., Schweitzer, M., Hu, D., Lotinun, S., Sano, Y., Baron, R., Park, J. M., Arthur, S., Xie, M., Schneider, M. D., Zhai, B., Gygi, S., Davis, R., & Glimcher, L. H. (2010). The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. The Journal of clinical investigation, 120(7), 2457–2473. doi:10.1172/JCI42285

Grigoriadis, A. E., Heersche, J. N., & Aubin, J. E. (1988). Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. The Journal of cell biology, 106(6), 2139-2151. doi: 10.1083/jcb.106.6.2139

Guo, H., Su, J., Wei, J., Kong, H., & Liu, C. (2009). Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta biomaterialia, 5(1), 268–278. doi:10.1016/j.actbio.2008.07.018

Hara, Y., Ukai, T., Yoshimura, A., Shiku, H., and Kato, I. (1998). Histopathological study of the role of CD4-and CD8-positive T cells on bone resorption induced by Escherichia coli endotoxin. Calcif. Tissue Int. 63, 63–66. doi:10.1007/s002239900490

Hartmann, N. B., Jensen, K. A., Baun, A., Rasmussen, K., Rauscher, H., Tantra, R., et al. (2015). Techniques and protocols for dispersing nanoparticle powders in aqueous media-is there a rationale for harmonization? J. Toxicol. Environ. Health B Crit. Rev. 18, 299–326. doi:10.1080/10937404.2015.1074969

He, F., Ren, W., Tian, X., Liu, W., Wu, S., and Chen, X. (2016). Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic. Mater Sci. Eng. C Mater Biol. Appl. 64, 117–123. doi:10.1016/j.msec. 2016.03.085

Henriksen, K., Bollerslev, J., Everts, V., & Karsdal, M. A. (2011). Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocrine reviews, 32(1), 31–63. doi:10.1210/er.2010-0006

Hofbauer, L. C., & Heufelder, A. E. (2001). Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. Journal of molecular medicine (Berlin, Germany), 79(5-6), 243–253. doi.10.1007/s001090100226

Horch, H. H., Sader, R., Pautke, C., Neff, A., Deppe, H., and Kolk, A. (2006). Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 35, 708–713. doi:10.1016/j.ijom.2006.03.017

Horwood N. J. (2016). Macrophage Polarization and Bone Formation: A review. Clinical reviews in allergy & immunology, 51(1), 79–86. doi:10.1007/s12016-015-8519-2

Iijima, M., Kobayakawa, M., Yamazaki, M., Ohta, Y., and Kamiya, H. (2009). Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites. J. Am. Chem. Soc. 131, 16342–16343. doi:10. 1021/ja906655r

Jäger, I., & Fratzl, P. (2000). Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophysical journal, 79(4), 1737–1746. doi: 10.1016/S0006-3495(00)76426-5

Jensen, S. S., Bornstein, M. M., Dard, M., Bosshardt, D. D., and Buser, D. (2009). Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J. Biomed. Mater Res. B Appl. Biomater. 90, 171–181. doi:10.1002/jbm.b.31271

Jeong, J., Kim, J. H., Shim, J. H., Hwang, N. S., & Heo, C. Y. (2019). Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials research, 23, 4. doi.10.1186/s40824-018-0149-3

Kadono, Y., Tanaka, S., Nishino, J., Nishimura, K., Nakamura, I., Miyazaki, T., Takayanagi, H., & Nakamura, K. (2009). Rheumatoid arthritis associated with osteopetrosis. Modern rheumatology, 19(6), 687–690. doi:10.1007/s10165-009-0208-7

Kefayat, A., Ghahremani, F., Motaghi, H., and Amouheidari, A. (2019a). Ultra-small but ultra-effective: folic acid-targeted gold nanoclusters for enhancement of intracranial glioma tumors’ radiation therapy efficacy. Nanomedicine 16, 173–184. doi:10.1016/j. nano.2018.12.007

Kefayat, A., Ghahremani, F., Motaghi, H., and Mehrgardi, M. A. (2019b). Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur. J. Pharm. Sci. 130, 225–233. doi:10.1016/j.ejps.2019.01.037

