帳號:guest(18.118.2.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王聖皓
作者(外文):Wang, Sheng-Hao
論文名稱(中文):社會環境對於果蠅壽命及行為之探討
論文名稱(外文):The Effect of Social Environment on Health and Behavior of Drosophila Melanogaster
指導教授(中文):郭崇涵
指導教授(外文):Kuo, Tsung-Han
口試委員(中文):汪宏達
焦傳金
口試委員(外文):Wang, Horng-Dar
Chiao, Chuan-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:107080556
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:36
中文關鍵詞:果蠅社會環境壽命行為
外文關鍵詞:drosophilasocial environmentlifespanbehavior
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
社會環境是指由周圍生物及其之間的相互作用所組成的環境,在調節動物行為與生理中扮演了重要的角色。模式生物黑腹果蠅(Drosophila melanogaster)在與其同類互動時可以表現出多樣化的社交行為,因而成為良好的研究對象。近期的研究顯示,社會環境會對果蠅帶有的各種特徵造成顯著的影響,但不同的社會環境對果蠅壽命、行為或生理的影響相當複雜因而需要被更深入的研究。在這篇論文裡,我們將目標果蠅放入三種不同的社會環境:獨居、與短命果蠅共住跟與老年果蠅共住,並觀察對其壽命、環境抗壓能力以及各種行為之影響。我們的結果顯示,與群居的果蠅相比,獨居果蠅表現出更長的壽命和更強的環境抗壓與爬行能力;與短命果蠅共住的目標果蠅在行為、環境抗壓與壽命上,都有著較差的表現;而與老年果蠅共住的目標果蠅,也擁有較差的求偶與環境抗壓能力和較短的壽命。結合以上發現,我們的結果提供了新的證據指出:不同的社會環境會使果蠅的行為、生理及壽命產生顯著的影響。
Social environments composed of surrounding creatures and their interactions, play important roles to regulate animal behaviors or physiology. Fruit flies, Drosophila melanogaster, performs various social behaviors during interactions with conspecifics. Recent studies have shown that social environments could affect multiple traits in flies. However, the influences of different social environments to the lifespan, behavior or physiology of individuals are very complicated and remain to be studied. In this report, we examined aging, stress resistance and behavior in flies under three different social environments, social isolation, cohousing with short-lived social partners, or cohousing with old social partners. Our results showed that social isolated fruit flies have longer lifespan, improved stress resistances and climbing activity compared to grouped house fruit flies. Cohousing with short-lived donors significantly decreased behavioral performances, stress resistances and lifespan. Flies living with old partners also showed worse performance in courtship behavior, stress resistance, and aging. Together, our findings provide new evidences that different social environments could have pronounced impacts on fly behavior, physiology and aging.
Acknowledgements …………………………………………………………….... i
Abstract …………………………………………………………………………. ii
摘要 ……………………………………………………………………………... iii
Contents ……………………………………………………………………..…. iv
Introduction …………………………………………………………………….. 1
Materials and Methods ………………………………………………………… 4
Results
Social isolation leads to longer lifespan and better stress resistance ………... 9
Social isolation has no effect on most of behaviors ………………………... 11
The effect of shorter lifespan partners on lifespan and stress resistance ….. 13
The effect of shorter lifespan partners on behavior ……………………….. 15
The effect of old partners on lifespan and stress resistance of Canton-S …. 17
The effect of old partners on behaviors of Canton-S ……………………... 19
The effect of old partners on lifespan and stress resistance of yw ………... 21
Discussions
The influence of social isolation ………………………………………….. 24
The influence of short-lived donor ………………………………………... 25
The influence of old donor ………………………………………………... 25
The ratio between control and experimental groups ………………………. 26
Potential reasons that cause the effect of different social partners ………... 27
Conclusion ………………………………………………………………… 28
Supplements …………………………………………………………………… 29
References ……………………………………………………………………... 31
Agrawal, Pavan; Chung, Phuong; Heberlein, Ulrike; Kent, Clement (2019): Enabling
cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield
INTACT method reveals the impact of social environment on the epigenetic
landscape in dopaminergic neurons. In BMC biology 17 (1), p. 30. DOI:
10.1186/s12915-019-0646-4.
Agrawal, Pavan; Kao, Damian; Chung, Phuong; Looger, Loren L. (2020): The
neuropeptide Drosulfakinin regulates social isolation-induced aggression in
Drosophila. In The Journal of experimental biology 223 (Pt 2). DOI:
10.1242/jeb.207407.
Amiri, Shayan; Haj-Mirzaian, Arya; Rahimi-Balaei, Maryam; Razmi, Ali; Kordjazy,
Nastaran; Shirzadian, Armin et al. (2015): Co-occurrence of anxiety and
depressive-like behaviors following adolescent social isolation in male mice;
possible role of nitrergic system. In Physiology & behavior 145, pp. 38–44. DOI:
10.1016/j.physbeh.2015.03.032.
Apfelbeck, Beate; Raess, Michael (2008): Behavioural and hormonal effects of social
isolation and neophobia in a gregarious bird species, the European starling
(Sturnus vulgaris). In Hormones and behavior 54 (3), pp. 435–441. DOI:
10.1016/j.yhbeh.2008.04.003.
Beauchamp, Guy (2016): Function and structure of vigilance in a gregarious species
exposed to threats from predators and conspecifics. In Animal Behaviour 116,
pp. 195–201. DOI: 10.1016/j.anbehav.2016.04.008.
Brenman-Suttner, Dova B.; Yost, Ryley T.; Frame, Ariel K.; Robinson, J. Wesley;
Moehring, Amanda J.; Simon, Anne F. (2020): Social behavior and aging: A fly
model. In Genes, brain, and behavior 19 (2), e12598. DOI: 10.1111/gbb.12598.
Cacioppo, John T.; Ernst, John M.; Burleson, Mary H.; McClintock, Martha K.;
Malarkey, William B.; Hawkley, Louise C. et al. (2000): Lonely traits and
concomitant physiological processes: the MacArthur social neuroscience studies.
In International Journal of Psychophysiology 35 (2-3), pp. 143–154. DOI:
10.1016/s0167-8760(99)00049-5.
Carazo, Pau; Green, Jared; Sepil, Irem; Pizzari, Tommaso; Wigby, Stuart (2016):
Inbreeding removes sex differences in lifespan in a population of Drosophila
melanogaster. In Biology letters 12 (6). DOI: 10.1098/rsbl.2016.0337.
Chakraborty, Tuhin S.; Gendron, Christi M.; Lyu, Yang; Munneke, Allyson S.;
DeMarco, Madeline N.; Hoisington, Zachary W.; Pletcher, Scott D. (2019):
Sensory perception of dead conspecifics induces aversive cues and modulates
lifespan through serotonin in Drosophila. In Nature communications 10 (1),
p. 2365. DOI: 10.1038/s41467-019-10285-y.
Chen, Selby; Lee, Ann Yeelin; Bowens, Nina M.; Huber, Robert; Kravitz, Edward A.
(2002): Fighting fruit flies: a model system for the study of aggression. In
Proceedings of the National Academy of Sciences of the United States of
America 99 (8), pp. 5664–5668. DOI: 10.1073/pnas.082102599.
Cole, Steven W. (2014): Human social genomics. In PLoS genetics 10 (8), e1004601.
DOI: 10.1371/journal.pgen.1004601.
Dalerum, Fredrik; Lange, Henrik; Skarpe, Christina; Rooke, Tuulikki; Inga, Berit;
Bateman, Philip W. (2008): Foraging competition, vigilance and group size in
two species of gregarious antelope. In South African Journal of Wildlife
Research 38 (2), pp. 138–145. DOI: 10.3957/0379-4369-38.2.138.
Dawson, Erika H.; Bailly, Tiphaine P. M.; Dos Santos, Julie; Moreno, Céline;
Devilliers, Maëlle; Maroni, Brigitte et al. (2018): Social environment mediates
cancer progression in Drosophila. In Nature communications 9 (1), p. 3574.
DOI: 10.1038/s41467-018-05737-w.
Demas, Gregory E.; Johnson, Corey; Polacek, Kelly M. (2004): Social interactions
differentially affect reproductive and immune responses of Siberian hamsters. In
Physiology & behavior 83 (1), pp. 73–79. DOI: 10.1016/j.physbeh.2004.06.025.
Drapeau, Mark David; Cyran, Shawn A.; Viering, Michaela M.; Geyer, Pamela K.;
Long, Anthony D. (2006): A cis-regulatory sequence within the yellow locus of
Drosophila melanogaster required for normal male mating success. In Genetics
172 (2), pp. 1009–1030. DOI: 10.1534/genetics.105.045666.
Ellis, Lucy B.; Kessler, Seymour (1975): Differential posteclosion housing
experiences and reproduction in Drosophila. In Animal Behaviour 23, pp. 949–
952. DOI: 10.1016/0003-3472(75)90119-0.
Ferguson, Christopher J.; Averill, Patricia M.; Rhoades, Howard; Rocha, Donna;
Gruber, Nelson P.; Gummattira, Pushpa (2005): Social isolation, impulsivity and
depression as predictors of aggression in a psychiatric inpatient population. In
The Psychiatric quarterly 76 (2), pp. 123–137. DOI: 10.1007/s11089-005-2335-
1.
Flintham, Ewan O.; Yoshida, Tomoyo; Smith, Sophie; Pavlou, Hania J.; Goodwin,
Stephen F.; Carazo, Pau; Wigby, Stuart (2018): Interactions between the sexual
identity of the nervous system and the social environment mediate lifespan in
Drosophila melanogaster. In Proceedings. Biological sciences 285 (1892). DOI:
10.1098/rspb.2018.1450.
Ganguly-Fitzgerald, Indrani; Donlea, Jeff; Shaw, Paul J. (2006): Waking experience
affects sleep need in Drosophila. In Science (New York, N.Y.) 313 (5794),
pp. 1775–1781. DOI: 10.1126/science.1130408.
Grippo, Angela J.; Cushing, Bruce S.; Carter, C. Sue (2007): Depression-like
behavior and stressor-induced neuroendocrine activation in female prairie voles
exposed to chronic social isolation. In Psychosomatic medicine 69 (2), pp. 149–
157. DOI: 10.1097/PSY.0b013e31802f054b.
Hassaneen, Ehab (2015): Effect of yellow white Mutation on the Circadian
Locomotor Activity of the Fruit Fly Drosophila melanogaster: A Comparison to
Canton S Wild-Type. In Catrina: The International Journal of Environmental
Sciences 13 (1), pp. 45–52. Available online at https://cat.journals.ekb.eg/article_18378_37782fe71d84f016eccd1a4511071374.
pdf.
Hawkley, Louise C.; Capitanio, John P. (2015): Perceived social isolation,
evolutionary fitness and health outcomes: a lifespan approach. In Philosophical
transactions of the Royal Society of London. Series B, Biological sciences 370
(1669). DOI: 10.1098/rstb.2014.0114.
Hermes, Gretchen L.; Delgado, Bertha; Tretiakova, Maria; Cavigelli, Sonia A.;
Krausz, Thomas; Conzen, Suzanne D.; McClintock, Martha K. (2009): Social
isolation dysregulates endocrine and behavioral stress while increasing malignant
burden of spontaneous mammary tumors. In Proceedings of the National
Academy of Sciences of the United States of America 106 (52), pp. 22393–22398.
DOI: 10.1073/pnas.0910753106.
Hoffmann, Ary A. (1990): The influence of age and experience with conspecifics on
territorial behavior in Drosophila melanogaster. In J Insect Behav 3 (1), pp. 1–12.
DOI: 10.1007/BF01049191.
Iliadi, Konstantin G.; Boulianne, Gabrielle L. (2010): Age-related behavioral changes
in Drosophila. In Annals of the New York Academy of Sciences 1197, pp. 9–18.
DOI: 10.1111/j.1749-6632.2009.05372.x.
Iliadi, Konstantin G.; Iliadi, Natalia N.; Boulianne, Gabrielle L. (2009): Regulation of
Drosophila life-span: effect of genetic background, sex, mating and social status.
In Experimental gerontology 44 (8), pp. 546–553. DOI:
10.1016/j.exger.2009.05.008.
Keesey, Ian W.; Koerte, Sarah; Khallaf, Mohammed A.; Retzke, Tom; Guillou,
Aurélien; Grosse-Wilde, Ewald et al. (2017): Pathogenic bacteria enhance
dispersal through alteration of Drosophila social communication. In Nature
communications 8 (1), p. 265. DOI: 10.1038/s41467-017-00334-9.
Kim, Yong-Kyu; Phillips, Dennis R.; Chao, Taina; Ehrman, Lee (2004):
Developmental isolation and subsequent adult behavior of Drosophila
paulistorum. VI. Quantitative variation in cuticular hydrocarbons. In Behavior
genetics 34 (4), pp. 385–394. DOI: 10.1023/B:BEGE.0000023644.87050.1a.
Krstic, Dimitrije; Boll, Werner; Noll, Markus (2013): Influence of the White locus on
the courtship behavior of Drosophila males. In PloS one 8 (10), e77904. DOI:
10.1371/journal.pone.0077904.
Kuo, Tsung-Han; Yew, Joanne Y.; Fedina, Tatyana Y.; Dreisewerd, Klaus; Dierick,
Herman A.; Pletcher, Scott D. (2012): Aging modulates cuticular hydrocarbons
and sexual attractiveness in Drosophila melanogaster. In The Journal of
experimental biology 215 (Pt 5), pp. 814–821. DOI: 10.1242/jeb.064980.
Leech, Thomas; McDowall, Laurin; Hopkins, Kevin P.; Sait, Steven M.; Harrison,
Xavier A.; Bretman, Amanda (2020): Social environment drives sex and age-
specific variation in Drosophila melanogaster microbiome composition and
predicted function. In bioRxiv DOI: 10.1101/2020.01.07.895631.
Leech, Thomas; Sait, Steven M.; Bretman, Amanda (2017): Sex-specific effects of
social isolation on ageing in Drosophila melanogaster. In Journal of insect
physiology 102, pp. 12–17. DOI: 10.1016/j.jinsphys.2017.08.008.
Levine, Joel D.; Funes, Pablo; Dowse, Harold B.; Hall, Jeffrey C. (2002): Resetting
the circadian clock by social experience in Drosophila melanogaster. In Science
(New York, N.Y.) 298 (5600), pp. 2010–2012. DOI: 10.1126/science.1076008.
Massey, Jonathan H.; Chung, Daayun; Siwanowicz, Igor; Stern, David L.; Wittkopp,
Patricia J. (2019): The yellow gene influences Drosophila male mating success
through sex comb melanization. In eLife 8. DOI: 10.7554/eLife.49388.
Matsuo, Takashi (2018): Effect of social condition on behavioral development during
early adult phase in Drosophila prolongata. In Journal of ethology 36 (1), pp. 15–
22. DOI: 10.1007/s10164-017-0524-x.
McNeill, Lorna Haughton; Kreuter, Matthew W.; Subramanian, S. V. (2006): Social
environment and physical activity: a review of concepts and evidence. In Social
science & medicine (1982) 63 (4), pp. 1011–1022. DOI:
10.1016/j.socscimed.2006.03.012.
Modlinska, Klaudia; Stryjek, Rafał; Chrzanowska, Anna; Pisula, Wojciech (2018):
Social environment as a factor affecting exploration and learning in pre-juvenile
rats. In Behavioural processes 153, pp. 77–83. DOI:
10.1016/j.beproc.2018.05.010.
Monier, Magdalena; Nöbel, Sabine; Isabel, Guillaume; Danchin, Etienne (2018):
Effects of a sex ratio gradient on female mate-copying and choosiness in
Drosophila melanogaster. In Current zoology 64 (2), pp. 251–258. DOI:
10.1093/cz/zoy014.
Nilsen, Steven P.; Chan, Yick-Bun; Huber, Robert; Kravitz, Edward A. (2004):
Gender-selective patterns of aggressive behavior in Drosophila melanogaster. In
Proceedings of the National Academy of Sciences of the United States of
America 101 (33), pp. 12342–12347. DOI: 10.1073/pnas.0404693101.
Nöbel, Sabine; Allain, Mélanie; Isabel, Guillaume; Danchin, Etienne (2018): Mate
copying in Drosophila melanogaster males. In Animal Behaviour 141, pp. 9–15.
DOI: 10.1016/j.anbehav.2018.04.019.
Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo (2007): Social isolation affects
the development of obesity and type 2 diabetes in mice. In Endocrinology 148
(10), pp. 4658–4666. DOI: 10.1210/en.2007-0296.
Parrish, J. K.; Edelstein-Keshet, L. (1999): Complexity, pattern, and evolutionary
trade-offs in animal aggregation. In Science (New York, N.Y.) 284 (5411),
pp. 99–101. DOI: 10.1126/science.284.5411.99.
Proudfoot, K. L.; Weary, D. M.; LeBlanc, S. J.; Mamedova, L. K.; Keyserlingk, M.
A. G. von (2018): Exposure to an unpredictable and competitive social
environment affects behavior and health of transition dairy cows. In Journal of
dairy science 101 (10), pp. 9309–9320. DOI: 10.3168/jds.2017-14115.
Reeves, Rusty; Tamburello, Anthony (2014): Single cells, segregated housing, and
suicide in the New Jersey Department of Corrections. In The journal of the
American Academy of Psychiatry and the Law 42 (4), pp. 484–488.
Rohlfs, Marko; Hoffmeister, Thomas S. (2004): Spatial aggregation across ephemeral
resource patches in insect communities: an adaptive response to natural enemies?
In Oecologia 140 (4), pp. 654–661. DOI: 10.1007/s00442-004-1629-9.
Ruan, Hongyu; Wu, Chun-Fang (2008): Social interaction-mediated lifespan
extension of Drosophila Cu/Zn superoxide dismutase mutants. In Proceedings of
the National Academy of Sciences of the United States of America 105 (21),
pp. 7506–7510. DOI: 10.1073/pnas.0711127105.
Sethi, Sachin; Lin, Hui-Hao; Shepherd, Andrew K.; Volkan, Pelin C.; Su, Chih-Ying;
Wang, Jing W. (2019): Social Context Enhances Hormonal Modulation of
Pheromone Detection in Drosophila. In Current biology : CB 29 (22), 3887-
3898.e4. DOI: 10.1016/j.cub.2019.09.045.
Simon, A. F.; Chou, M-T; Salazar, E. D.; Nicholson, T.; Saini, N.; Metchev, S.;
Krantz, D. E. (2012): A simple assay to study social behavior in Drosophila:
measurement of social space within a group. In Genes, brain, and behavior 11
(2), pp. 243–252. DOI: 10.1111/j.1601-183X.2011.00740.x.
Siva-Jothy, Jonathon A.; Vale, Pedro F. (2019): Viral infection causes sex-specific
changes in fruit fly social aggregation behaviour. In Biology letters 15 (9),
p. 20190344. DOI: 10.1098/rsbl.2019.0344.
Versace, Elisabetta; Caffini, Matteo; Werkhoven, Zach; Bivort, Benjamin L. de
(2020): Individual, but not population asymmetries, are modulated by social
environment and genotype in Drosophila melanogaster. In Scientific reports 10
(1), p. 4480. DOI: 10.1038/s41598-020-61410-7.
Wallace, Deanna L.; Han, Ming-Hu; Graham, Danielle L.; Green, Thomas A.; Vialou,
Vincent; Iñiguez, Sergio D. et al. (2009): CREB regulation of nucleus
accumbens excitability mediates social isolation-induced behavioral deficits. In
Nature neuroscience 12 (2), pp. 200–209. DOI: 10.1038/nn.2257.
Xiao, Chengfeng; Qiu, Shuang; Robertson, R. Meldrum (2017): The white gene
controls copulation success in Drosophila melanogaster. In Scientific reports 7
(1), p. 7712. DOI: 10.1038/s41598-017-08155-y.
Zhang, S. D.; Odenwald, W. F. (1995): Misexpression of the white (w) gene triggers
male-male courtship in Drosophila. In Proceedings of the National Academy of
Sciences of the United States of America 92 (12), pp. 5525–5529. DOI:
10.1073/pnas.92.12.5525.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *