|
References
1. Shah, N.H. and T.W. Muir, Inteins: Nature's Gift to Protein Chemists. Chem Sci, 2014. 5(1): p. 446-461. 2. Noren, C.J., J. Wang, and F.B. Perler, Dissecting the Chemistry of Protein Splicing and Its Applications. Angew Chem Int Ed Engl, 2000. 39(3): p. 450-466. 3. Paulus, H., Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem, 2000. 69: p. 447-96. 4. Kwon, Y., M.A. Coleman, and J.A. Camarero, Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl, 2006. 45(11): p. 1726-9. 5. Kurpiers, T. and H.D. Mootz, Regioselective cysteine bioconjugation by appending a labeled cystein tag to a protein by using protein splicing in trans. Angew Chem Int Ed Engl, 2007. 46(27): p. 5234-7. 6. Kurpiers, T. and H.D. Mootz, Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. Chembiochem, 2008. 9(14): p. 2317-25. 7. Otomo, T., et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR, 1999. 14(2): p. 105-14. 8. Al-Ali, H., et al., Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Bioconjug Chem, 2007. 18(4): p. 1294-302. 9. Zuger, S. and H. Iwai, Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol, 2005. 23(6): p. 736-40. 10. Giriat, I. and T.W. Muir, Protein semi-synthesis in living cells. J Am Chem Soc, 2003. 125(24): p. 7180-1. 11. Ludwig, C., et al., Ligation of a synthetic peptide to the N terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl, 2006. 45(31): p. 5218-21. 12. Ludwig, C., D. Schwarzer, and H.D. Mootz, Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from an intermediate of the protein splicing reaction. J Biol Chem, 2008. 283(37): p. 25264-72. 13. Olschewski, D., et al., Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol, 2007. 14(9): p. 994-1006. 14. Giriat, I., T.W. Muir, and F.B. Perler, Protein splicing and its applications. Genet Eng (N Y), 2001. 23: p. 171-99. 15. Eryilmaz, E., et al., Structural and dynamical features of inteins and implications on protein splicing. J Biol Chem, 2014. 289(21): p. 14506-11. 16. Anraku, Y., R. Mizutani, and Y. Satow, Protein splicing: its discovery and structural insight into novel chemical mechanisms. IUBMB Life, 2005. 57(8): p. 563-74. 17. Shemella, P., et al., Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations. Biophys J, 2007. 92(3): p. 847-53. 18. Wood, D.W. and J.A. Camarero, Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem, 2014. 289(21): p. 14512-9. 19. Mills, K.V., M.A. Johnson, and F.B. Perler, Protein splicing: how inteins escape from precursor proteins. J Biol Chem, 2014. 289(21): p. 14498-505. 20. Sarmiento, C. and J.A. Camarero, Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci, 2019. 20(5): p. 408-424. 21. Wu, H., Z. Hu, and X.Q. Liu, Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A, 1998. 95(16): p. 9226-31. 22. Mills, K.V., et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3543-8. 23. Southworth, M.W., et al., Control of protein splicing by intein fragment reassembly. EMBO J, 1998. 17(4): p. 918-26. 24. Ozawa, T., et al., Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein-protein interactions in bacteria: improved sensitivity and reduced screening time. Anal Chem, 2001. 73(24): p. 5866-74. 25. Vila-Perello, M. and T.W. Muir, Biological applications of protein splicing. Cell, 2010. 143(2): p. 191-200. 26. Iwai, H., et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett, 2006. 580(7): p. 1853-8. 27. Zettler, J., V. Schutz, and H.D. Mootz, The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett, 2009. 583(5): p. 909-14. 28. Oeemig, J.S., et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett, 2009. 583(9): p. 1451-6. 29. Lee, Y.Z., et al., A streamlined method for preparing split intein for NMR study. Protein Expr Purif, 2014. 99: p. 106-12. 30. Shi, J. and T.W. Muir, Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc, 2005. 127(17): p. 6198-206. 31. Lee, Y.Z. and S.C. Sue, Salt-sensitive intein for large-scale polypeptide production. Methods Enzymol, 2019. 621: p. 111-130. 32. Bloch, F., The Principle of Nuclear Induction. Science, 1953. 118(3068): p. 425-30. 33. Kay, L.E., D.A. Torchia, and A. Bax, Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry, 1989. 28(23): p. 8972-9. 34. Bax, A. and M. Ikura, An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR, 1991. 1(1): p. 99-104. 35. Palmer, A.G., 3rd, et al., Improved resolution in three-dimensional constant-time triple resonance NMR spectroscopy of proteins. J Biomol NMR, 1992. 2(1): p. 103-8. 36. Wishart, D.S., B.D. Sykes, and F.M. Richards, The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry, 1992. 31(6): p. 1647-51. 37. Lee, Y.T., et al., Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One, 2012. 7(8): p. e43820.
|