Komori T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and tissue research, 339(1), 189–195. doi:10.1007/s00441-009-0832-8

Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., … Boyle, W. J. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165–176. doi.10.1016/s0092-8674(00)81569-x

Lee, C. H., Kim, Y. J., Jang, J. H., & Park, J. W. (2016). Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnology, 27(8), 085101. doi:10.1088/0957-4484/27/8/085101

Lerner U. H. (2006). Inflammation-induced bone remodeling in periodontal disease and the influence of post-menopausal osteoporosis. Journal of dental research, 85(7), 596–607. doi.10.1177/154405910608500704

Li, L., Liu, T., Fu, C., Tan, L., Meng, X., and Liu, H. (2015). Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine 11, 1915–1924. doi:10.1016/j.nano.2015.07.004

Li, Y., Zhang, X., & de Groot, K. (1997). Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials, 18(10), 737–741. doi.10.1016/s0142-9612(96)00203-7

Lin, K., Pan, J., Chen, Y., Cheng, R., and Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard Mater 161, 231–240. doi:10.1016/j.jhazmat.2008.03.076

Lippmann, M. (1990). Effects of fiber characteristics on lung deposition, retention, and disease. Environ. Health Perspect. 88, 311–317. doi:10.1289/ehp.9088311 Liu, D. M., Yang, Q., Troczynski, T., and Tseng, W. J. (2002). Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 23, 1679–1687. doi:10.1016/s0142- 9612(01)00295-2

Liu, D. M., Yang, Q., Troczynski, T., and Tseng, W. J. (2002). Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 23, 1679–1687. doi:10.1016/s0142-9612(01)00295-2

Liu, W., Li, J., Cheng, M., Wang, Q., Yeung, K. W. K., Chu, P. K., & Zhang, X. (2018). Zinc-Modified Sulfonated Polyetheretherketone Surface with Immunomodulatory Function for Guiding Cell Fate and Bone Regeneration. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 5(10), 1800749. https://doi.org/10.1002/advs.201800749

Liu, Y., Hardie, J., Zhang, X., & Rotello, V. M. (2017). Effects of engineered nanoparticles on the innate immune system. Seminars in immunology, 34, 25–32. doi:10.1016/j.smim.2017.09.011

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. doi:10.1006/meth.2001.1262

Markovic, M., Fowler, B. O., & Tung, M. S. (2004). Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material. Journal of research of the National Institute of Standards and Technology, 109(6), 553–568. doi:10.6028/jres.109.042

Marks, S.C., & Popoff, S.N. (1988). Bone cell biology: the regulation of development, structure, and function in the skeleton. The American journal of anatomy, 183 1, 1-44 . doi:10.1002/aja.1001830102

Mathew M, et al. (1977). The crystal structure of α-Ca3 (PO4)2. Acta Crystallogr B Struct Crystallogr Cryst Chem. 1977;33:1325–33. doi:10.1107/S0567740877006037

Matsugaki, A., Harada, T., Kimura, Y., Sekita, A., & Nakano, T. (2018). Dynamic Collision Behavior Between Osteoblasts and Tumor Cells Regulates the Disordered Arrangement of Collagen Fiber/Apatite Crystals in Metastasized Bone. International journal of molecular sciences, 19(11), 3474. doi: 10.3390/ijms19113474

Matsuguchi, T., Chiba, N., Bandow, K., Kakimoto, K., Masuda, A., & Ohnishi, T. (2009). JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 24(3), 398–410. doi:10.1359/jbmr.081107

Matsuo, K., & Irie, N. (2008). Osteoclast–osteoblast communication. Archives of biochemistry and biophysics, 473(2), 201-209. doi:
10.1016/j.abb.2008.03.027

Mbalaviele, G., Novack, D. V., Schett, G., and Teitelbaum, S. L. (2017). Inflammatory osteolysis: a conspiracy against bone. J. Clin. Invest. 127 (6), 2030–2039. doi:10.1172/ jci93356

Mieszawska, A. J., & Kaplan, D. L. (2010). Smart biomaterials - regulating cell behavior through signaling molecules. BMC biology, 8, 59. doi:10.1186/1741-7007-8-59

