帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳麒元
作者(外文):Chen, Chi-Yuan
論文名稱(中文):透過基因共表現網絡尋找心臟功能相關之基因-FAM155B的發現與實驗驗證
論文名稱(外文):Discovery and experimental validation of heart functions of FAM155B, a gene member of the heart module in human mRNA coexpression network
指導教授(中文):廖本揚
莊永仁
指導教授(外文):Liao, Ben-Yang
Chuang, Yung-Jen
口試委員(中文):陳豐奇
陳振輝
口試委員(外文):Chen, Feng-Chi
Chen, Chen-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:107080599
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:198
中文關鍵詞:系統生物學轉錄組表現型、表徵功能性預測功能基因組學基因共表現網絡基因編輯技術斑馬魚心血管疾病心臟功能
外文關鍵詞:Systems biologyTranscriptomePhenomeFunctional predictionFunctional genomicsGene coexpression networks (GCNs)CRISPR-Cas9 techniqueCRISPR-Cas9Zebrafishcardiovascular diseases (CVDs)Heart function
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在生物醫學研究與應用中,了解基因與性狀之間的關係是至關重要的,然而到目前為止卻僅有一部分基因的功能被知曉。在這個研究中我們提出,基因共表現網絡(GCN, gene coexpression network)內的模組(modules)在透過基因突變所產生的性狀(mutant phenotype)加以詮釋後,可以用來預測未知基因的功能。有鑒於心血管疾病是全球排行第一的死因,且病理機制與相關致病基因尚未完全清楚,所以我們以心臟功能作為切入點,蒐集了3781筆微陣列型晶片(microarray)的轉錄體(transcriptome)資料。經由該資料所建構的基因共表現網絡,我們發現了84個基因共表現模組。針對對這些模組以人類遺傳疾病性狀與老鼠突變性狀的資料進行功能性註釋後,我們得到11,583個至少可以對應到一個性狀的人類基因。接著我們選擇一個與“異常心臟形態”的表現型(人類資料庫HPO,HP:0001627及小鼠資料庫MGI,MP:0000266)有相關的模組(含包含56個基因)進行觀察,挑選了FAM155B進行後續實驗驗證如下。我們利用Cas9/sgRNA ribonucleoprotein (RNP)的技術,於斑馬魚胚胎G0時期做基因剔除的動作,結果發現該胚胎產生心臟與肌肉的異常。此外,根據對現有的公開資料分析的結果,我們推論fam155b基因的產物是膜蛋白,根據資料此產物在早期斑馬魚心臟修復與心臟發育期間扮演了重要腳色。後續,我們進一步,將基因此預測基因功能的方法延伸應用在老鼠(Mus musculus)與大鼠(Rattus norvegicus)的轉錄組資料分析上,結果在總數16252個人類基因中,有3274個基因在人類、小鼠與大鼠的共表現網絡中有一致性的基因相關功能預測結果,其中包含670個被預測可能與心血管疾病有相關的基因。雖然這些功能還需要進一步證實,本研究的結果,可以加速心血管疾病相關之遺傳分子生物學的進展。
Although the understanding of associated phenotypes of genes in the human genome is fundamentally important to biomedical researches and applications, only a small fraction of human genes have been functionally assessed presently. Here, we postulated that there exists a significant correspondence between coexpressed gene modules and gene modules underlying a specific phenotype, and this correspondence could be used to predict human gene functions at the phenotypic level. In this study, we aimed to predict novel genes associated with "heart" phenotypes, because cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the world populations, and the underlying mechanisms of CVDs are complicated and underestimated. To do this, we compiled 3781 human (Homo sapiens) transcriptomes to construct mRNA coexpression networks and defined 84 human coexpressed gene modules within it. Phenotypes derived from abnormalities based on Mendelian diseases in humans and mutant mice were used to annotate functions of each gene module. Consequently, 11583 human genes were associated with at least one of the 14,368 phenotypic descriptions by our approach. Focusing on genes consistently associated with the phenotypes of "abnormal heart morphology" in the human (HPO, HP:0001627) and in the mouse (MGI, MP:0000266), one heart module with 56 genes was identified. Among these genes, FAM155B which was previously unknown to perform heart-related functions, was selected for further experimental validation. After targetedly deleting ortholog of human FAM155B from the zebrafish genome by Cas9/sgRNA ribonucleoprotein (RNP), the predicted abnormal heart functions were observed in the mosaic G0 zebrafish embryos. In addition, our bioinformatic analysis showed that fam155b encodes a membrane protein which may play a critical role in the early phase of cardiac healing, regeneration, and development. In parallel with the abovementioned analysis, we applied our approach to analyze transcriptomes of the human, the mouse (Mus musculus) and, the rat (Rattus norvegicus) simultaneously. We found 3,274 genes consistently predicted to be associated with the same phenotypes across the three mammalian species. These genes included 670 potential CVD genes (from 855 predicted CVD genes) whose functions have never been assessed. Our study could accelerate a better understanding of our coding genomes, especially the subset of genes related with CVDs.
中文摘要---I
Abstract---II
致謝---III
List of Figures---VI
List of Tables---VIII
List of Appendix Figures---VIII
List of Appendix Tables---IX
Abbreviations---XI
Chapter 1 Introduction and Background---1
1.1 Phenotyped protein-coding genes---1
1.2 High throughtput gene expression profiling technologies---6
1.3 Gene coexpression network and coexpressed gene modules---9
1.4 Cardiovascular diseases---12
1.5 Zebrafish as an ideal model for heart research---13
1.6 Previous network-based analyses for gene function prediction---16
Chapter 2 MATERIALS AND METHODS---18
2.1 Defining Coexpressed Gene Modules and Network---18
2.1.1 Data resource---18
2.1.2 Processing of mRNA expression signals---19
2.1.3 Coexpression Gene Network and the Modular Structures---20
2.2 Associating GCN modules with phenotypes---21
2.2.1 The phenotypic data of humans and mice---21
2.2.2 Enrichment analyses---22
2.3 Creation of transgenic zebrafish---23
2.3.1 Design of targeted sgRNA of fam155b gene---23
2.3.2 Synthesis of sgRNA template---25
2.3.3 Zebrafish maintenance and injection of sgRNA---26
2.3.4 Cas9/gRNA mutation screen by Sanger sequencing---27
Chapter 3 Results---28
3.1 Defining Coexpressed Gene Modules and Network---28
3.2 Gene Modules Annotating---31
3.3 Prediction of novel gene with heart-related function---36
3.4 Establish transgenic knockout zebrafish model---42
3.5 Phenotyping zebrafish embryos according to enriched phenotypes of the module where fam155b was located---46
3.5.1. Heart phenotypes (cardiac contractility) of transgenic zebrafish---49
3.5.2. Heart phenotypes (temporal difference in development) of transgenic zebrafish---51
3.5.3. Heart phenotypes (temporal difference in regeneration) of transgenic zebrafish---53
3.5.4. Muscle phenotypes of transgenic zebrafish---56
3.5.5. Clusters of coexpression modules in GCNs---57
3.6 The potential molecular functions of FAM155B---58
3.6.1 Predicted molecular function from GO and KEGG---58
3.6.2 Predicted molecular function from functional domain of FAM155B protein---60
3.6.3 Predicted molecular function from paralog of FAM155B- FAM155A---61
3.6.4 Predicted molecular function from coexpressed genes of FAM155B and NEB gene family---67
Chapter 4 Discussion and Conclusion---71
4.1 FAM155B and cancers---71
4.2 FAM155B and regeneration---74
4.3 External evidence supporting the potentiality of heart repairment after disease---75
4.4 Limitations of this study---76
4.4.1. Limitations of the WGCNA approach with phenotypic data---76
4.4.2. Limitations of the usage of phenotypic data for enrichment analysis---77
4.4.3. Limitations of the zebrafish model---78
4.4.4. Limitations of the targeted gene deletion approach---80
4.5 Application of the proposed approach in the future---81
4.6 Conclusion---82
Chapter 5 Future Works---84
5.1. Data selection and Data Pre-processing---85
5.2. Construction of Weighted coexpression networks---86
5.3. Functional enrichment analysis of coexpression modules---87
5.4. Assessment of conserved phenotypes across species---89
5.5. Utility of the query interface---92
5.6. Summary and conclusion---93
References---95
Appendix Figures---117
Appendix Table---126

1. Nowson C, O'Connell S: Protein requirements and recommendations for older people: a review. Nutrients 2015, 7(8):6874-6899.
2. Cooper GM: The central role of enzymes as biological catalysts. In.: Sinauer Associates; 2000.
3. Nussey SS, Whitehead SA: Endocrinology: an integrated approach: CRC Press; 2001.
4. Crick FH: On protein synthesis. In: Symp Soc Exp Biol: 1958. 8.
5. Pritchard JK, Cox NJ: The allelic architecture of human disease genes: common disease–common variant… or not? Human molecular genetics 2002, 11(20):2417-2423.
6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W: Initial sequencing and analysis of the human genome. 2001.
7. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES: Distinguishing protein-coding and noncoding genes in the human genome. Proceedings of the National Academy of Sciences 2007, 104(49):19428-19433.
8. Institute NHGR: The Human Genome Project completion: frequently asked questions. In.: What is DNA sequencing?; 2013.
9. Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, Brooks S, Howe E, Porubsky D, Logsdon GA: Telomere-to-telomere assembly of a complete human X chromosome. Nature 2020, 585(7823):79-84.
10. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 2004, 431(7011):931-945.
11. Pertea M, Salzberg SL: Between a chicken and a grape: estimating the number of human genes. Genome biology 2010, 11(5):206.
12. Salzberg SL: Open questions: How many genes do we have? BMC biology 2018, 16(1):1-3.
13. Alberts B, Bray D, Hopkin K, Johnson AD, Lewis J, Raff M, Roberts K, Walter P: Essential cell biology: Garland Science; 2013.
14. Siebner H, Callicott J, Sommer T, Mattay V: From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging. In.: Elsevier; 2009.
15. Altshuler D, Daly MJ, Lander ES: Genetic mapping in human disease. science 2008, 322(5903):881-888.
16. Jeffreys AJ: DNA sequence variants in the Gγ-, Aγ-, δ-and β-globin genes of man. Cell 1979, 18(1):1-10.
17. Jiang C, Zeng Z-B: Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 1995, 140(3):1111-1127.
18. Collins FS, Morgan M, Patrinos A: The Human Genome Project: lessons from large-scale biology. Science 2003, 300(5617):286-290.
19. Nusbaum C, Mikkelsen TS, Zody MC, Asakawa S, Taudien S, Garber M, Kodira CD, Schueler MG, Shimizu A, Whittaker CA: DNA sequence and analysis of human chromosome 8. Nature 2006, 439(7074):331-335.
20. Siva N: 1000 Genomes project. In.: Nature Publishing Group; 2008.
21. Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell JC: A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature genetics 2015, 47(10):1121.
22. van Leeuwen EM, Sabo A, Bis JC, Huffman JE, Manichaikul A, Smith AV, Feitosa MF, Demissie S, Joshi PK, Duan Q: Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels. Journal of medical genetics 2016, 53(7):441-449.
23. Falk MJ, Pierce EA, Consugar M, Xie MH, Guadalupe M, Hardy O, Rappaport EF, Wallace DC, LeProust E, Gai X: Mitochondrial disease genetic diagnostics: optimized whole-exome analysis for all MitoCarta nuclear genes and the mitochondrial genome. Discovery medicine 2012, 14(79):389.
24. Frankish A, Uszczynska B, Ritchie GR, Gonzalez JM, Pervouchine D, Petryszak R, Mudge JM, Fonseca N, Brazma A, Guigo R: Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction. BMC genomics 2015, 16(S8):S2.
25. McKusick VA: Mendelian inheritance in man: a catalog of human genes and genetic disorders, vol. 1: JHU Press; 1998.
26. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic acids research 2005, 33(suppl_1):D514-D517.
27. McKusick VA: Mendelian Inheritance in Man and its online version, OMIM. The American Journal of Human Genetics 2007, 80(4):588-604.
28. Amberger JS, Bocchini CA, Scott AF, Hamosh A: Omim. org: leveraging knowledge across phenotype–gene relationships. Nucleic acids research 2019, 47(D1):D1038-D1043.
29. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S: The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. The American Journal of Human Genetics 2008, 83(5):610-615.
30. Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine J-P, Gargano M, Harris NL, Matentzoglu N, McMurry JA: Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic acids research 2019, 47(D1):D1018-D1027.
31. Schnabel R, Dupuis J, Larson MG, Lunetta KL, Robins SJ, Zhu Y, Rong J, Yin X, Stirnadel HA, Nelson JJ: Clinical and genetic factors associated with lipoprotein-associated phospholipase A2 in the Framingham Heart Study. Atherosclerosis 2009, 204(2):601-607.
32. Song JW, Chung KC: Observational studies: cohort and case-control studies. Plastic and reconstructive surgery 2010, 126(6):2234.
33. Dickerson JE, Zhu A, Robertson DL, Hentges KE: Defining the role of essential genes in human disease. PloS one 2011, 6(11):e27368.
34. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M: Large-scale copy number polymorphism in the human genome. Science 2004, 305(5683):525-528.
35. Boyko EJ: Observational research—opportunities and limitations. Journal of Diabetes and its Complications 2013, 27(6):642-648.
36. Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH: Target-selected inactivation of the zebrafish rag1 gene. Science 2002, 297(5578):99-102.
37. Guénet JL: The mouse genome. Genome research 2005, 15(12):1729-1740.
38. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ: A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 2013, 496(7446):494-497.
39. Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Pääbo S: A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 2005, 437(7055):88-93.
40. Sibille E, Edgar N: Forward Genetics/Reverse Genetics. In: Encyclopedia of Psychopharmacology. Edited by Stolerman IP. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010: 544-544.
41. Lawson ND, Wolfe SA: Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Developmental cell 2011, 21(1):48-64.
42. Irion U, Krauss J, Nusslein-Volhard C: Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 2014, 141(24):4827-4830.
43. Nasevicius A, Ekker SC: Effective targeted gene ‘knockdown’in zebrafish. Nature genetics 2000, 26(2):216-220.
44. Lloyd KK: A knockout mouse resource for the biomedical research community. Annals of the New York Academy of Sciences 2011, 1245:24.
45. Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling M-C, Bottomley J, Brown SD, Bürger A, Bult CJ: The mammalian gene function resource: the International Knockout Mouse Consortium. Mammalian genome 2012, 23(9-10):580-586.
46. Rosen B, Schick J, Wurst W: Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes. Mammalian Genome 2015, 26(9-10):456-466.
47. Brown SD, Moore MW: The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mammalian Genome 2012, 23(9-10):632-640.
48. Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, Chen C-K, Tudose I, Relac M, Matthews P: Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature genetics 2017, 49(8):1231.
49. Green EC, Gkoutos GV, Lad HV, Blake A, Weekes J, Hancock JM: EMPReSS: European mouse phenotyping resource for standardized screens. Bioinformatics 2005, 21(12):2930-2931.
50. Maier H, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH: Big data in large-scale systemic mouse phenotyping. Current Opinion in Systems Biology 2017, 4:97-104.
51. Smith CL, Goldsmith C-AW, Eppig JT: The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome biology 2005, 6(1):R7.
52. Masoro EJ, Austad SN: Handbook of the Biology of Aging: Academic press; 2010.
53. Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G: Zebrafish: a complete animal model for in vivo drug discovery and development. Current drug metabolism 2009, 10(2):116-124.
54. Nowik N, Podlasz P, Jakimiuk A, Kasica N, Sienkiewicz W, Kaleczyc J: Zebrafish: an animal model for research in veterinary medicine. Polish journal of veterinary sciences 2015, 18(3):663-674.
55. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L: The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496(7446):498-503.
56. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ: Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature biotechnology 2008, 26(6):702-708.
57. Sun N, Zhao H: Transcription activator‐like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnology and bioengineering 2013, 110(7):1811-1821.
58. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B: Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 2013, 140(24):4982-4987.
59. Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I: Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental cell 2015, 32(1):97-108.
60. Van Slyke CE, Bradford YM, Howe DG, Fashena DS, Ramachandran S, Ruzicka L, Staff Z: Using ZFIN: Data types, organization, and retrieval. In: Eukaryotic Genomic Databases. Springer; 2018: 307-347.
61. Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, Knight J, Mani P, Martin R, Moxon SAT: ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic acids research 2012, 41(D1):D854-D860.
62. Ruzicka L, Howe DG, Ramachandran S, Toro S, Van Slyke CE, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P: The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic acids research 2019, 47(D1):D867-D873.
63. MacNeil LT, Walhout AJ: Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome research 2011, 21(5):645-657.
64. Taly V, Kelly BT, Griffiths AD: Droplets as microreactors for high‐throughput biology. ChemBioChem 2007, 8(3):263-272.
65. Kononen J, Bubendorf L, Kallionimeni A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallionimeni O-P: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature medicine 1998, 4(7):844-847.
66. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ: Performance comparison of benchtop high-throughput sequencing platforms. Nature biotechnology 2012, 30(5):434.
67. Reuter JA, Spacek DV, Snyder MP: High-throughput sequencing technologies. Molecular cell 2015, 58(4):586-597.
68. Rani B, Sharma V: Transcriptome profiling: methods and applications-A review. Agricultural Reviews 2017, 38(4):271-281.
69. Graves PR, Haystead TA: Molecular biologist's guide to proteomics. Microbiology and molecular biology reviews 2002, 66(1):39-63.
70. Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL: Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and genetic engineering reviews 1996, 13(1):19-50.
71. Carrette O, Burkhard PR, Sanchez J-C, Hochstrasser DF: State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nature protocols 2006, 1(2):812.
72. Janzi M, Ödling J, Pan-Hammarström Q, Sundberg M, Lundeberg J, Uhlén M, Hammarström L, Nilsson P: Serum microarrays for large scale screening of protein levels. Molecular & Cellular Proteomics 2005, 4(12):1942-1947.
73. Bathke J, Konzer A, Remes B, McIntosh M, Klug G: Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC genomics 2019, 20(1):358.
74. Godovac‐Zimmermann J, Brown LR: Perspectives for mass spectrometry and functional proteomics. Mass spectrometry reviews 2001, 20(1):1-57.
75. Chandramouli K, Qian P-Y: Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Human genomics and proteomics: HGP 2009, 2009.
76. Nie L, Wu G, Culley DE, Scholten JC, Zhang W: Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Critical reviews in biotechnology 2007, 27(2):63-75.
77. Adams J: Transcriptome: connecting the genome to gene function. Nat Educ 2008, 1(1):195.
78. Haider S, Pal R: Integrated analysis of transcriptomic and proteomic data. Current genomics 2013, 14(2):91-110.
79. Lappalainen T, Sammeth M, Friedländer MR, Ac‘t Hoen P, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG: Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501(7468):506-511.
80. Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, Haudenschild CD, Beckman KB, Shi J, Mei R: Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome research 2014, 24(1):14-24.
81. Liao B-Y, Weng M-P: Unraveling the association between mRNA expressions and mutant phenotypes in a genome-wide assessment of mice. Proceedings of the National Academy of Sciences 2015, 112(15):4707-4712.
82. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Nicolae DL, Cox NJ: A gene-based association method for mapping traits using reference transcriptome data. Nature genetics 2015, 47(9):1091.
83. Zhang X, Sun S, Pu JKS, Tsang ACO, Lee D, Man VOY, Lui WM, Wong STS, Leung GKK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiology of disease 2012, 48(1):1-8.
84. Li X, Gu W, Mohan S, Baylink DJ: DNA microarrays: their use and misuse. Microcirculation 2002, 9(1):13-22.
85. Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J: A perspective on microarrays: current applications, pitfalls, and potential uses. Microbial cell factories 2007, 6(1):4.
86. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467-470.
87. Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J: Optimization of oligonucleotide-based DNA microarrays. Nucleic acids research 2002, 30(11):e51-e51.
88. Parrish RS, Spencer III HJ: Effect of normalization on significance testing for oligonucleotide microarrays. Journal of biopharmaceutical statistics 2004, 14(3):575-589.
89. Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA: Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. The Journal of molecular diagnostics 2003, 5(1):9-14.
90. Kulski JK: Next-generation sequencing—an overview of the history, tools, and “Omic” applications. Next Generation Sequencing–Advances, Applications and Challenges 2016:3-60.
91. Grada A, Weinbrecht K: Next-generation sequencing: methodology and application. The Journal of investigative dermatology 2013, 133(8):e11.
92. McCarthy A: Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry & biology 2010, 17(7):675-676.
93. Bleidorn C: Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and biodiversity 2016, 14(1):1-8.
94. Rai MF, Tycksen ED, Sandell LJ, Brophy RH: Advantages of RNA‐seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. Journal of Orthopaedic Research® 2018, 36(1):484-497.
95. Varadi G, Lory P, Schultz D, Varadi M, Schwartz A: Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature 1991, 352(6331):159-162.
96. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics 2009, 10(1):57-63.
97. Everett K, Rees-George J, Pushparajah I, Janssen B, Luo Z: Advantages and disadvantages of microarrays to study microbial population dynamics a minireview. New Zealand Plant Protection 2010, 63:1-6.
98. Wu P-Y, Phan JH, Wang MD: Exploring the feasibility of next-generation sequencing and microarray data meta-analysis. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 2011. IEEE: 7618-7621.
99. Ideker T, Galitski T, Hood L: A new approach to decoding life: systems biology. Annual review of genomics and human genetics 2001, 2(1):343-372.
100. Paim Á, Cardozo NS, Tessaro IC, Pranke P: Relevant biological processes for tissue development with stem cells and their mechanistic modeling: A review. Mathematical biosciences 2018, 301:147-158.
101. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402(6761):C47-C52.
102. Bockmayr A, Courtois A: Using hybrid concurrent constraint programming to model dynamic biological systems. In: International Conference on Logic Programming: 2002. Springer: 85-99.
103. Mason O, Verwoerd M: Graph theory and networks in biology. IET systems biology 2007, 1(2):89-119.
104. Horvath S, Dong J: Geometric interpretation of gene coexpression network analysis. PLoS computational biology 2008, 4(8).
105. Ma’ayan A: Introduction to network analysis in systems biology. Science signaling 2011, 4(190):tr5-tr5.
106. Butte AJ, Kohane IS: Unsupervised knowledge discovery in medical databases using relevance networks. In: Proceedings of the AMIA Symposium: 1999. American Medical Informatics Association: 711.
107. Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology 2005, 4(1).
108. Roy S, Bhattacharyya DK, Kalita JK: Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC bioinformatics 2014, 15(S7):S10.
109. Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P: Coexpression analysis of human genes across many microarray data sets. Genome research 2004, 14(6):1085-1094.
110. Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression network for global discovery of conserved genetic modules. science 2003, 302(5643):249-255.
111. Song Y, Pan Y, Liu J: The relevance between the immune response-related gene module and clinical traits in head and neck squamous cell carcinoma. Cancer Management and Research 2019, 11:7455.
112. Raychaudhuri S, Sutphin PD, Chang JT, Altman RB: Basic microarray analysis: grouping and feature reduction. TRENDS in Biotechnology 2001, 19(5):189-193.
113. Feala JD, AbdulHameed MDM, Yu C, Dutta B, Yu X, Schmid K, Dave J, Tortella F, Reifman J: Systems biology approaches for discovering biomarkers for traumatic brain injury. Journal of neurotrauma 2013, 30(13):1101-1116.
114. Yuh C-H, Bolouri H, Davidson EH: Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 2001, 128(5):617-629.
115. Lan H, Carson R, Provart NJ, Bonner AJ: Combining classifiers to predict gene function in Arabidopsis thaliana using large-scale gene expression measurements. BMC bioinformatics 2007, 8(1):358.
116. Jansen R, Greenbaum D, Gerstein M: Relating whole-genome expression data with protein-protein interactions. Genome research 2002, 12(1):37-46.
117. Wolfe CJ, Kohane IS, Butte AJ: Systematic survey reveals general applicability of" guilt-by-association" within gene coexpression networks. BMC bioinformatics 2005, 6(1):227.
118. Ruan J, Dean AK, Zhang W: A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC systems biology 2010, 4(1):8.
119. Cellerino A, Sanguanini M: Transcriptome Analysis: Introduction and Examples from the Neurosciences, vol. 17: Springer; 2018.
120. DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA: Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PloS one 2011, 6(10).
121. Serin EA, Nijveen H, Hilhorst HW, Ligterink W: Learning from co-expression networks: possibilities and challenges. Frontiers in plant science 2016, 7:444.
122. Liu R, Zhang W, Liu Z-Q, Zhou H-H: Associating transcriptional modules with colon cancer survival through weighted gene co-expression network analysis. BMC genomics 2017, 18(1):361.
123. Horvath S: Adjacency Functions and Their Topological Effects. In: Weighted Network Analysis. Springer; 2011: 77-89.
124. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L: Hierarchical organization of modularity in metabolic networks. science 2002, 297(5586):1551-1555.
125. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang W-P, He A, Truong A, Patel S: Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proceedings of the National Academy of Sciences 2006, 103(34):12741-12746.
126. MEMBERS WG, Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES: Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012, 125(1):e2.
127. Roger VL: Epidemiology of heart failure. Circulation research 2013, 113(6):646-659.
128. Kimura A: Molecular etiology and pathogenesis of hereditary cardiomyopathy. Circulation Journal 2008, 72(SupplementA):A38-A48.
129. Kimura A: Molecular genetics and pathogenesis of cardiomyopathy. Journal of human genetics 2016, 61(1):41-50.
130. Vernengo L, Lilienbaum A, Agbulut O, Rodríguez M-M: The Role of Genetics in Cardiomyopathy. Cardiomyopathies 2013:107.
131. Yotti R, Seidman CE, Seidman JG: Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annual review of genomics and human genetics 2019, 20:129-153.
132. Veselka J, Anavekar NS, Charron P: Hypertrophic obstructive cardiomyopathy. The Lancet 2017, 389(10075):1253-1267.
133. Mademont-Soler I, Mates J, Yotti R, Espinosa MA, Pérez-Serra A, Fernandez-Avila AI, Coll M, Méndez I, Iglesias A, Del Olmo B: Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PloS one 2017, 12(8).
134. Lindskog C, Linne J, Fagerberg L, Hallström BM, Sundberg CJ, Lindholm M, Huss M, Kampf C, Choi H, Liem DA: The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. Bmc Genomics 2015, 16(1):1-15.
135. Lieber RL: Skeletal muscle structure, function, and plasticity: Lippincott Williams & Wilkins; 2002.
136. Du SJ, Tan X, Zhang J: SMYD proteins: key regulators in skeletal and cardiac muscle development and function. The Anatomical Record 2014, 297(9):1650-1662.
137. Nongthomba U, Clark S, Cummins M, Ansari M, Stark M, Sparrow JC: Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. Journal of Cell Science 2004, 117(9):1795-1805.
138. Janković R, Marković D, Savić N, Dinić V: Beyond the limits: clinical utility of novel cardiac biomarkers. BioMed research international 2015, 2015.
139. Szymanski MK, de Boer RA, Navis GJ, van Gilst WH, Hillege HL: Animal models of cardiorenal syndrome: a review. Heart failure reviews 2012, 17(3):411-420.
140. Hoff J, Wehner W, Nambi V: Troponin in Cardiovascular Disease Prevention: Updates and Future Direction. Curr Atheroscler Rep 2016, 18(3):12.
141. Musunuru S, Carpenter JE, Sippel RS, Kunnimalaiyaan M, Chen H: A mouse model of carcinoid syndrome and heart disease. Journal of Surgical Research 2005, 126(1):102-105.
142. Gorton D, Blyth S, Gorton J, Govan B, Ketheesan N: An alternative technique for the induction of autoimmune valvulitis in a rat model of rheumatic heart disease. Journal of immunological methods 2010, 355(1-2):80-85.
143. Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M, Chi NC: Zebrafish model for human long QT syndrome. Proceedings of the National Academy of Sciences 2007, 104(27):11316-11321.
144. Milani-Nejad N, Janssen PM: Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacology & therapeutics 2014, 141(3):235-249.
145. Recchia F, Lionetti V: Animal models of dilated cardiomyopathy for translational research. Veterinary research communications 2007, 31(1):35-41.
146. van den Bosch BJ, van den Burg CM, Schoonderwoerd K, Lindsey PJ, Scholte HR, de Coo RF, van Rooij E, Rockman HA, Doevendans PA, Smeets HJ: Regional absence of mitochondria causing energy depletion in the myocardium of muscle LIM protein knockout mice. Cardiovascular research 2005, 65(2):411-418.
147. Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, Smits JF, Flameng W, Clancy CE, Moons L: Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature medicine 2001, 7(9):1021-1027.
148. Zhang GQ, Zhang W: Heart rate, lifespan, and mortality risk. Ageing research reviews 2009, 8(1):52-60.
149. Hasenfuss G: Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovascular research 1998, 39(1):60-76.
150. Ahrens-Nicklas RC, Christini DJ: Anthropomorphizing the mouse cardiac action potential via a novel dynamic clamp method. Biophysical journal 2009, 97(10):2684-2692.
151. De Luca E, Zaccaria GM, Hadhoud M, Rizzo G, Ponzini R, Morbiducci U, Santoro MM: ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports 2014, 4:4898.
152. Baker K, Warren KS, Yellen G, Fishman MC: Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proceedings of the National Academy of Sciences 1997, 94(9):4554-4559.
153. Vornanen M, Hassinen M: Zebrafish heart as a model for human cardiac electrophysiology. Channels 2016, 10(2):101-110.
154. Bakkers J: Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research 2011, 91(2):279-288.
155. Yalcin HC, Amindari A, Butcher JT, Althani A, Yacoub M: Heart function and hemodynamic analysis for zebrafish embryos. Dev Dyn 2017, 246(11):868-880.
156. Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC: Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nature biotechnology 2004, 22(5):595-599.
157. Shin JT, Fishman MC: From zebrafish to human: modular medical models. Annual Review of Genomics and Human Genetics 2002, 3(1):311-340.
158. Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaout R, Scott I, Beis D, Xiao T, Baier H: Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS biology 2008, 6(5).
159. Stainier DY, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, Ingham PW, Schulte-Merker S, Yelon D, Weinstein BM: Guidelines for morpholino use in zebrafish. PLoS genetics 2017, 13(10).
160. Heasman J, Kofron M, Wylie C: βCatenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Developmental biology 2000, 222(1):124-134.
161. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC: A primer for morpholino use in zebrafish. Zebrafish 2009, 6(1):69-77.
162. Urasaki A, Asakawa K, Kawakami K: Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proceedings of the National Academy of Sciences 2008, 105(50):19827-19832.
163. Gaj T, Gersbach CA, Barbas III CF: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology 2013, 31(7):397-405.
164. Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468(7320):67-71.
165. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M: High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome research 2015, 25(7):1030-1042.
166. Ota S, Hisano Y, Ikawa Y, Kawahara A: Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes to Cells 2014, 19(7):555-564.
167. Dance A: Core concept: CRISPR gene editing. Proceedings of the National Academy of Sciences 2015, 112(20):6245-6246.
168. Irion U, Krauss J, Nüsslein-Volhard C: Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 2014, 141(24):4827-4830.
169. Wade M: High-throughput silencing using the CRISPR-Cas9 system: a review of the benefits and challenges. Journal of biomolecular screening 2015, 20(8):1027-1039.
170. Consortium GO: Gene Ontology annotations and resources. Nucleic acids research 2012, 41(D1):D530-D535.
171. Romanoski CE, Che N, Yin F, Mai N, Pouldar D, Civelek M, Pan C, Lee S, Vakili L, Yang W-P: Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circulation research 2011, 109(5):e27-e41.
172. Horvath S, Zhang B, Carlson M, Lu K, Zhu S, Felciano R, Laurance M, Zhao W, Qi S, Chen Z: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proceedings of the National Academy of Sciences 2006, 103(46):17402-17407.
173. Li J, Zhou D, Qiu W, Shi Y, Yang J-J, Chen S, Wang Q, Pan H: Application of weighted gene co-expression network analysis for data from paired design. Scientific reports 2018, 8(1):1-8.
174. Elo LL, Järvenpää H, Orešič M, Lahesmaa R, Aittokallio T: Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 2007, 23(16):2096-2103.
175. Attrill H, Gaudet P, Huntley RP, Lovering RC, Engel SR, Poux S, Van Auken KM, Georghiou G, Chibucos MC, Berardini TZ: Annotation of gene product function from high-throughput studies using the Gene Ontology. Database 2019, 2019.
176. Consortium GO: The gene ontology resource: 20 years and still GOing strong. Nucleic acids research 2019, 47(D1):D330-D338.
177. Gaudet P, Livstone MS, Lewis SE, Thomas PD: Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings in bioinformatics 2011, 12(5):449-462.
178. Hughes AL: The evolution of functionally novel proteins after gene duplication. Proceedings of the Royal Society of London Series B: Biological Sciences 1994, 256(1346):119-124.
179. Liao B-Y, Zhang J: Null mutations in human and mouse orthologs frequently result in different phenotypes. Proceedings of the National Academy of Sciences 2008, 105(19):6987-6992.
180. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA: NCBI GEO: archive for high-throughput functional genomic data. Nucleic acids research 2009, 37(suppl_1):D885-D890.
181. Teufel A, Itzel T, Erhart W, Brosch M, Wang XY, Kim YO, von Schönfels W, Herrmann A, Brückner S, Stickel F: Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology 2016, 151(3):513-525. e510.
182. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM: RefSeq: an update on mammalian reference sequences. Nucleic acids research 2014, 42(D1):D756-D763.
183. Wu J, MacDonald J, Gentry J, Irizarry R: gcrma: Background adjustment using sequence information. R package version 2.38. 0. In.; 2014.
184. Hubbell E, Liu W-M, Mei R: Robust estimators for expression analysis. Bioinformatics 2002, 18(12):1585-1592.
185. Wu C, Irizarry R, Gentry J: gcrma: Background Adjustment Using Sequence Information. BMC bioinformatics 2005.
186. Öztürk AR: Investigation of the effects of MAS5, RMA and GCRMA preprocessing methods on an affymetrix zebrafish genechip dataset using statistical and network parameters. Bilkent University; 2010.
187. Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S: The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 2008, 83(5):610-615.
188. Smith CL, Eppig JT: The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data. Mammalian genome 2012, 23(9-10):653-668.
189. Finner H, Roters M: On the false discovery rate and expected type I errors. Biometrical Journal 2001, 43(8):985-1005.
190. Narum SR: Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation genetics 2006, 7(5):783-787.
191. Rouam S: False Discovery Rate (FDR). In: Encyclopedia of Systems Biology. Edited by Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H. New York, NY: Springer New York; 2013: 731-732.
192. Shaw DR: Searching the Mouse Genome Informatics (MGI) resources for information on mouse biology from genotype to phenotype. Current protocols in bioinformatics 2016, 56(1):1.7. 1-1.7. 16.
193. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A: BioMart–biological queries made easy. BMC genomics 2009, 10(1):22.
194. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S et al: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 2015, 208:44-53.
195. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM: Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature communications 2016, 7(1):1-7.
196. McQueen C, Pownall ME: An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. Mechanisms of Development 2017, 146:1-9.
197. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS et al: Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013, 155(7):1479-1491.
198. Suster ML, Kikuta H, Urasaki A, Asakawa K, Kawakami K: Transgenesis in zebrafish with the tol2 transposon system. In: Transgenesis techniques. Springer; 2009: 41-63.
199. Hansen KD, Irizarry RA, Wu Z: Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012, 13(2):204-216.
200. Chiang C-Y, Ching Y-H, Chang T-Y, Hu L-S, Yong YS, Keak PY, Mustika I, Lin M-D, Liao B-Y: Novel eye genes systematically discovered through an integrated analysis of mouse transcriptomes and phenome. Computational and structural biotechnology journal 2020, 18:73-82.
201. Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004, 431(7011):946-957.
202. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome biology 2009, 10(11):1-8.
203. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR: Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 2016, 538(7623):123-126.
204. Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández M: Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 2013, 340(6140):1567-1570.
205. Lazarou M, Thorburn DR, Ryan MT, McKenzie M: Assembly of mitochondrial complex I and defects in disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2009, 1793(1):78-88.
206. Wang Y-T, Tseng T-L, Kuo Y-C, Yu J-K, Su Y-H, Poss KD, Chen C-H: Genetic reprogramming of positional memory in a regenerating appendage. Current Biology 2019, 29(24):4193-4207. e4194.
207. Varshney GK, Pei WH, LaFave MC, Idol J, Xu LS, Gallardo V, Carrington B, Bishop K, Jones M, Li MY et al: High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research 2015, 25(7):1030-1042.
208. Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F: Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell discovery 2018, 4(1):1-12.
209. Buckingham M: Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proceedings of the National Academy of Sciences 2017, 114(23):5830-5837.
210. Houk AR, Yelon D: Strategies for analyzing cardiac phenotypes in the zebrafish embryo. In: Methods in cell biology. vol. 134: Elsevier; 2016: 335-368.
211. Huang CC, Monte A, Cook JM, Kabir MS, Peterson KP: Zebrafish heart failure models for the evaluation of chemical probes and drugs. Assay Drug Dev Technol 2013, 11(9-10):561-572.
212. Miura GI, Yelon D: A guide to analysis of cardiac phenotypes in the zebrafish embryo. In: Methods in cell biology. vol. 101: Elsevier; 2011: 161-180.
213. Burggren WW, Gore M: Cardiac and metabolic physiology of early larval zebrafish (Danio rerio) reflects parental swimming stamina. Frontiers in Physiology 2012, 3:35.
214. Brown DR, Samsa LA, Qian L, Liu J: Advances in the study of heart development and disease using zebrafish. Journal of cardiovascular development and disease 2016, 3(2):13.
215. Stainier D, Lee RK, Fishman MC: Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 1993, 119(1):31-40.
216. Nieto-Arellano R, Sánchez-Iranzo H: zfRegeneration: a database for gene expression profiling during regeneration. Bioinformatics 2019, 35(4):703-705.
217. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A: Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome research 2012, 22(3):577-591.
218. Vivien CJ, Hudson JE, Porrello ER: Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 2016, 1:16012.
219. Poss KD, Wilson LG, Keating MT: Heart regeneration in zebrafish. Science 2002, 298(5601):2188-2190.
220. Chablais F, Jaźwińska A: The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development 2012, 139(11):1921-1930.
221. Liu F-Y, Hsu T-C, Choong P, Lin M-H, Chuang Y-J, Chen B-S, Lin C: Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC systems biology 2018, 12(2):29.
222. González‐Rosa JM, Burns CE, Burns CG: Zebrafish heart regeneration: 15 years of discoveries. Regeneration 2017, 4(3):105-123.
223. Chablais F, Veit J, Rainer G, Jazwinska A: The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 2011, 11(1):21.
224. Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N: Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 2011, 138(9):1663-1674.
225. Townley-Tilson WH, Callis TE, Wang D: MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 2010, 42(8):1252-1255.
226. Lawrence EA, Kague E, Aggleton JA, Harniman RL, Roddy KA, Hammond CL: The mechanical impact of col11a2 loss on joints; col11a2 mutant zebrafish show changes to joint development and function, which leads to early-onset osteoarthritis. Philos Trans R Soc Lond B Biol Sci 2018, 373(1759):20170335.
227. Selvam P, Singh S, Jain A, Atwal H, Atwal PS: Novel COL11A2 Pathogenic Variants in a Child with Autosomal Recessive Otospondylomegaepiphyseal Dysplasia: A Review of the Literature. Journal of Pediatric Genetics 2019.
228. Sztal TE, Zhao M, Williams C, Oorschot V, Parslow AC, Giousoh A, Yuen M, Hall TE, Costin A, Ramm G: Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta neuropathologica 2015, 130(3):389-406.
229. Baskin KK, Winders BR, Olson EN: Muscle as a “mediator” of systemic metabolism. Cell metabolism 2015, 21(2):237-248.
230. Weng M-P, Liao B-Y: MamPhEA: a web tool for mammalian phenotype enrichment analysis. Bioinformatics 2010, 26(17):2212-2213.
231. Weng M-P, Liao B-Y: mod PhEA: mod el organism Ph enotype E nrichment A nalysis of eukaryotic gene sets. Bioinformatics 2017, 33(21):3505-3507.
232. Zdobnov EM, Apweiler R: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
233. Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y: A comprehensive review of signal peptides: Structure, roles, and applications. European journal of cell biology 2018, 97(6):422-441.
234. Fink A, Sal-Man N, Gerber D, Shai Y: Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. Biochimica et Biophysica Acta (BBA)-Biomembranes 2012, 1818(4):974-983.
235. Kang Y, Wu J-X, Chen L: Structure of voltage-modulated sodium-selective NALCN-FAM155A channel complex. Nature communications 2020, 11(1):1-10.
236. Grillner S: The motor infrastructure: from ion channels to neuronal networks. Nature Reviews Neuroscience 2003, 4(7):573-586.
237. Cochet-Bissuel M, Lory P, Monteil A: The sodium leak channel, NALCN, in health and disease. Frontiers in cellular neuroscience 2014, 8:132.
238. Angius A, Cossu S, Uva P, Oppo M, Onano S, Persico I, Fotia G, Atzeni R, Cuccuru G, Asunis M: Novel NALCN biallelic truncating mutations in siblings with IHPRF1 syndrome. Clinical Genetics 2018, 93(6):1245-1247.
239. Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, Yan Z: Structure of the human sodium leak channel NALCN in complex with FAM155A. Nature communications 2020, 11(1):1-13.
240. Bend EG, Si Y, Stevenson DA, Bayrak-Toydemir P, Newcomb TM, Jorgensen EM, Swoboda KJ: NALCN channelopathies: Distinguishing gain-of-function and loss-of-function mutations. Neurology 2016, 87(11):1131-1139.
241. Bramswig NC, Bertoli-Avella AM, Albrecht B, Al Aqeel AI, Alhashem A, Al-Sannaa N, Bah M, Bröhl K, Depienne C, Dorison N: Genetic variants in components of the NALCN–UNC80–UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Human genetics 2018, 137(9):753-768.
242. Ghezzi A, Liebeskind BJ, Thompson A, Atkinson NS, Zakon HH: Ancient association between cation leak channels and Mid1 proteins is conserved in fungi and animals. Frontiers in molecular neuroscience 2014, 7:15.
243. Xie L, Gao S, Alcaire SM, Aoyagi K, Wang Y, Griffin JK, Stagljar I, Nagamatsu S, Zhen M: NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron 2013, 77(6):1069-1082.
244. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE: Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallographica Section D: Biological Crystallography 1998, 54(6):1078-1084.
245. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A: Tissue-based map of the human proteome. Science 2015, 347(6220).
246. Lieve KV, Wilde AA: Inherited ion channel diseases: a brief review. Ep Europace 2016, 17(suppl_2):ii1-ii6.
247. Bioinformatics Q: Ingenuity Pathway Analysis. In.
248. Telfer WR, Nelson DD, Waugh T, Brooks SV, Dowling JJ: Neb: a zebrafish model of nemaline myopathy due to nebulin mutation. Disease models & mechanisms 2012, 5(3):389-396.
249. Littlefield RS, Fowler VM: Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. In: Seminars in cell & developmental biology: 2008. Elsevier: 511-519.
250. Bang M-L, Chen J: Roles of nebulin family members in the heart. Circulation Journal 2015:CJ-15-0854.
251. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS: Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular and cellular biology 2003, 23(7):2425-2437.
252. Huang J, Lu MM, Cheng L, Yuan L-J, Zhu X, Stout AL, Chen M, Li J, Parmacek MS: Myocardin is required for cardiomyocyte survival and maintenance of heart function. Proceedings of the National Academy of Sciences 2009, 106(44):18734-18739.
253. Houweling AC, Beaman GM, Postma AV, Gainous TB, Lichtenbelt KD, Brancati F, Lopes FM, Van Der Made I, Polstra AM, Robinson ML: Loss-of-function variants in myocardin cause congenital megabladder in humans and mice. The Journal of clinical investigation 2019, 129(12).
254. Wang X-Y, Zhang F, Zhang C, Zheng L-R, Yang J: The Biomarkers for Acute Myocardial Infarction and Heart Failure. BioMed Research International 2020, 2020.
255. Ventura HO, Silver MA: Natriuretic peptides as markers of cardiovascular risk: the story continues. In: Mayo Clinic Proceedings: 2011. Mayo Foundation: 1143.
256. Sato Y, Kita T, Takatsu Y, Kimura T: Biochemical markers of myocyte injury in heart failure. Heart 2004, 90(10):1110-1113.
257. Gallagher EJ, LeRoith D: Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Annals of the New York Academy of Sciences 2011, 1243(1):54-68.
258. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics 2014, 13(2):397-406.
259. Xing M: BRAF mutation in thyroid cancer. Endocrine-related cancer 2005, 12(2):245-262.
260. Yu X, Zhong P, Han Y, Huang Q, Wang J, Jia C, Lv Z: Key candidate genes associated with BRAFV600E in papillary thyroid carcinoma on microarray analysis. Journal of cellular physiology 2019, 234(12):23369-23378.
261. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W: Mutations of the BRAF gene in human cancer. Nature 2002, 417(6892):949-954.
262. Herman PE, Papatheodorou A, Bryant SA, Waterbury CK, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O: Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Scientific Reports 2018, 8(1):1-15.
263. Laflamme MA, Murry CE: Heart regeneration. Nature 2011, 473(7347):326-335.
264. Sadek H, Olson EN: Toward the Goal of Human Heart Regeneration. Cell stem cell 2020, 26(1):7-16.
265. Beltrami AP, Urbanek K, Kajstura J, Yan S-M, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA: Evidence that human cardiac myocytes divide after myocardial infarction. New England Journal of Medicine 2001, 344(23):1750-1757.
266. Soonpaa MH, Field LJ: Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circulation research 1998, 83(1):15-26.
267. Anversa P, Kajstura J: Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circulation research 1998, 83(1):1-14.
268. Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E, Conte JV, Tomaselli G, Garcia JG, Hare JM: Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiological genomics 2005, 21(3):299-307.
269. Schaun MI, Eibel B, Kristocheck M, Sausen G, Machado L, Koche A, Markoski MM: Cell therapy in ischemic heart disease: interventions that modulate cardiac regeneration. Stem Cells International 2016, 2016.
270. RAKUšan K, de Rochemont WdM, Braasch W, Tschopp H, BING RJ: Capacity of the terminal vascular bed during normal growth, in cardiomegaly, and in cardiac atrophy. Circulation research 1967, 21(2):209-216.
271. Woo YJ, Panlilio CM, Cheng RK, Liao GP, Suarez EE, Atluri P, Chaudhry HW: Myocardial regeneration therapy for ischemic cardiomyopathy with cyclin A2. The Journal of thoracic and cardiovascular surgery 2007, 133(4):927-933.
272. Giovannoni JJ: Genetic regulation of fruit development and ripening. The plant cell 2004, 16(suppl 1):S170-S180.
273. Ficklin SP, Luo F, Feltus FA: The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Plant physiology 2010, 154(1):13-24.
274. Kafkas Ş, Hoehndorf R: Ontology based text mining of gene-phenotype associations: application to candidate gene prediction. Database 2019, 2019.
275. Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW: The zebrafish heart as a model of mammalian cardiac function. In: Reviews of Physiology, Biochemistry and Pharmacology, Vol 171. Springer; 2016: 99-136.
276. Lien CL, Harrison MR, Tuan TL, Starnes VA: Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair and Regeneration 2012, 20(5):638-646.
277. Ohno S: Patterns in genome evolution. Current opinion in genetics & development 1993, 3(6):911-914.
278. Meyer A, Schartl M: Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Current opinion in cell biology 1999, 11(6):699-704.
279. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N: Identification of 315 genes essential for early zebrafish development. Proceedings of the National Academy of Sciences 2004, 101(35):12792-12797.
280. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI: A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Developmental cell 2015, 32(6):756-764.
281. Hofmann A, Falk J, Prangemeier T, Happel D, Köber A, Christmann A, Koeppl H, Kolmar H: A tightly regulated and adjustable CRISPR-dCas9 based AND gate in yeast. Nucleic acids research 2019, 47(1):509-520.
282. Diao J, Wang H, Chang N, Zhou X-H, Zhu X, Wang J, Xiong J-W: PEG–PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart. Developmental biology 2015, 406(2):196-202.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *