|
1. Mansfield ML. Are There Knots in Proteins. Nat Struct Biol 1994; 1(4):213-214. 2. Jamroz M, Niemyska W, Rawdon EJ, Stasiak A, Millett KC, Sulkowski P, et al. KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Res 2015; 43(D1):D306-D314. 3. Faisca PFN. Knotted proteins: A tangled tale of Structural Biology. Comput Struct Biotec 2015; 13:459-468. 4. Thiruselvam V, Kumarevel T, Karthe P, Kuramitsu S, Yokoyama S, Ponnuswamy MN. Crystal structure analysis of a hypothetical protein (MJ0366) from Methanocaldococcus jannaschii revealed a novel topological arrangement of the knot fold. Biochem Bioph Res Co 2017; 482(2):264-269. 5. Nureki O, Shirouzu M, Hashimoto K, Ishitani R, Terada T, Tamakoshi M, et al. An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallogr D 2002; 58:1129-1137. 6. Taylor WR. A deeply knotted protein structure and how it might fold. Nature 2000; 406(6798):916-919. 7. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2016; 473:2453-2462. 8. Bolinger D, Sulkowska JI, Hsu HP, Mirny LA, Kardar M, Onuchic JN, et al. A Stevedore's Protein Knot. Plos Comput Biol 2010; 6(4). 9. Hori H. Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7(1). 10. Tkaczuk KL, Dunin-Horkawicz S, Purta E, Bujnicki JM. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. Bmc Bioinformatics 2007; 8. 11. Wagner JR, Brunzelle JS, Forest KT, Vierstra RD. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 2005; 438(7066):325-331. 12. Reyes-Turcu FE, Wilkinson KD. Polyubiquitin Binding and Disassembly By Deubiquitinating Enzymes. Chem Rev 2009; 109(4):1495-1508. 13. Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S. YbeA is the m(3)Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. Rna 2008; 14(10):2234-2244. 14. Mallam AL, Jackson SE. The dimerization of an alpha/beta-knotted protein is essential for structure and function. Structure 2007; 15(1):111-122. 15. Cunningham BA, Hemperly JJ, Hopp TP, Edelman GM. Favin Versus Concanavalin-a - Circularly Permuted Amino-Acid Sequences. P Natl Acad Sci USA 1979; 76(7):3218-3222. 16. Uliel S, Fliess A, Unger R. Naturally occurring circular permutations in proteins. Protein Eng 2001; 14(8):533-542. 17. Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. P Natl Acad Sci USA 1999; 96(20):11241-11246. 18. Sanders KE, Lo J, Sligar SG. Intersubunit circular permutation of human hemoglobin. Blood 2002; 100(1):299-305. 19. Mallam AL, Jackson SE. A comparison of the folding of two knotted proteins: YbeA and YibK. J Mol Biol 2007; 366(2):650-665. 20. Ero R, Leppik M, Liiv A, Remme J. Specificity and kinetics of 23S rRNA modification enzymes RlmH and RluD. Rna 2010; 16(11):2075-2084. 21. Koh CS, Madireddy R, Beane TJ, Zamore PD, Korostelev AA. Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep-Uk 2017; 7. 22. Ko KT, Hu IC, Huang KF, Lyu PC, Hsu SD. Untying a Knotted SPOUT RNA Methyltransferase by Circular Permutation Results in a Domain-Swapped Dimer. Structure 2019; 27(8):1224-1233 e1224. 23. Palego L, Betti L, Rossi A, Giannaccini G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J Amino Acids 2016; 2016:8952520. 24. Vivian JT, Callis PR. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 2001; 80(5):2093-2109. 25. Chen Y, Barkley MD. Toward understanding tryptophan fluorescence in proteins. Biochemistry-Us 1998; 37(28):9976-9982. 26. Yamamoto T, Kobayashi T, Yoshikiyo K, Matsui Y, Takahashi T, Aso Y. A H-1 NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-beta-cyclodextrin. J Mol Struct 2009; 920(1-3):264-269. 27. Osborne A, Teng QC, Miles EW, Phillips RS. Detection of open and closed conformations of tryptophan synthase by N-15-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-N-15-L-tryptophan. J Biol Chem 2003; 278(45):44083-44090. 28. Leone M, Rodriguez-Mias RA, Pellecchia M. Selective incorporation of 19F-labeled Trp side chains for NMR-spectroscopy-based ligand-protein interaction studies. Chembiochem 2003; 4(7):649-650. 29. Kimber BJ, Feeney J, Roberts GC, Birdsall B, Griffiths DV, Burgen AS, et al. Proximity of two tryptophan residues in dihydrofolate reductase determined by 19f NMR. Nature 1978; 271(5641):184-185. 30. Crowley PB, Kyne C, Monteith WB. Simple and inexpensive incorporation of F-19-Tryptophan for protein NMR spectroscopy. Chem Commun 2012; 48(86):10681-10683. 31. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006; 1(6):2876-2890. 32. Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography 2017; 50(Pt 4):1212-1225. 33. Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 2010; 38(Web Server issue):W540-544. 34. Stern F. Dependence on Moisture Content of the Small Angle X-Ray Scattering Power of Cellulose Fibres. T Faraday Soc 1955; 51(3):430-441. 35. Koch MH, Vachette P, Svergun DI. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quarterly reviews of biophysics 2003; 36(2):147-227. 36. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology 1997; 276:307-326. 37. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography 2010; 66(2):213-221. 38. Harder ME, Deinzer ML, Leid ME, Schimerlik MI. Global analysis of three-state protein unfolding data. Protein Sci 2004; 13(8):2207-2222. 39. Baryshnikova EN, Melnik BS, Finkelstein AV, Semisotnov GV, Bychkova VE. Three-state protein folding: experimental determination of free-energy profile. Protein Sci 2005; 14(10):2658-2667. 40. Sriramoju MK, Chen Y, Lee YC, Hsu SD. Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease. Sci Rep 2018; 8(1):7076. 41. Lee YTC, Chang CY, Chen SY, Pan YR, Ho MR, Hsu S-TD. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome. Sci Rep 2017; 4:45174. 42. Wang I, Chen S-Y, Hsu S-TD. Unraveling the Folding Mechanism of the Smallest Knotted Protein, MJ0366. Journal of Physical Chemistry B 2015; 119(12):4359-4370. 43. Schanda P, Kupce E, Brutscher B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 2005; 33(4):199-211. 44. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6(3):277-293. 45. Garcia De La Torre J, Huertas ML, Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 2000; 78(2):719-730. 46. Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 2015; 589(19 Pt A):2570-2577.
|