Möller, B., & Villiger, P. M. (2006). Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer seminars in immunopathology, 27(4), 391–408. doi.10.1007/s00281-006-0012-9

Morris, H. F., and Ochi, S. (1998). Hydroxyapatite-coated implants: a case for their use. J. Oral Maxillofac. Surg. 56, 1303–1311. doi:10.1016/s0278-2391(98) 90615-2

Motskin, M., Muller, K. H., Genoud, C., Monteith, A. G., and Skepper, J. N. (2011). The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials 32, 9470–9482. doi:10.1016/j.biomaterials.
2011.08.060

Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., et al. (2009). Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30, 3307–3317. doi:10.1016/j.biomaterials. 2009.02.044

Mouriño, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface, 7(43), 209–227. doi:10.1098/rsif.2009.0379

Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., et al. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221–231. doi:10.1016/j.taap.2005.01.008

Muller, K. H., Motskin, M., Philpott, A. J., Routh, A. F., Shanahan, C. M., Duer, M. J., et al. (2014). The effect of particle agglomeration on the formation of a surfaceconnected compartment induced by hydroxyapatite nanoparticles in human monocytederived macrophages. Biomaterials 35, 1074–1088. doi:10.1016/j.biomaterials.2013. 10.041

Murray P. J. (2017). Macrophage Polarization. Annual review of physiology, 79, 541–566. doi:10.1146/annurev-physiol-022516-034339

Nich, C., Takakubo, Y., Pajarinen, J., Ainola, M., Salem, A., Sillat, T., et al. (2013). Macrophages-Key cells in the response to wear debris from joint replacements. J. Biomed. Mater Res. A 101, 3033–3045. doi:10.1002/jbm.a.34599

Niu, Y., Wang, Z., Shi, Y., Dong, L., & Wang, C. (2020). Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioactive materials, 6(1), 244–261. https://doi.org/10.1016/j.bioactmat.2020.08.012

Ogata, K., Imazato, S., Ehara, A., Ebisu, S., Kinomoto, Y., Nakano, T., et al. (2005). Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites. J. Biomed. Mater Res. A 72, 127–135. doi:10.1002/ jbm.a.30146

Ono, T., & Takayanagi, H. (2017). Osteoimmunology in Bone Fracture Healing. Current osteoporosis reports, 15(4), 367–375. doi:10.1007/s11914-017-0381-0

Owen, T. A., Aronow, M., Shalhoub, V., Barone, L. M., Wilming, L., Tassinari, M. S., Kennedy, M. B., Pockwinse, S., Lian, J. B., & Stein, G. S. (1990). Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of cellular physiology, 143(3), 420–430. doi:10.1002/jcp.1041430304


Patel, N., Best, S. M., Bonfield, W., Gibson, I. R., Hing, K. A., Damien, E., & Revell, P. A. (2002). A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Journal of materials science. Materials in medicine, 13(12), 1199–1206. doi:10.1023/a:1021114710076

Patil, S.P. (2020). Burungale, V.V. 2-Physical and Chemical Properties of Nanomaterials. In Nanomedicines for Breast Cancer Theranostics;
Thorat, N.D., Bauer, J., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–31.

Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088. doi:10.1126/science.282.5396.2085

Purdue, P. E., Koulouvaris, P., Potter, H. G., Nestor, B. J., & Sculco, T. P. (2007). The cellular and molecular biology of periprosthetic osteolysis. Clinical orthopaedics and related research, 454, 251–261. doi:10.1097/01.blo.0000238813.95035.1b

Quinn, J. M., Horwood, N. J., Elliott, J., Gillespie, M. T., & Martin, T. J. (2000). Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15(8), 1459–1466. doi.10.1359/jbmr.2000.15.8.1459

Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., et al. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625. doi:10.1084/jem.189.4.615

Ramires, P. A., Wennerberg, A., Johansson, C. B., Cosentino, F., Tundo, S., and Milella, E. (2003). Biological behavior of sol-gel coated dental implants. J. Mater Sci. Mater Med. 14, 539–545. doi:10.1023/a:1023412131314

Rao, A. J., Gibon, E., Ma, T., Yao, Z., Smith, R. L., & Goodman, S. B. (2012). Revision joint replacement, wear particles, and macrophage polarization. Acta biomaterialia, 8(7), 2815–2823. doi:10.1016/j.actbio.2012.03.042

Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in polymer science, 36(7), 887-913.

Remya, N. S., Syama, S., Gayathri, V., Varma, H. K., and Mohanan, P. V. (2014). An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids Surf. B Biointerfaces 117, 389–397. doi:10.1016/j.colsurfb.2014.02.004

Richard, B., Lemyre, J. L., and Ritcey, A. M. (2017). Nanoparticle size control in microemulsion synthesis. Langmuir 33, 4748–4757. doi:10.1021/acs.langmuir.7b00773 Salata, O. (2004). Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3. doi:10.1186/1477-3155-2-3

Rifas L. (2006). T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. Journal of cellular biochemistry, 98(4), 706–714. doi:10.1002/jcb.20933

Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual review of biomedical engineering, 8, 455–498. doi:10.1146/annurev.bioeng.8.061505.095721

Samavedi, S., Whittington, A. R., and Goldstein, A. S. (2013). Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9, 8037–8045. doi:10.1016/j.actbio.2013.06.014

Sattary, M., Kefayat, A., Bigham, A., and Rafienia, M. (2022). Polycaprolactone/ Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater. Technol. 37, 302–315. doi:10.1080/10667857.2020.1837488

Schett G. (2009). Osteoimmunology in rheumatic diseases. Arthritis research & therapy, 11(1), 210. doi:10.1186/ar2571

Schett, G., & Teitelbaum, S. L. (2009). Osteoclasts and arthritis. Journal of Bone and Mineral Research, 24(7), 1142-1146. doi:10.1359/jbmr.090533

Schlundt, C., El Khassawna, T., Serra, A., Dienelt, A., Wendler, S., Schell, H., van Rooijen, N., Radbruch, A., Lucius, R., Hartmann, S., Duda, G. N., & Schmidt-Bleek, K. (2018). Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone, 106, 78–89. doi:10.1016/j.bone.2015.10.019

Segovia-Silvestre, T., Neutzsky-Wulff, A. V., Sorensen, M. G., Christiansen, C., Bollerslev, J., Karsdal, M. A., & Henriksen, K. (2009). Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Human genetics, 124(6), 561–577. doi:10.1007/s00439-008-0583-8

Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of cellular physiology, 233(9), 6425–6440. doi:10.1002/jcp.26429

Shen, X., Yu, Y., Ma, P., Luo, Z., Hu, Y., Li, M., He, Y., Zhang, Y., Peng, Z., Song, G., & Cai, K. (2019). Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids and surfaces. B, Biointerfaces, 180, 39–48. doi:10.1016/j.colsurfb.2019.04.033

Sheppard, A. J., Barfield, A. M., Barton, S., and Dong, Y. (2022). Understanding reactive oxygen species in bone regeneration: a glance at potential therapeutics and bioengineering applications. Front. Bioeng. Biotechnol. 10, 836764. doi:10.3389/fbioe. 2022.836764

Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Lüthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg, L., … Boyle, W. J. (1997). Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 89(2), 309–319. doi.10.1016/s0092-8674(00)80209-3

Sims, N. A., & Gooi, J. H. (2008). Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in cell & developmental biology, 19(5), 444–451. doi: 10.1016/j.semcdb.2008.07.016

Subramani, K., & Ahmed, W. (Eds.). (2017). Emerging nanotechnologies in dentistry. William Andrew.

Tande AJ, Patel R. (2014). Prosthetic Joint Infection. Clin Microbiol Rev 27:.
doi:10.1128/cmr.00111-13

Tautzenberger, A., Kovtun, A., and Ignatius, A. (2012). Nanoparticles and their potential for application in bone. Int. J. Nanomedicine 7, 4545–4557. doi:10.2147/ijn. s34127

Teitelbaum S. L. (2000). Bone resorption by osteoclasts. Science (New York, N.Y.), 289(5484), 1504–1508. doi:10.1126/science.289.5484.1504

Teitelbaum S. L. (2007). Osteoclasts: what do they do and how do they do it?. The American journal of pathology, 170(2), 427–435. doi.10.2353/ajpath.2007.060834

Teoh, W. Y., Amal, R., and Madler, L. (2010). Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2, 1324–1347. doi:10. 1039/c0nr00017e

Trivedi, S., Srivastava, K., Gupta, A., Saluja, T. S., Kumar, S., Mehrotra, D., & Singh, S. K. (2020). A quantitative method to determine osteogenic differentiation aptness of scaffold. Journal of oral biology and craniofacial research, 10(2), 158–160. doi.10.1016/j.jobcr.2020.04.006

Tsiridis, E., Bhalla, A., Ali, Z., Gurav, N., Heliotis, M., Deb, S., et al. (2006). Enhancing the osteoinductive properties of hydroxyapatite by the addition of human mesenchymal stem cells, and recombinant human osteogenic protein-1 (BMP-7) in vitro. Injury 37 (l), S25–S32. doi:10.1016/j.injury.2006.08.021

Vallet-Regi, Maria & Arcos, Daniel. (2006). Nanostructured Hybrid Materials for Bone Tissue Regeneration. Current Nanoscience. 2. 179-189. doi:10.2174/1573413710602030179.

Wang, L., Zhang, H., Sun, L., Gao, W., Xiong, Y., Ma, A., Liu, X., Shen, L., Li, Q., & Yang, H. (2020). Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. Journal of nanobiotechnology, 18(1), 38. doi:10.1186/s12951-020-00593-7

Wang, R., Hu, H., Guo, J., Wang, Q., Cao, J., Wang, H., et al. (2019). Nanohydroxyapatite modulates osteoblast differentiation through autophagy induction via mTOR signaling pathway. J. Biomed. Nanotechnol. 15, 405–415. doi:10.1166/jbn.2019. 2677

Wen, J., Cai, D., Gao, W., He, R., Li, Y., Zhou, Y., et al. (2023). Osteoimmunomodulatory nanoparticles for bone regeneration. Nanomater. (Basel) 13, 692. doi:10.3390/nano13040692

Wei, S., & Siegal, G. P. (2008). Mechanisms modulating inflammatory osteolysis: a review with insights into therapeutic targets. Pathology, research and practice, 204(10), 695–706.doi:10.1016/j.prp.2008.07.002

Wei, S., Teitelbaum, S. L., Wang, M. W., & Ross, F. P. (2001). Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology, 142(3), 1290–1295. doi.10.1210/endo.142.3.8031

Wei, S., Wang, M. W., Teitelbaum, S. L., & Ross, F. P. (2002). Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. The Journal of biological chemistry, 277(8), 6622–6630. doi.10.1074/jbc.M104957200

Whitaker, R., Hernaez-Estrada, B., Hernandez, R. M., Santos-Vizcaino, E., and Spiller, K. L. (2021). Immunomodulatory biomaterials for tissue repair. Chem. Rev. 121, 11305–11335. doi:10.1021/acs.chemrev.0c00895

White, T. J., & ZhiLi, D. (2003). Structural derivation and crystal chemistry of apatites. Acta crystallographica. Section B, Structural science, 59(Pt 1), 1–16. doi:10.1107/s0108768102019894

Wilson, H. M., Barker, R. N., & Erwig, L. P., (2009). Macrophages: promising targets for the treatment of atherosclerosis. Current vascular pharmacology, 7(2), 234–243. doi:10.2174/157016109787455635

Xiao, L., Ma, Y., Crawford, R., Mendhi, J., Zhang, Y., Lu, H., Zhao, Q., Cao, J., Wu, C., Wang, X., (2022) The Interplay between
Hemostasis and Immune Response in Biomaterial Development for Osteogenesis. Mater. Today, 54, 202–224. doi:10.1016/j.mattod.2022.02.010

Xie, J., Lee, S., and Chen, X. (2010). Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079. doi:10.1016/j.addr.2010.07.009

Xie, Y., Hu, C., Feng, Y., Li, D., Ai, T., Huang, Y., Chen, X., Huang, L., & Tan, J. (2020). Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regenerative biomaterials, 7(3), 233–245. doi:10.1093/rb/rbaa006

Yamada, S., Heymann, D., Bouler, J. M., and Daculsi, G. (1997). Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 18, 1037–1041. doi:10.1016/s0142-9612(97)00036-7

Yang, C., Ouyang, L., Wang, W., Chen, B., Liu, W., Yuan, X., Luo, Y., Cheng, T., Yeung, K. W. K., Liu, X., & Zhang, X. (2019). Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. Journal of materials chemistry. B, 7(36), 5541–5553. https://doi.org/10.1039/c9tb01298b

Yang, C., Wang, W., Zhu, K., Liu, W., Luo, Y., Yuan, X., Wang, J., Cheng, T., & Zhang, X. (2019). Lithium chloride with immunomodulatory function for regulating titanium nanoparticle-stimulated inflammatory response and accelerating osteogenesis through suppression of MAPK signaling pathway. International journal of nanomedicine, 14, 7475–7488. doi:10.2147/IJN.S210834

Yang, G., and Park, S. J. (2019). Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Mater. (Basel) 12, 1177. doi:10.3390/ ma12071177

Yang, X., Li, Y., Liu, X., Zhang, R., and Feng, Q. (2018). In vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2018, 1–10. doi:10.1155/2018/ 2036176

Yao, C. H., Liu, B. S., Hsu, S. H., Chen, Y. S., and Tsai, C. C. (2004). Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J. Biomed. Mater Res. A 69, 709–717. doi:10.1002/jbm.a.30045

Yoshikawa, H., and Myoui, A. (2005). Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs 8, 131–136. doi:10.1007/s10047-005-0292-1

Zhao, Y. J., Gao, Z. C., He, X. J., & Li, J. (2021). The let-7f-5p-Nme4 pathway mediates tumor necrosis factor α-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochemistry and cell biology = Biochimie et biologie cellulaire, 99(4), 488–498. doi:10.1139/bcb-2020-0281

Zhang, B., Sai Lung, P., Zhao, S., Chu, Z., Chrzanowski, W., and Li, Q. (2017). Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci. Rep. 7, 7315. doi:10.1038/s41598-017-07588-9

Zhang, Q., Qin, M., Zhou, X., Nie, W., Wang, W., Li, L., et al. (2018). Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis. J. Mater Chem. B 6, 6731–6743. doi:10.1039/c8tb02138d

Zhang, Q., Xin, M., Yang, S., Wu, Q., Xiang, X., Wang, T., et al. (2023). Silica nanocarrier-mediated intracellular delivery of rapamycin promotes autophagymediated M2 macrophage polarization to regulate bone regeneration. Mater Today Bio 20, 100623. doi:10.1016/j.mtbio.2023.100623

Zhang, S., Liu, Y., & Liang, Q. (2018). Low-dose dexamethasone affects osteoblast viability by inducing autophagy via intracellular ROS. Molecular medicine reports, 17(3), 4307–4316. doi.10.3892/mmr.2018.8461

Zheng, K., Niu, W., Lei, B., and Boccaccini, A. R. (2021). Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 133, 168–186. doi:10.1016/j. actbio.2021.08.023

Zheng, M. H., Wood, D. J., & Papadimitriou, J. M. (1992). What's new in the role of cytokines on osteoblast proliferation and differentiation?. Pathology, research and practice, 188(8), 1104–1121. doi:10.1016/S0344-0338(11)81263-X

Zheng, S., Tian, Y., Ouyang, J., Shen, Y., Wang, X., & Luan, J. (2022). Carbon nanomaterials for drug delivery and tissue engineering. Frontiers in chemistry, 10, 990362. doi:10.3389/fchem.2022.990362

Zhu, K., Yang, C., Dai, H., Li, J., Liu, W., Luo, Y., Zhang, X., & Wang, Q. (2019). Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. International immunopharmacology, 76, 105865. doi:10.1016/j.intimp.2019.105865

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *