帳號:guest(18.220.188.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):巫冠儒
作者(外文):Wu, Guan-Ru
論文名稱(中文):利用核磁共振技術研究內含子受鹽所影響的結構動態
論文名稱(外文):Salt influence in structural dynamics of Npu Dna intein
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):蕭育源
鄭惠春
口試委員(外文):Hsiao, Yu-Yuan
Cheng, Hui-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:107080597
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:49
中文關鍵詞:內含子鹽橋切割反應
外文關鍵詞:InteinSaltbridgecleavagereaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
內含子 (Intein) 具有蛋白質剪接 (Protein splicing) 和切割 (Cleavage reaction) 的功能,常被應用於蛋白質工程,包含蛋白質的放射性標定、蛋白質純化、蛋白質修飾作用和蛋白質的半合成。近年來,內含子被廣泛的應用。Nostoc punctiforme DnaE intein (Npu DnaE intein),一種來自cyanobacterium Synechocystis的內含子,它被包含在DnaE蛋白內。Npu DnaE 內含子具有高效的反式剪切 (Trans-splicing)及C端切割 (C-terminal cleavage)活性。在我們先前的研究中,我們發現隨著鹽濃度的提升,內含子的切割反應會被抑制。於是,我們想要深入了解鹽是如何調控內含子的切割活性。我們準備了兩種Npu DnaE內含子,完整式內含子 (One-fragment intein) 及分離式內含子 (Split intein),並利用核磁共振儀 (NMR) 來進行研究。我們進行了化學位移擾動 (Chemical shift perturbation)、縱向弛豫 (Longitudinal relaxation) 和橫向弛豫 (Transverse relaxation)等實驗。藉由實驗結果得知,在高鹽環境下,內含子的翻滾時間 (Tumbling time)增加了,代表可能由於內含子結構內的鹽橋 (Salt bridge) 被破壞而使蛋白質結構擴張。並且,我們發現參與鹽橋和鹽橋附近的殘基其中的氮-氫鍵結 (N-H bond) 振動變快,這可能由於高鹽環境破壞了鹽橋而導致。也發現在高鹽環境下,內含子結構中有些位置可能有結構交換 (Conformational exchange) 。鹽橋可能幫助維持內含子的結構,而蛋白質的摺疊完整性常與活性的完整相關。綜上所述,我們認為這些參與鹽橋的殘基,很有可能成為調控內含子的C端切割活性的熱點。
Intein, Intron-liked protein, a protein segment which can undergo splicing reaction, N- and C-terminal cleavage reactions. Intein plays a popular tool in protein engineering, and has been applied in several ways such as production of recombinant protein, protein labeling, protein purification and protein semi-synthesis. Nostoc punctiforme DnaE intein (Npu DnaE intein), a native split intein, was discovered from cyanobacterium Synechocystis, and exhibited remarkable activity of trans-splicing. In our previous study, we discovered that C-terminal cleavage reaction was inhibited by high salt concentration. Thus, we expected a salt-mediating method to regulate the C-terminal cleavage reaction of Npu DnaE intein. We prepare two types of Npu DnaE intein, one-fragment and split-type, and employed NMR to monitor conformation and dynamics difference. Based on chemical shift difference, we identify residues with significant perturbations which participating in salt bridge. Furthermore, the longitudinal relaxation (T1) show the increased tumbling time in the presence of high concentration of salt, implying the overall intein structure extended. In transverse relaxation (T2) experiment, many residues of one-fragment intein report backbone fluctuation on N-H bonds. We also found some residues containing conformational exchange. We conclude high-salt environment disrupts salt bridge and further decreases structural stability of Npu DnaE intein. The information report potent hot-spot to modulate intein C-terminal cleavage reaction by salt.
中文摘要 1
Abstract 2
Abbreviations 3
1 Introduction 4
1.1 Background of intein 4
1.2 Nostoc punctiforme DnaE intein (Npu DnaE intein) 6
1.3 The salt bridges in Npu DnaE intein 7
1.4 The C1G mutant intein prohibits splicing and N-terminal cleavage reaction 8
1.5 Nuclear magnetic resonance and protein dynamics experiments 8
1.6 The aim of this study 9
2. Materials and methods 22
2.1 Recombinant protein expression and isotope labelling 22
2.2 Protein Purification 23
2.3 NMR sample preparation 23
2.4 Backbone assignment and chemical shift perturbation 24
2.5 T1 and T2 relaxation measurements 24
3 Results 26
3.1 Purification of Npu DnaE intein 26
3.2 Backbone assignment 26
3.3 Chemical shift perturbation 27
3.3-1 Chemical shift perturbation of one-fragment Npu DnaE intein 27
3.3-2 Chemical shift perturbation of split Npu DnaE intein 28
3.4 Longitudinal relaxation 29
3.4-1 Longitudinal relaxation of one-fragment Npu DnaE intein 30
3.4-2 Longitudinal relaxation of split Npu DnaE intein 31
3.5 Transverse relaxation 32
3.5-1 Transverse relaxation of one-fragment Npu DnaE intein 32
3.5-2 Transverse relaxation of split Npu DnaE intein 33
4 Discussion 44
5 Conclusion 46
References 47
References

1. Shah, N.H. and T.W. Muir, Inteins: Nature's Gift to Protein Chemists. Chem Sci, 2014. 5(1): p. 446-461.
2. Noren, C.J., J. Wang, and F.B. Perler, Dissecting the Chemistry of Protein Splicing and Its Applications. Angew Chem Int Ed Engl, 2000. 39(3): p. 450-466.
3. Paulus, H., Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem, 2000. 69: p. 447-96.
4. Kwon, Y., M.A. Coleman, and J.A. Camarero, Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl, 2006. 45(11): p. 1726-9.
5. Kurpiers, T. and H.D. Mootz, Regioselective cysteine bioconjugation by appending a labeled cystein tag to a protein by using protein splicing in trans. Angew Chem Int Ed Engl, 2007. 46(27): p. 5234-7.
6. Kurpiers, T. and H.D. Mootz, Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. Chembiochem, 2008. 9(14): p. 2317-25.
7. Otomo, T., et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR, 1999. 14(2): p. 105-14.
8. Al-Ali, H., et al., Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Bioconjug Chem, 2007. 18(4): p. 1294-302.
9. Zuger, S. and H. Iwai, Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol, 2005. 23(6): p. 736-40.
10. Giriat, I. and T.W. Muir, Protein semi-synthesis in living cells. J Am Chem Soc, 2003. 125(24): p. 7180-1.
11. Ludwig, C., et al., Ligation of a synthetic peptide to the N terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl, 2006. 45(31): p. 5218-21.
12. Ludwig, C., D. Schwarzer, and H.D. Mootz, Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction. J Biol Chem, 2008. 283(37): p. 25264-72.
13. Olschewski, D., et al., Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol, 2007. 14(9): p. 994-1006.
14. Giriat, I., T.W. Muir, and F.B. Perler, Protein splicing and its applications. Genet Eng (N Y), 2001. 23: p. 171-99.
15. Eryilmaz, E., et al., Structural and dynamical features of inteins and implications on protein splicing. J Biol Chem, 2014. 289(21): p. 14506-11.
16. Anraku, Y., R. Mizutani, and Y. Satow, Protein splicing: its discovery and structural insight into novel chemical mechanisms. IUBMB Life, 2005. 57(8): p. 563-74.
17. Shemella, P., et al., Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations. Biophys J, 2007. 92(3): p. 847-53.
18. Wood, D.W. and J.A. Camarero, Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem, 2014. 289(21): p. 14512-9.
19. Mills, K.V., M.A. Johnson, and F.B. Perler, Protein splicing: how inteins escape from precursor proteins. J Biol Chem, 2014. 289(21): p. 14498-505.
20. Sarmiento, C. and J.A. Camarero, Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci, 2019. 20(5): p. 408-424.
21. Wu, H., Z. Hu, and X.Q. Liu, Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A, 1998. 95(16): p. 9226-31.
22. Mills, K.V., et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3543-8.
23. Southworth, M.W., et al., Control of protein splicing by intein fragment reassembly. EMBO J, 1998. 17(4): p. 918-26.
24. Ozawa, T., et al., Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screening time. Anal Chem, 2001. 73(24): p. 5866-74.
25. Vila-Perello, M. and T.W. Muir, Biological applications of protein splicing. Cell, 2010. 143(2): p. 191-200.
26. Iwai, H., et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett, 2006. 580(7): p. 1853-8.
27. Zettler, J., V. Schutz, and H.D. Mootz, The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett, 2009. 583(5): p. 909-14.
28. Oeemig, J.S., et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett, 2009. 583(9): p. 1451-6.
29. Lee, Y.Z., et al., A streamlined method for preparing split intein for NMR study. Protein Expr Purif, 2014. 99: p. 106-12.
30. Shi, J. and T.W. Muir, Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc, 2005. 127(17): p. 6198-206.
31. Lee, Y.Z. and S.C. Sue, Salt-sensitive intein for large-scale polypeptide production. Methods Enzymol, 2019. 621: p. 111-130.
32. Bloch, F., The Principle of Nuclear Induction. Science, 1953. 118(3068): p. 425-30.
33. Kay, L.E., D.A. Torchia, and A. Bax, Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry, 1989. 28(23): p. 8972-9.
34. Bax, A. and M. Ikura, An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR, 1991. 1(1): p. 99-104.
35. Palmer, A.G., 3rd, et al., Improved resolution in three-dimensional constant-time triple resonance NMR spectroscopy of proteins. J Biomol NMR, 1992. 2(1): p. 103-8.
36. Wishart, D.S., B.D. Sykes, and F.M. Richards, The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry, 1992. 31(6): p. 1647-51.
37. Lee, Y.T., et al., Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One, 2012. 7(8): p. e43820.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *