帳號:guest(18.227.105.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃墨帆
作者(外文):Huang, Mo-Fan
論文名稱(中文):PHD3和HIF-1α之交互作用對肺腺癌之影響
論文名稱(外文):The Interplay of PHD3 and HIF-1α on Oncogenesis of Lung Adenocarcinoma.
指導教授(中文):周裕珽
指導教授(外文):Chou, Yu-Ting
口試委員(中文):柯政昌
張孜菁
口試委員(外文):Ko, Jen-Chung
Chang, Tzu-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:107080594
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:60
中文關鍵詞:腫瘤微環境低氧肺腺癌表皮生長因子受體缺氧誘導因子
外文關鍵詞:hypoxiaadenocarcinomaHIF1PHD3Tumormicroenvironment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:64
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肺癌是世界上死亡率最高的癌症之一。在肺癌病患中,表皮生長因子受體(Epidermal growth factor receptor; EGFR)的突變已被廣泛使用於肺癌標靶治療和生物標記(biomarker)上。其中,透過阻斷腫瘤生長訊息傳遞來抑制癌細胞
之標靶藥物:表皮生長因子受體的酪胺酸激酶抑制劑(EGFR-tyrosine kinase inhibitor; EGFR-TKI)多年來成功治癒帶有 EGFR 突變的肺癌病人。儘管如此,部份治療初期狀況良好的病人卻開始產生抗藥性,且抗藥性越來越頻繁出現。由於癌細胞生長迅速之下造成實質腫瘤增大,使得腫瘤中心遠離供血血管而產生低
氧壓力,低氧是腫瘤快速生長時必須面對的一種微環境( Hypoxia
microenvironment)。然而,低氧微環境與 EGFR-TKI 篩選如何調控腫瘤異質性
以促進癌細胞增生、存活和表皮間葉轉變(Epithelial-Mesenchymal transition; EMT)依然未知。我們的研究發現氧氣感應因子脯胺醯羥化酶(Prolyl hydroxylase 3;PHD3)在 EGFR-TKI 抗性的細胞株中的表現量和 EGFR-TKI 敏感株相比明顯降低,同時產生EMT及增生能力的下降。PHD3的缺失與抗藥性產生和癌症存活的關係仍須進一步探索,在此研究中我們賦予 PHD3在肺癌中與其他癌症完全
不同的角色,為肺癌進程中由低氧微環境調控之細胞增生和存活提供了新的見解。
Lung cancer is the leading cause of cancer deaths in the world. Mutations of the epidermal growth factor receptor (EGFR) have served as therapy targets and biomarkers in lung adenocarcinoma cancer patients. EGFR-tyrosine kinase inhibitors (EGFR-TKIs), suppressing tumor growth via blocking survival signal, have achieved successful survival outcomes in patients harboring EGFR mutations. Nonetheless, resistance to EGFR-TKIs will inevitably occur. Hypoxia, a critical tumor microenvironment, limits oxygen supply in the center of solid
tumors as their sizes increase. However, how hypoxia interacts with EGFR-TKI selection to generate cancer cell heterogeneity, thus affecting cancer cell proliferation and epithelial-to-mesenchymal transdifferentiation (EMT), is unclear. In this study, we found that the oxygen sensor Prolyl hydroxylase 3 (PHD3) is highly downregulated in EGFR-TKI selected resistant cells, harboring EMT feature and lower proliferation ability. The effect of PHD3 loss in
EGFR-TKI tolerance and cancer cell survival is underway. In conclusion, we have identified new roles of PHD3 in lung cancer, which may provide novel insights into hypoxia-mediated cancer in proliferation and survival of neoplasia.
摘要
Abstract
目錄
Introduction..............1
Lung cancer...............1
Target therapy for lung adenocarcinoma................1
Epidermal growth factor receptor (EGFR)...............2
EGFR-TKI resistance.........................3
SOX2 in stem cell and cancer plasticity...............4
Hypoxia microenvironment....................5
Prolyl hydroxylase in hypoxia regulation .............5
Materials and methods ................................7
Chemicals andreagents.................................7
Cell culture..........................................7
Hypoxia microenvironment .............................8
Lentiviral transfection...............................8
Chromatin immunoprecipitation (ChIP) .................9
Plasmid Construction..................................9
Quantitative–PCR (qPCR)..............................10
Clonogenic Assay.....................................11
Flow cytometry analysis .............................12
Immunoblotting ......................................12
Statistical Analysis.................................13
Results .............................................14
PHD3 expression is regulated during ESC differentiation and cytokine stimulation in lung cancer cells.....................14
PHD3 expression is downregulated by TGF-b stimulation in lung cancer cells. .....15
PHD3 expression is regulated under the development of EGFR-TKI resistance in lung cancer cells.....................16
PHD3 expression is regulated by epigenetic modification..............17
PHD3 regulates cell cycle progression...............18
PHD3 antagonizes HIF-1α-mediated cell growth arrest..........19
PHD3 predicts a poor survival in lung adenocarcinoma.........20
Conclusion..........................................21
Discussions ........................................22
PHD3 in EGFR-mutated lung cancer and EGFR-TKI selection......22
PHD3 maintains cancer stemness and inhibits EMT..............23
PHD3 serves as a biomarker in lung adenocarcinoma............24
HIF-1α and glycolysis metabolism....................25
HIF-1α and anchorage-independent growth.............27
Figures ............................................29
References .........................................55
Abbreviation .......................................60
1. Group NM-aC. Preoperative chemotherapy for non-small-cell lung cancer: a
systematic review and meta-analysis of individual participant data. Lancet 2014;
383: 1561-1571.
2. Yankelevitz DF, Yip R, Smith JP, Liang M, Liu Y, Xu DM, Salvatore MM, Wolf
AS, Flores RM, Henschke CI, International Early Lung Cancer Action Program
Investigators G. CT Screening for Lung Cancer: Nonsolid Nodules in Baseline
and Annual Repeat Rounds. Radiology 2015; 277: 555-564.
3. Yang JJ, Chen HJ, Yan HH, Zhang XC, Zhou Q, Su J, Wang Z, Xu CR, Huang YS,
Wang BC, Yang XN, Zhong WZ, Nie Q, Liao RQ, Jiang BY, Dong S, Wu YL.
Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent
management in advanced non-small cell lung cancer. Lung Cancer 2013; 79:
33-39.
4. Besse B, Adjei A, Baas P, Meldgaard P, Nicolson M, Paz-Ares L, Reck M, Smit EF,
Syrigos K, Stahel R, Felip E, Peters S, Panel M, Esmo. 2nd ESMO Consensus
Conference on Lung Cancer: non-small-cell lung cancer first-line/second and
further lines of treatment in advanced disease. Ann Oncol 2014; 25: 1475-1484.
5. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba, II, Fong KM,
Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, Roth JA, Herz J, Minna JD,
Gazdar AF. Clinical and biological features associated with epidermal growth
factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005; 97:
339-346.
6. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of
epidermal growth factor receptor signaling. Mol Syst Biol 2005; 1: 2005 0010.
7. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK.
Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther
Targets 2012; 16: 15-31.
8. Chang YS, Choi CM, Lee JC. Mechanisms of Epidermal Growth Factor Receptor
Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in
Lung Adenocarcinoma. Tuberc Respir Dis (Seoul) 2016; 79: 248-256.
9. Liam CK, Leow HR, Pang YK. EGFR mutation testing for squamous cell lung
carcinoma. J Thorac Oncol 2013; 8: e114.
56
10. CH1 Y, KE M, AV T. The T790M mutation in EGFR kinase causes drug resistance
by increasing the affinity for ATP. Proc Natl Acad Sci U S A 2008; 105.
11. Watanabe S, Yoshida T, Kawakami H, Takegawa N, Tanizaki J, Hayashi H,
Takeda M, Yonesaka K, Tsurutani J, Nakagawa K. T790M-Selective
EGFR-TKI Combined with Dasatinib as an Optimal Strategy for Overcoming
EGFR-TKI Resistance in T790M-Positive Non-Small Cell Lung Cancer. Mol
Cancer Ther 2017; 16: 2563-2571.
12. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG,
Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R,
Young RA. Core transcriptional regulatory circuitry in human embryonic stem
cells. Cell 2005; 122: 947-956.
13. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen
YS, Lin TW, Hsu HS, Wu CW. Coexpression of Oct4 and Nanog enhances
malignancy in lung adenocarcinoma by inducing cancer stem cell-like
properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010;
70: 10433-10444.
14. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2,
OCT4 and Nanog expression and their correlations with
epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS One
2013; 8: e56324.
15. Jakobsen KR, Demuth C, Sorensen BS, Nielsen AL. The role of epithelial to
mesenchymal transition in resistance to epidermal growth factor receptor
tyrosine kinase inhibitors in non-small cell lung cancer. Transl Lung Cancer
Res 2016; 5: 172-182.
16. Hwang W, Chiu YF, Kuo MH, Lee KL, Lee AC, Yu CC, Chang JL, Huang WC,
Hsiao SH, Lin SE, Chou YT. Expression of Neuroendocrine Factor VGF in
Lung Cancer Cells Confers Resistance to EGFR Kinase Inhibitors and Triggers
Epithelial-to-Mesenchymal Transition. Cancer Res 2017; 77: 3013-3026.
17. Xu S, Liu X, Liu R, Shi T, Li X, Zhong D, Wang Y, Chen G, Chen J. Concurrent
epidermal growth factor receptor T790M secondary mutation and
epithelial-mesenchymal transition in a lung adenocarcinoma patient with
EGFR-TKI drug resistance. Thorac Cancer 2017; 8: 693-697.
18. Ognibene M, Cangelosi D, Morini M, Segalerba D, Bosco MC, Sementa AR, Eva
A, Varesio L. Immunohistochemical analysis of PDK1, PHD3 and HIF-1alpha
57
expression defines the hypoxic status of neuroblastoma tumors. PLoS One 2017;
12: e0187206.
19. Carnero A, Lleonart M. The hypoxic microenvironment: A determinant of cancer
stem cell evolution. Bioessays 2016; 38 Suppl 1: S65-74.
20. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S,
Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells
by inducing over-expression of specific glycolytic isoforms. Mini Rev Med
Chem 2009; 9: 1084-1101.
21. Kim Y, Lin Q, Glazer PM, Yun Z. Hypoxic tumor microenvironment and cancer
cell differentiation. Curr Mol Med 2009; 9: 425-434.
22. IIDA H, SUzUKI m, GOITSUKA R, UENO H. Hypoxia induces CD133
expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2
. INTERNATIONAL JOURNAL OF ONCOLOGY 2012; 40.
23. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL.
Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and
ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad
Sci U S A 2016; 113: E2047-2056.
24. Jiang L, Liu QL, Liang QL, Zhang HJ, Ou WT, Yuan GL. Association of PHD3
and HIF2alpha gene expression with clinicopathological characteristics in
human hepatocellular carcinoma. Oncol Lett 2018; 15: 545-551.
25. Egners A, Rezaei M, Kuzmanov A, Poitz DM, Streichert D, Muller-Reichert T,
Wielockx B, Breier G. PHD3 Acts as Tumor Suppressor in Mouse
Osteosarcoma and Influences Tumor Vascularization via PDGF-C Signaling.
Cancers (Basel) 2018; 10.
26. Erez N, Milyavsky M, Eilam R, Shats I, Goldfinger N, Rotter V. Expression of
prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible
factor-1alpha activation and inhibits tumor growth. Cancer Res 2003; 63:
8777-8783.
27. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F,
Feunteun J, Pouyssegur J, Richard S, Gardie B. PHD2 mutation and congenital
erythrocytosis with paraganglioma. N Engl J Med 2008; 359: 2685-2692.
28. Su Y, Loos M, Giese N, Hines OJ, Diebold I, Gorlach A, Metzen E, Pastorekova S,
Friess H, Buchler P. PHD3 regulates differentiation, tumour growth and
angiogenesis in pancreatic cancer. Br J Cancer 2010; 103: 1571-1579.
58
29. Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F. Oct-3/4 and Sox2 regulate
Oct-3/4 gene in embryonic stem cells. J Biol Chem 2005; 280: 5307-5317.
30. Karachaliou N, Rosell R, Viteri S. The role of SOX2 in small cell lung cancer, lung
adenocarcinoma and squamous cell carcinoma of the lung. Transl Lung Cancer
Res 2013; 2: 172-179.
31. Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal
and differentiation. Cell Res 2009; 19: 103-115.
32. Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC.
Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity
against breast cancer in vivo. Clin Cancer Res 2001; 7: 971-976.
33. Drogaris P, Villeneuve V, Pomies C, Lee EH, Bourdeau V, Bonneil E, Ferbeyre G,
Verreault A, Thibault P. Histone deacetylase inhibitors globally enhance h3/h4
tail acetylation without affecting h3 lysine 56 acetylation. Sci Rep 2012; 2: 220.
34. Radhakrishnan P, Ruh N, Harnoss JM, Kiss J, Mollenhauer M, Scherr AL, Platzer
LK, Schmidt T, Podar K, Opferman JT, Weitz J, Schulze-Bergkamen H,
Koehler BC, Ulrich A, Schneider M. Prolyl Hydroxylase 3 Attenuates
MCL-1-Mediated ATP Production to Suppress the Metastatic Potential of
Colorectal Cancer Cells. Cancer Res 2016; 76: 2219-2230.
35. Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F,
Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P,
Acker-Palmer A, Acker T. Loss of PHD3 allows tumours to overcome hypoxic
growth inhibition and sustain proliferation through EGFR. Nat Commun 2014;
5: 5582.
36. Zhang D, Takigawa N, Ochi N, Tanimoto Y, Noujima D, Chen YY, Tanimoto M,
Kiura K. Detection of the EGFR mutation in exhaled breath condensate from a
heavy smoker with squamous cell carcinoma of the lung. Lung Cancer 2011;
73: 379-380.
37. Paliga A, Onerheim R, Gologan A, Chong G, Spatz A, Niazi T, Garant A, Macheto
D, Alcindor T, Vuong T. EGFR and K-ras gene mutation status in squamous
cell anal carcinoma: a role for concurrent radiation and EGFR inhibitors? Br J
Cancer 2012; 107: 1864-1868.
38. Hugo F, Mazurek S, Zander U, Eigenbrodt E. In vitro effect of extracellular AMP
on MCF-7 breast cancer cells: inhibition of glycolysis and cell proliferation. J
Cell Physiol 1992; 153: 539-549.
59
39. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P.
Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug
resistance associated with mitochondrial respiratory defect and hypoxia.
Cancer Res 2005; 65: 613-621.
40. Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, Park EY, Kim HK, Han J,
Chang M, Park JH. Inhibition of Aerobic Glycolysis Represses
Akt/mTOR/HIF-1alpha Axis and Restores Tamoxifen Sensitivity in
Antiestrogen-Resistant Breast Cancer Cells. PLoS One 2015; 10: e0132285.
41. Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath
MA, Davis A, Gheordunescu E, Wang Y, Harouaka R, Lozier A, Triner D,
McDermott S, Merajver SD, Luker GD, Spitz DR, Wicha MS. Targeting Breast
Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling.
Cell Metab 2018; 28: 69-86 e66.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *